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On the Security of Index Coding
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Son Hoang Dau, Vitaly Skachek, and Yeow Meng Chee, Senior Member, IEEE

Abstract—Security aspects of the index coding with side infor-
mation (ICSI) problem are investigated. Building on the results
of Bar-Yossef et al. (2006), the properties of linear index codes
are further explored. The notion of weak security, considered by
Bhattad and Narayanan (2005) in the context of network coding, is
generalized to block security. It is shown that the linear index code
based on a matrix , whose column space code has length ,
minimum distance , and dual distance , is -block
secure (and hence also weakly secure) if the adversary knows in
advance messages, and is completely insecure if the
adversary knows in advance more than messages. Strong
security is examined under the conditions that the adversary:
1) possesses messages in advance; 2) eavesdrops at most trans-
missions; 3) corrupts at most transmissions. We prove that for
sufficiently large , an optimal linear index code which is strongly
secure against such an adversary has length . Here,
is a generalization of the min-rank over of the side information
graph for the ICSI problem in its original formulation in the work
of Bar-Yossef et al.

Index Terms—Index coding, network coding, side information,
strong security, weak security.

I. INTRODUCTION

T HE PROBLEM OF index coding with side information
(ICSI) was introduced by Birk and Kol [1], [2]. It was

motivated by applications such as audio and video-on-demand,
and daily newspaper delivery. In these applications, a server
(sender) has to deliver some sets of data, audio or video files
to a set of clients (receivers), different sets are requested by dif-
ferent receivers. Assume that before the transmission starts, the
receivers have already (from previous transmissions) some files
or movies in their possession. Via a slow backward channel,
the receivers can let the sender know which messages they al-
ready have in their possession, and which messages they re-
quest. By exploiting this information, the amount of the overall
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Fig. 1. Example of the ICSI problem.

transmissions can be reduced. As was observed in [1], this can
be achieved by coding the messages at the server before broad-
casting them out.
Another possible application of the ICSI problem is in oppor-

tunistic wireless networks. These are networks in which a wire-
less node can opportunistically listen to the wireless channel. As
a result, the node may obtain packets that were not designated to
it [3]–[5]. This way, a node obtains some side information about
the transmitted data. Exploiting this additional knowledge may
help to increase the throughput of the system.
Consider the toy example in Fig. 1. It presents a scenario with

one sender and four receivers. Each receiver requires a different
information packet (or message). The naïve approach requires
four separate transmissions, one transmission per an informa-
tion packet. However, by exploiting the knowledge of the sub-
sets of messages that clients already have, and by using coding
of the transmitted data, the server can satisfy all the demands by
broadcasting just one coded packet.
The ICSI problem has been a subject of several recent studies

[3], [6]–[12]. This problem can be regarded as a special case
of the well-known network coding (NC) problem [13], [14]. In
particular, it was shown that every instance of the NC problem
can be reduced to an instance of the ICSI problem [3], [10].
Several previous works focused on the design of an efficient

index code for the ICSI problem. Given an instance of the ICSI
problem, Bar-Yossef et al. [6] proved that finding the best scalar
linear binary index code is equivalent to finding the so-called
min-rank of a graph, which is known to be an NP-hard problem
[6], [15]. Here, scalar linear index codes refer to linear index
codes in which each message is a symbol in the field . By
contrast, in vector linear index codes, each message is a vector
over . Lubetzky and Stav [7] showed that there exist instances
in which scalar linear index codes over nonbinary fields and
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linear index codes over mixed fields outperform the scalar linear
binary index codes. El Rouayheb et al. [3], [10] showed that
for certain instances of the ICSI problem, vector linear index
codes achieve strictly higher transmission rate than scalar linear
index codes do. They also pointed out that there exist instances
in which vector nonlinear index codes outperform vector linear
index codes. Vector nonlinear index codes were also shown to
outperform scalar nonlinear index codes for certain instances by
Alon et al. [12]. Several heuristic solutions for the ICSI problem
were proposed in [9] and [11].
In this paper, we study the security aspects of linear index

codes. We restrict ourselves to scalar linear index codes. It is
known that vector linear index codes can achieve better trans-
mission rate than their scalar counterparts, for certain instances
of the ICSI problem [3], [10]. However, if the block length is
fixed, one can model a vector index code as a scalar index code
applied to another instance of the ICSI problem. If the block
length is , the number of messages is , and the number of re-
ceivers is in the original (vector) instance, then the equivalent
(scalar) instance can be viewed as having messages and
receivers.
Let be a finite field with elements. A linear index code

