Mas314 Matlab Lab III

The goal of this lab is to study the convergence behavior of the following numerical methods:

- Secant method and method of false position;
- ullet Aitken's Δ^2 method and Steffensen's method;
- ullet Horner's method and M \ddot{u} ller's method.

Read the description of each method (cf. Sections 2.5 and 2.6 of the textbook) and do the numerical tests.

Task I. The method of false position generates the sequence $\{p_n\}$ in the same manner as the secant method, but includes a test for root bracketing as the bisection method.

Solve the following problem and use matlab to graph the function f(x) and coordinate sequence $\{(p_n, 0)\}$.

The polynomial

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

has two real zeros, one in [-1,0] and the other in [0,1]. Attempt to approximate these zeros within 10^{-6} using the

- (a) Method of false position;
- (b) Secant method;
- (c) Newton's method.

Use the endpoints of each interval as the initial approximation in (a) and (b), and the midpoint as the initial approximation in (c).

Answer for reference:

- (a) For $p_0 = -1$ and $p_1 = 0$, we have $p_{17} = -0.04065850$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_9 = 0.9623984$;
- (b) For $p_0 = -1$ and $p_1 = 0$, we have $p_5 = -0.04065929$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_{12} = -0.04065929$;
- (c) For $p_0 = -0.5$, we have $p_5 = -0.04065929$, and for $p_0 = 0.5$ we have $p_{21} = 0.9623989$.

Another test to show that the method of false position converges, while the secant method may not.

The function $f(x) = \tan(\pi x) - 6$ has a zero at $p = (1/\pi)\arctan 6 \approx 0.447431543$. Let $p_0 = 0$ and $p_1 = 0.48$ and use ten iterations of each of the following methods to approximate the roots, which one is most successful and use matlab graph to explain why?

- (a) Method of false position.
- (b) Secant method.

Answer for reference:

- (a) The method of false position yields that $p_{10} = 0.442067$.
- (b) The secant method yields that $p_{10} = -195.8950$.

Task II. Aitken's Δ^2 method can used to accelerate the convergence of a sequence that is linearly convergent. Suppose that $\{p_n\}$ is a linearly convergent sequence with limit p. We construct a new sequence $\{\hat{p}_n\}$ via

$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n} := \{\Delta^2\}(p_n), \quad \text{for} \quad n \ge 0.$$

This new sequence is expected to be convergent faster than the original sequence. Verify this by considering:

The following sequences converges to 0. Use Aitken's Δ^2 method to generate $\{\hat{p}_n\}$ until $|\hat{p}_n| \leq 5^{-5}$, and demonstrate the convergence rate of two sequences:

(a)
$$p_n = \frac{1}{n+1}$$
, (b) $p_n = \frac{1}{(n+1)^2}$.

The Steffensen's method generates the new sequence $\{\hat{p}_n\}$ in a way different from the Aitken's Δ^2 method, refer to Page 85 for details. Use The Steffensen's method to solve $x^3 + 4x^2 - 10 = 0$ via the fixed-point iteration with

$$g(x) = \left(\frac{10}{x+4}\right)^{1/2}$$
.

Show that this method converges quadratically.

Task III. Horner's method provides an efficient way to evaluate a polynomial $P_n(x_0)$ and its first-order derivative $P'_n(x_0)$. Use this method to compute $P_3(1)$ and $P'_3(1)$ with $P_3(x) = -x^3 - 2x^2 + 10$.

The Müller's method is an alternative to the secant method and Newton's method for root-finding problem. Read and program Algorithm 2.8 on Page 93. Use this method for solving

$$f(x) = 16x^4 - 40x^3 + 5x^2 + 20x + 6 = 0$$
 with $TOL = 10^{-5}$ and $p_0 = 0.5$, $p_1 = 1.0$, $p_2 = 1.5$.