maps onto , where is an matrix over , and
, . In this paper, we show that each linear index code
provides a certain level of information security. More specifi-
cally, let the code be spanned by the columns of , and
let and be its minimum distance and dual distance, respec-
tively. We say that a particular adversary is of strength if it has
messages in its possession. Then, we show that the index code
based on is -block secure against all adversaries of
strength and is completely insecure against any adver-
sary of strength at least . If is anMDS code, then
the two bounds coincide. The technique used in the proof for this
result is reminiscent of that used in the constructions of (mul-
tiple) secret sharing schemes from linear error-correcting codes
[16], [17]. The results on the security of linear index codes can
be further employed to analyze the existence of solutions for a
natural generalization of the ICSI problem, so-called the index
coding with side and restricted information (ICSRI) problem.
In that problem, it is required that some receivers have no infor-
mation about some messages.
In the sequel, we also consider a linear randomized index

code, which is based on the use of random symbols. We show
that the coset coding technique (which has been successfully
employed in secure NC literature; see, for instance, [18]–[22])
yields an optimal strongly secure linear randomized index code
of length . This randomized index code is strongly
secure against an adversary which
(i) has arbitrary messages in advance;
(ii) eavesdrops at most transmissions;
(iii) corrupts at most transmissions.
Here, denotes the min-rank over of the side information
graph corresponding to the instance of the index coding (IC)
problem.
Most of previous works on the security aspects (and on the

error-correction aspect, as a special case) of network coding
dealt with the multicast scenario. One of the main reasons for
this limitation is that the optimal simultaneous transmission

rates for nonmulticast networks have not been fully character-
ized yet. The ICSI problem can be modeled as a special case
of the nonmulticast NC problem [3], [12]. Moreover, being
modeled in that way, it requires that there are directed edges
from particular sources to each sink, which provide the side
information. The symbols transmitted on these special edges
are not allowed to be corrupted, where usually for NC any edge
can be corrupted. These two differences restrict the ability to
derive the results on the security of the IC schemes from the
existing results on security of NC schemes.

II. PRELIMINARIES

Recall that we use the notation for the finite field with
elements, where is a power of prime.We also use for the set
of all nonzero elements of . Let denote the set of integers

. For the vectors and
, the (Hamming) distance between

and is defined to be the number of coordinates where and
differ, namely

The support of a vector is defined to be the set
. The (Hamming) weight of

a vector , denoted , is defined to be , the
number of nonzero coordinates of .
A -dimensional subspace of is called a linear

( -ary) code if the minimum distance of

is equal to . Sometimes, we may use the notation for the
sake of simplicity. The vectors in are called codewords. It is
easy to see that the minimumweight of a nonzero codeword in a
linear code is equal to its minimum distance . A generator
matrix of an -code is a matrix whose rows are
linearly independent codewords of . Then,

.
The dual code or dual space of is defined as

. The minimum distance of ,
, is called the dual distance of .

The following upper bound on the minimum distance of a
-ary linear code is well known (see [23, Ch. 1]).

Theorem 2.1 (Singleton Bound): For an -code, we
have .
Codes attaining this bound are called maximum distance sep-

arable (MDS) codes. For a subset of vectors

define its linear span over
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We use to denote the unit

vector, which has a one at the th position, and zeros elsewhere.
We also use , , to denote the identity matrix.
We recall the following well-known result in coding theory.

Theorem 2.2 ([24, p. 66]): Let be an -code with
dual distance and denote the matrix whose
rows are codewords of . If , then each -tuple from
appears in an arbitrary set of columns of exactly

times.
For a random vector and a subset

of , where , let denote
the vector . For an matrix , let
denote the th row of , and its th column. For a set
, let denote the submatrix of formed by rows

of which are indexed by the elements of . For a set ,
let denote the submatrix of formed by columns
of which are indexed by the elements of .
Let and be discrete random variables taking values in

the sets and , respectively. Let denote the
probability that takes a particular value . Let ,

, , and denote the (binary) entropy,
conditional entropy, mutual information, and conditional mu-
tual information (see [25] for the background).

III. INDEX CODING AND SOME BASIC RESULTS

The ICSI problem considers the following communications
scenario. There is a unique sender (or source) , who has a
vector of messages in his pos-
session, which is a realized value of a random vector

. , hereafter, are assumed to
be independent uniformly distributed random variables over .
There are also receivers . For each ,
has some side information, i.e., owns a subset of mes-

sages , . In addition, each , , is in-
terested in receiving the message , for some demand func-
tion . Here, we assume that for all

. Let . An instance of the ICSI
problem is given by a quadruple . Here, we assume
that every receiver requests exactly one message. This assump-
tion is not a limitation of the model, as we can consider an equiv-
alent problem by splitting each receiver who requests multiple
messages intomultiple receivers, each of whom requests exactly
one message and have the same set of side information [1], [6].

Definition 3.1: An index code over for an in-
stance of the ICSI problem, referred to as an

-IC over , is an encoding function

such that for each receiver , , there exists a decoding
function

satisfying

The parameter is called the length of the index code. In the
scheme corresponding to this code, broadcasts a vector
of length over .

Definition 3.2: An index code of the shortest possible length
is called optimal.

Definition 3.3: A linear index code is an index code, for
which the encoding function is a linear transformation over
. Such a code can be described as

where is an matrix over . The matrix is called
the matrix corresponding to the index code . We also refer to
as the index code based on . Notice that the length of is

the number of columns of .
Let and . In the sequel, we write

if . Intuitively, this means that if some receiver
knows for all (and also knows ), then this receiver
is also able to compute the value of .
Hereafter, we assume that the sets , for all , are

known to . Moreover, we also assume that the index code
is known to each receiver , . In practice, this can
be achieved by a preliminary communication session, when the
knowledge of the sets , for all , and of the code are
disseminated between the participants of the scheme.
In [6], for the case and for all ,

the side information graph of an instance of the
ICSI problem is defined by , where and

A matrix over is said to fit ([26]) if

if
if

(1)

Then, the - over of the side information graph is
defined by

(2)

Let , the subspace spanned by
the (transposed) columns of . The following lemma was im-
plicitly formulated in [6] for the case where ,
for all , and . This lemma specifies a sufficient
condition on so that a receiver can reconstruct a particular
message. We reproduce this lemma with its proof in its general
form for the sake of completeness of the presentation.

Lemma 3.1: Let be an matrix over . Assume that
broadcasts . Then, for each , the receiver can

reconstruct if there exists a vector satisfying

(3)

(4)

Proof: Assume that and .
Since , there exists such that
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By taking the transpose and premultiplying by , we obtain

Therefore

Observe that is able to find and from the knowl-
edge of . Moreover, is also able to compute since

. Additionally, knows , which is transmitted by
. Therefore, is able to compute .

Remark 3.2: It follows from Lemma 3.1 that corresponds
to a linear -IC over if

, for some , . We show later in
Corollary 4.5 that this condition is also necessary. Finding such
an with minimal number of columns by careful selection of

’s is a difficult task (in fact it is NP-hard to do so, see [6],
[15]), which, however, yields a linear coding scheme with the
minimal number of transmissions.

IV. BLOCK SECURE LINEAR INDEX CODES

A. Block Security and Weak Security

In this section, we assume the presence of an adversary who
can listen to all transmissions. Assume that employs a linear
index code based on . The adversary is assumed to possess
side information , where . For short, we
say that knows (or possesses, owns) . The strength of

is defined to be . Denote . Note that by

listening to , the adversary also knows . We
define in the following several levels of security for linear index
codes.

Definition 4.1: Suppose that the sender possesses a vector
of messages , which is a realized value of a random
vector , whose coordinates ,
, are all independent and uniformly distributed over . An

adversary possesses . Consider a linear -IC
over based on .
1) For , the adversary is said to have no information
about if

(5)

In other words, despite the partial knowledge on that
the adversary has (his side information and the transmis-
sions he eavesdrops), the symbols still looks com-
pletely random to him.

2) The index code is said to be -block secure against if
for every -subset , the adversary has no informa-
tion about .

3) The index code is said to be -block secure against all
adversaries of strength if it is -block
secure against for every , .

4) The index code is said to be weakly secure against if it
is 1-block secure against . In other words, after listening
to all transmissions, the adversary has no information about

each particular message that he does not possess in the first
place.

5) The index code is said to be weakly secure against all ad-
versaries of strength if it is weakly
secure against for every -subset of .

6) The index code is said to be completely insecure against
if an adversary, who possesses , by listening

to all transmissions, is able to determine for all .
7) The index code is said to be completely insecure against
any adversary of strength if an adversary,
who possesses an arbitrary set of messages, is always able
to reconstruct all of the other messages after listening
to all transmissions.

Remark 4.1: Even when the index code is -block secure
as defined previously, the adversary is still able to ob-

tain information about dependences between various ’s in
(but he gains no information about any group of particular
messages). This definition of -block security is a generaliza-
tion of that of weak security (see [27], [28]). Obviously, if an
index code is -block secure against then it is also
weakly secure against , but the converse is not always true.

B. Necessary and Sufficient Conditions for Block Security

In the sequel, we consider the sets , , and
, . Moreover, we assume that the sets , ,

and are disjoint, and that they form a partition of , namely
. In particular, .

Lemma 4.2: Assume that for all and for all ,
(not all ’s are zeros)

(6)

Then, we have the following.
1) For all

(7)

2) The system

(8)

has at least one solution for every choice of
.

Proof:
1) If , then the first claim follows immedi-
ately. Otherwise, assume that . As the
columns of are linearly dependent, there exists

such that .
a) If for all such and for all we have

, then
for all .

b) Otherwise, there exist and such that
and . Without loss of generality,

assume that
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Let . Then

Hence, and . Let
and for all .

Then, ’s are not all zero and
, which contradicts (6).

2) By (7), each row of is a linear combination of rows of
. Hence, is also a linear combination of rows of
. Therefore, (8) has at least one solution.

The following lemma generalizes the weak security to the
block security.

Lemma 4.3: Let be an matrix over . Assume that
broadcasts . For a subset , an adversary who

owns , after listening to all transmissions, has no informa-
tion about if and only if

(9)

In particular, for each , has no information about if
and only if

Proof: Assume that (9) holds. We need to show that
. It suffices to show that for all

(10)

where for some .
Consider the following linear system with the unknown
:

which is equivalent to

(11)

In order to prove that (10) holds, it suffices to show that for
all choices of , (11) always has the same number of
solutions . Notice that the number of solutions of (11) is
equal to the number of solutions of

(12)

where , , and are known. For any , if (12) has
a solution, then it has exactly different solutions.
Therefore, it suffices to prove that (12) has at least one solution
for every .
Since , we have

(13)

Subtracting (13) from (12) we obtain

which can be rewritten as

(14)

where , . Due to Lemma 4.2, (14) always
has a solution , for every choice of . Therefore, (12) has at
least one solution for every .
Now we prove the converse. Assume that (9) does not hold.

Then, there exist and , , where ’s,
are not all zero, such that

for some . Hence, similar to the proof of Lemma 3.1,
the adversary obtains

Note that the adversary can calculate from , and can also
find based on his own side information. Therefore, is
able to compute a nontrivial linear combination of ’s, .
Hence, the entropy . Thus, the
adversary gains some information about the .

Corollary 4.4 generalizes Lemma 3.1 by providing both nec-
essary and sufficient conditions for a receiver’s ability to recover
the desired message. Equivalently, this corollary provides nec-
essary and sufficient conditions for a receiver (or the adver-
sary ) to have no information about a particular message.

Corollary 4.4: Let be an matrix over and let
broadcast . Then, for each , the receiver can

reconstruct if and only if there exists a vector
satisfying (3) and (4). The receiver has no information about

if there exists no vector as earlier.
Proof: The proof of this lemma is straightforward from

Lemma 3.1 and Lemma 4.3.

Corollary 4.4 can be reformulated as follows.

Corollary 4.5: The matrix corresponds to a linear
-IC over if and only if for all , there

exists a vector satisfying (3) and (4).

Remark 4.6: It follows from Corollary 4.5 that cor-
responds to a linear -IC over if and only if

, for some ,
. If we define

(15)
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then is the shortest possible length of a linear -IC
over .

Corollary 4.7: The length of an optimal linear
-IC over is .

Remark 4.8: The quantity defined in (15) is precisely the
min-rank over of the side information graph of an ICSI in-
stance in the case and for all (see also
[6]).

Proof: Suppose that for all . Let
be the matrix whose th row is precisely ,

for each . Then, fits . Conversely, if fits , then
by multiplying each row of with a suitable nonzero constant
(which does not change the rank of ), one obtains a matrix
of the form (1). In other words, for each , the th row

of the resulting matrix equals for some .
Therefore, defined in (15) is indeed the minimum rank over
of a matrix which fits the side information graph . Thus,

is precisely the min-rank over of .

Theorem 4.9: Consider a linear -IC over
based on . Let be the minimum distance of .
1) This index code is -block secure against all
adversaries of strength . In particular, it is weakly
secure against all adversaries of strength .

2) This index code is not -block secure against at least
one adversary of strength , for any . In particular,
it is not weakly secure against at least one adversary of
strength .

3) Every adversary of strength is able to find a
list of vectors in which includes the vector of
messages .
Proof:

1) Assume that . By Lemma 4.3, it suffices to show
that for every -subset of and for every
-subset of

For such and ’s, we have
.

Moreover, as and ’s, , are not all
zero, we deduce that . We conclude
that .

2) We now show that the index code is not -block
secure against at least one adversary of strength , for any

.
Pick a codeword such that

and let .Without loss
of generality assume that , ,

. Then, .
Let

Then, and .
By Lemma 4.3, after listening to all transmissions, gains
some information about , namely

. Hence, the index code is not -block secure
against at least one adversary of strength .

3) Let . Consider the following linear system of equa-
tions with unknown :

which is equivalent to

(16)

The adversary attempts to solve this system. Given that
and are known, the system (16) has unknowns
and equations. Note that , and thus by applying
Theorem 2.1 to we have
. If , then (16) has exactly

solutions, as required.
Next, we show that . Assume, by
contrary, that the columns of , denoted by

, are linearly dependent. Then,
there exist , , not all zero, such that

. Let

(Recall that denotes the th column of ). Then,
and hence

. This is a contradiction, which follows from
the assumption that the rows of are linearly
dependent.

Example 4.1: Let . Assume that and that
for all . For each , choose some .

Let be the binary matrix whose columns form a basis of the
space . Then, .
Since , we have . Therefore,
by Theorem 4.9, the index code based on is weakly secure
against . By the Singleton bound, has
columns. In other words, the index code based on requires at
most transmissions.

C. Block Security and Complete Insecurity

Theorem 4.9 provides a threshold for the security level of a
linear index code based on . If has a prior knowledge of
any messages, where , then the scheme
is still secure, i.e., the adversary has no information about any
group of particular messages from . On
the other hand, the scheme may no longer be secure against an
adversary of strength . The last assertion of Theorem
4.9 shows us the difference between being block secure and
being strongly secure (the notion of strong security is rigorously
defined in Definition 5.3 in the sequel). More specifically, if the
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scheme is strongly secure, the messages , which are not
leaked to the adversary in advance, look completely random
to the adversary, i.e., the probability to guess them correctly is

. However, if the scheme is -block secure (for
), then the adversary is able to guess these messages

correctly with probability .
For an adversary of strength , the security of the scheme

depends on the properties of the code employed, in particular,
it depends on the weight distribution of . It is possible to
show in the way analogous to the proof of part (2) in Theorem
4.9 that if there exists with , then the
scheme is not weakly secure against corresponding adversary
of strength . In general, the index code might still be
( -block or weakly) secure against some adversaries of strength
for . While we cannot make a general conclusion on the
security of the scheme when the adversary’s strength is larger
than , Lemma 4.3 is still a useful tool to evaluate the security
in that situation. However, as the next theorem shows, if the size
of is sufficiently large, then is able to determine all the
messages in .

Theorem 4.10: The linear index code based on is com-
pletely insecure against any adversary of strength
, where denotes the dual distance of .
Proof: Suppose the adversary knows a subset ,

and . By Corollary 4.4,
it suffices to show that for all , there exists
satisfying simultaneously and .
Indeed, take any , and let .

Consider the indices which are not in . By Theorem 2.2,
there exists a codeword with

if
if

Then, . We define such that
, as follows. For , we set , and for , we

set . It is immediately clear that . Therefore, by
Corollary 4.4, the adversary can reconstruct . We have shown
that the index code is completely insecure against an arbitrary
set satisfying , hence completing the
proof.

When is an MDS code, we have ,
and hence, the two bounds established in Theorems 4.9 and 4.10
are actually tight. In that case, the third statement in Theorem
4.9 implies Theorem 4.10 as follows. This statement asserts that
an adversary of strength can find a list of
vectors that includes the vector of messages . Since is
an MDS code, we have . Therefore, the
list contains only one element, namely itself. Thus, the index
code is completely insecure against any adversary of strength

.
The following example further illustrates the results stated in

these theorems.

Example 4.2: Let , , , and for
all . Suppose that the receivers have in their possession
sets of messages as appear in the third column of the table that

follows. Suppose also that the demands of all receivers are as in
the second column of the table.

For , let such that . Assume
that an index code based on with

is used. For instance, we can take to be the matrix

whose set of columns is . It is easy to see
that is a Hamming code with and .
Following the coding scheme, broadcasts the following

four bits:

Each , , can compute by using a linear

combination of , , , . Then, each can subtract
(his side information) from to retrieve .
For example, consider . Since

subtracts from to obtain

If an adversary has a knowledge of a single message ,
then by Theorem 4.9, is not able to determine any other mes-
sage , for . Indeed, , while , so the
code is weakly secure against all adversaries of strength . If
none of themessages are leaked, then the adversary has no infor-
mation about any group of two messages. On the other hand, the
code is completely insecure against any adversary of strength

; in that case, is able to determine the remaining
messages.

Remark 4.11: So far we only discuss the case when the adver-
sary can listen to all transmissions. If we consider an adver-
sary, which can eavesdrop at most messages, then
analogous results can also be obtained. Consider a linear index
code based on . Let
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and

Then, it is straightforward to see that the results in Theorems
4.9 and 4.10 still hold, with and being replaced by and
, respectively.

D. Role of the Field Size

The following example demonstrates that the use of index
codes over larger fields might have a positive impact on the
security level. More specifically, in that example, index codes
over large fields significantly enhance the security, compared
with index codes over small fields.

Example 4.3: Suppose that the source has messages
. Assume that there are receivers
, and each receiver has the same set of side

information, . Assume also that
each requires , for .
Any index code for this instance must have length at least ,

since all the vectors , for some , , are
linearly independent over any field.
If we employ an index code over , by the fact that there

are no nontrivial binary MDS codes, we deduce that the min-
imum distance of is at most . Hence, index codes
over are not secure against some adversaries of strength

. However, if we consider index codes over
for sufficiently large , there exists a -ary

MDS code with minimum distance exactly . By
choosing so that , the index code based on is se-
cure against all adversaries of strength at most ,
which is strictly more secure than the those over . To find
such an , let be a generator matrix in standard
form of an -MDS code, and then take . Then,

, for some ,
. Therefore, by Corollary 4.5, corresponds to a linear

index code for this instance.
Note that if we employ an index code over , then for large

values of the minimum distance of is bounded from
earlier by the sphere-packing bound

where as , and denotes the inverse of the
binary entropy function.
There is a variety of stronger upper bounds on the minimum

distance of binary codes, such as the Johnson bound, the Elias
bound, and the McEliece–Rodemich–Rumsey–Welch bound
(see [29, Ch. 4.5] for more details). These bounds provide
even stronger bounds on the security of the binary scheme
for this instance of the ICSI problem. By contrast, as shown
previously, by using a -ary MDS code, the distance of

can achieve the Singleton bound. It is well known that
there is a significant gap between the Singleton bound and the
sphere-packing bound (see [29, p. 111] for details). Therefore,
for this instance of the ICSI problem, index codes over large
fields provide significantly higher levels of security than those
over binary field.

E. Application: ICSRI

In this section, we consider an extension of the ICSI problem,
which we call the ICSRI problem. This problem arises in appli-
cations such as audio and video-on-demand. Consider a client
who has subscribed for certain media content (audio or video
programs, movies, newspapers, etc.) At the same time, this
client has not subscribed to some other content. The content
provider wants to restrict this client from obtaining a content
which he is not eligible for, even though he might be able to ob-
tain it “for free” from the transmissions provided by the server.
As we show in sequel, the solution for the ICSRI problem is a
straight-forward application of the results in Corollary 4.4.
More formally, the arguments of an instance

of the ICSRI problem are similar to their counterparts
for the ICSI problem. The new additional parameter,

, represents the sets of
message indices that the respective receivers , ,
are not allowed to obtain. The goal is that at the end of the
communication round, the receiver has the message in
its possession, for all , and it has no information about
for all . The notion of a linear -IC over
is naturally extended to that of a linear -IC

over .
Let

The following proposition provides a necessary and sufficient
condition for a linear index code to be also a solution to an
instance of the ICSRI problem.

Proposition 4.12: The linear -IC over based
on is also a linear -IC if and only if

.
Proof: Let employ the -IC over based

on . Then, clearly can recover for all . Due to
Lemma 4.3, for each and , has no information
about if and only if

Hence, we complete the proof.

Example 4.4: Consider an instance of the
ICSRI problem where , , , and are defined as in Ex-
ample 4.2. Moreover, let , where

, , , and
. Consider the index code based on

constructed in Example 4.2. It is straightforward to verify that
. Therefore, by Proposition 4.12,

this index code also provides a solution to this instance of the
ICSRI problem.
Let

where the minimum is taken over all choices of ,
, which satisfy

(17)
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Let if there are no choices of ’s, , which
satisfy (17). The following proposition follows immediately.

Proposition 4.13: The length of an optimal linear
-IC over is . If , then there exist

no linear -ICs over .

V. STRONGLY SECURE INDEX CODES WITH SIDE INFORMATION

In this section, we consider a different model of adversary.
Similarly, to its counterpart in Section IV, the adversary in
this section owns some prior side information. Additionally,
can listen to transmissions of . It can also corrupt some
transmissions of , received by any of , .
We start the analysis with some basic definitions of error-cor-

recting index codes. This type of index codes has been studied
very recently by the authors of this paper in [30]. We repeat
some basic results for the sake of completeness.

A. Error-Correcting Index Codes

Assume that some of the symbols received by , ,
are in error. Consider an ICSI instance , and assume
that broadcasts a vector . Let be the
error affecting the information received by , . Then,
actually receives the vector

instead of . The following definition is a generalization of
Definition 3.1.

Definition 5.1: A -error-correcting index code over for
an instance of the ICSI problem, referred to as
a -error-correcting -IC over , is an encoding
function

such that for each receiver , , there exists a decoding
function

satisfying

The definitions of the length, of a linear index code, and of the
matrix corresponding to an index code are naturally extended to
-error-correcting index codes.
We define the following sets:

For each , we also define

Then, the collection of supports of all vectors in
is precisely

(18)

The necessary and sufficient condition for a matrix to corre-
spond to a linear -error-correcting index code is given in the
following lemma.

Lemma 5.1: The matrix corresponds to a linear -error-
correcting -IC over if and only if

(19)

Equivalently, corresponds to a linear -error-correcting
-IC over if and only if

for all and for all choices of nonzero
, .
Proof: For each , we define

the set of all vectors resulting from at most errors in the trans-
mitted vector associated with the information vector . Then,
the receiver can recover correctly if and only if

for every pair , satisfying

Therefore, correspond to a linear -error-correcting
-IC over if and only if the following con-

dition is satisfied: for all and for all , such
that and , it holds

(20)

Denote . Then, the condition in (20) can be refor-
mulated as follows: for all and for all such that

and , it holds

(21)

The equivalent condition is that for all

Since for we have
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the condition (19) can be restated as

for all and for all choices of nonzero
, .

The next corollary follows directly from Lemma 5.1 by con-
sidering an error-free setup, i.e., .

Corollary 5.2: The matrix corresponds to an
-IC over if and only if

for all and for all choices of nonzero
, .
The conditions stated in Corollary 5.2 and Corollary 4.5 are,

as expected, equivalent. Indeed, the condition in Corollary 5.2
is equivalent to the condition that for each

which can be rewritten as

For each denote

We have for all

or, equivalently

Observe that all the transitions earlier are “if and only if,” and
therefore, Corollary 5.2 and Corollary 4.5 are equivalent, as
claimed.

B. Lower Bound on the Length

We start this section with a generalization of the definition
of index codes to randomized index codes. Consider
random variables , which are distributed inde-
pendently and uniformly over . Let
and let be a realization of .

Definition 5.2: An -randomized -IC over
for an instance is an encoding function

such that for each receiver , , there exists a decoding
function

satisfying

for any , which is a realization of the random vector .
The definition of a -error-correcting index code can be natu-

rally extended to that of a -error-correcting randomized index
code. We simply replace by ,
and by in Definition 5.1.
An -randomized index code is linear over if it has a linear

encoding function

where is an matrix over . In the se-
quel, we assume that any message , , is requested
by at least one receiver. Observe that by simply treating

as messages, the results from
previous sections still apply to linear randomized index codes.

Definition 5.3: The linear -randomized -IC
over based on is said to be -strongly secure if it
has the following two properties.
1) This code is -error-correcting. In other words, upon re-
ceiving with at most coordinates in error, the re-
ceiver can still recover , for all .

2) This code is -strongly secure. In other words, an ad-
versary who possesses , for , ,
and listens to at most transmissions, , gains no
information about other messages. Equivalently

for any , .

Remark 5.3:
1) If , then a -strongly secure -ran-
domized -IC over is simply a -error-cor-
recting -IC over .

2) If , the index code is strongly secure, but has
no error-correcting capability. In that case, we simply
say that the code is “ -strongly secure” instead of
“ -strongly secure.”

3) A simple concatenation of an error-correcting IC scheme
and a secure IC scheme may not necessarily yield a

-strongly secure -randomized -IC
over . By contrast, in Section V-C we present a
somewhat more sophisticated scheme that yields a

-strongly secure -randomized -IC
over .

In the lemma that follows, we assume that each message is re-
quested by at least one receiver. Otherwise, that “useless” mes-
sage can be discarded without affecting the model.

Lemma 5.4: If corresponds to a -strongly secure
linear -randomized -IC over , then .

Proof: We prove this lemma by contradiction. Suppose
that corresponds to a -strongly secure -randomized

-IC over , and that . Let
.
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For , let be the space spanned by columns
of indexed by elements of . Then, for all with

, it holds that

i.e., an adversary who owns gains no information about
after eavesdropping the transmissions corresponding to the

set of indices . From Lemma 4.3 with being replaced by
, we conclude that does not contain a vector

which satisfies and . In the sequel, we refer
to this property of as Property A.
Let be the matrix obtained from by first

deleting rows of indexed by , and then taking its trans-
pose. We show that . Indeed, take any
rows of , denote them . Let be the subma-
trix of formed by the last columns. Since , the
rows are linearly dependent. Hence, there exist

, not all zeros, such that

This implies

due to Property A. Thus, .

Now let , and let

be a basis of the space spanned by the rows of . Suppose that
the receiver requests where .
1) On the one hand, by Corollary 4.5, contains a vector

where . Therefore, and
.

2) On the other hand, there exist such that

Since and , by Property A, we have .
We obtain a contradiction.

Remark 5.5: From Lemma 5.4, a -strongly secure linear
randomized index code requires at least random symbols. We
show in Section V-C that there exists such a code that uses pre-
cisely random symbols.

Lemma 5.6: Suppose that corresponds to a linear -ran-
domized -IC over . If this randomized index
code is -strongly secure, then for all , there exists a
vector satisfying
1) ;
2) .
Proof: Assume, by contradiction, that for some ,

we have for all . Consider a

virtual receiver, which has a side information set , and
requests the symbol . By Corollary 4.4, this virtual receiver
has no information about after listening to all transmissions.
In other words, we have

(22)

where all symbols in and are independent and uniformly
distributed. In particular, for a smaller set of side information

(23)

We recall Definition 5.3: for every -subset and every
-subset , we have

(24)

In the sequel, we show that if the value of is known to the
adversary, this randomized index code is still -strongly se-
cure. In other words, we aim to show that

(25)

for every -subset and every -subset .
Indeed, the left-hand side of (25) is equal to

which is

due to (24). Hence, it suffices to show that

We have

where the third transition is due to (22) and (23).
To this end, we have shown that the randomized index code

is still -strongly secure if the adversary knows the realized
value of . Equivalently, discarding the random variable
from the scheme does not affect its strong security. However,
this contradicts Lemma 5.4, since the resulting code has less
than random symbols.

The following theorem proves a lower bound on the length of
a -strongly secure linear randomized index code.

Theorem 5.7: The length of a -strongly secure linear
-randomized -IC over is at least .
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Proof: Suppose the linear randomized index code is based
on . We divide the proof into several cases.

Case 1: . Then, by Corollary 4.5 and Lemma 5.6, the
subspace must contain the following.
1) The vectors for some , for all

.
2) The vectors , for some , for all

.
Due to linear independence of these vectors and to the
definition of , the length of the code is at least

Case 2: , and for all there exists some vector
such that .

In this case, similarly to Case 1, we have

Therefore, has at least columns.
Case 3: , and for some ,
for all . By following exactly the same argu-
ment as in the proof of Lemma 5.6, we deduce that dis-
carding does not affect the strong security of the ran-
domized index code. By doing so, we obtain a new ran-
domized -strongly secure index code, which has
random variables. This code is based on , which is ob-
tained from by deleting its th row.
The aforementioned argument can be applied until either
the number of random variables decreases to , or the code
in consideration satisfies the condition of Case 2. In both
cases, the resulting randomized index code has length at
least . As the length of the code does not change
during the process, we conclude that the length of the orig-
inal code is at least .

The next theorem establishes a lower bound on the length of
a -strongly secure linear randomized index code.

Theorem 5.8: The length of a -strongly secure linear
-randomized -IC over is at least .
Proof: Let correspond to a -strongly secure

-randomized -IC over . Let be the matrix
obtained by deleting any columns of . Since corresponds
to a -error-correcting index code, by Lemma 5.1, it satisfies

for all and all choices of nonzero ,
. We obtain that the rows of satisfy

By Corollary 5.2, corresponds to an -randomized
-IC over . Since all entries of are con-

tained in , we deduce that corresponds to a -strongly
secure -randomized -IC over . Therefore, by
Theorem 5.7, has at least columns. Therefore, has
at least columns.

C. A Construction of Optimal Strongly Secure Index Codes

In this section, we present a construction of an optimal
-strongly secure -randomized linear -IC

over , which has length attaining the lower bound established
in Theorem 5.8. It requires to be at least . The
proposed construction is based on the coset coding technique,
originally introduced by Ozarow and Wyner [31]. This tech-
nique has been adopted in a variety of NC applications, such as
in [18]–[22].

Construction A: Let correspond to a linear
-IC over of optimal length . Let be a

generator matrix of an
MDS code, so that the last rows of form a generator
matrix of another MDS code. For instance, take

...
...

. . .
...

...
...

. . .
...

where are pairwise distinct nonzero elements in
. Let be the submatrix of formed by the first rows,

and the submatrix formed by the last rows of . Take

Lemma 5.9: The matrix in Construction A corresponds to
a -error-correcting -randomized -IC over .

Proof: Recall that is a random vector. The en-
coding function has a form

Since is a generator matrix of a -error-correcting code, each
receiver , , is able to recover if the number
of errors in is less than or equal to . Therefore, each
receiver can recover , and hence, it can also recover

, , as corresponds to a linear -IC
over .

Lemma 5.10: The matrix in Construction A corresponds
to a -strongly secure -randomized -IC over
.
Proof: Suppose that the adversary possess a message

vector , . Additionally, can eavesdrop trans-

missions, i.e., it has a knowledge of , for some
, . In the following, we show that the entropy
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of is not changed given the knowledge of
and of . It suffices to show that for all

(26)
where all symbols in and are independent and uniformly
distributed. The left-hand side of (26) can be re-written as

(27)

The numerator in (27) is given by

(28)

The penultimate transition can be explained as follows.We have

(29)

The matrix is invertible due to the fact that is a gen-
erator matrix of an -MDS code. Since is known, the
system (29) has a unique solution given by

Since is uniformly distributed over

Similarly to (28), the denominator in (27) is

(30)

From (27), (28), and (30), we obtain (26), as claimed.
From Theorem 5.8, Lemma 5.9, and Lemma 5.10, we obtain

the main result of this section.

Theorem 5.11: The length of an optimal -strongly se-
cure linear -randomized -IC over

is . Moreover, the code in Construction
A achieves this optimal length.

VI. CONCLUSIONS AND OPEN QUESTIONS

In this paper, we initiate a study of the security aspects of
linear index coding schemes. We introduce a notion of block se-

curity and establish two bounds on the security level of a linear
index code based on the matrix . These analysis makes use of
the minimum distance and the dual distance of , the code
spanned by the columns of . While the dimension of this code
corresponds to the number of transmissions in the scheme, the
minimum distance characterizes its security strength.
Our second contribution is the analysis of the strong security

of linear index codes. New bounds on the length of linear index
codes, which are resistant to errors, eavesdropping, and infor-
mation leaking, are established. Index codes that achieve these
bounds are constructed. These new bounds cannot be deduced
directly from the existing results in network coding literature.
One important problem, which remains open, deals with a de-

sign of an optimal secure index coding scheme. This problem
can be formulated as follows: given an instance of the ICSI
problem, how to design , such that has the largest pos-
sible minimum distance? More specifically, let us define the bi-
nary side information matrix as in [6],
namely

if
otherwise.

The problem is equivalent to finding a way to turn certain
off-diagonal 1’s in into 0’s, such that the rows of the re-
sulting matrix generate an error-correcting code of the largest
possible minimum distance. It is very likely that this task is
a hard problem. For comparison, even finding the minimum
distance of an error-correcting code given by its generating
matrix is known to be NP-hard [32].
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