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y € Dy so that f(x) = g(y).

MITM attacks

Randomly pick a list L1 of x's from D; and a list Ly of y's from
D5, and compute the sets Ry = {f(x) | x € L1} and

R> ={g(y) | y € Lo}. When |R1|x|Rz2| > |R|, the chance that
there is at least one common element in R; and R> becomes
non-negligible.

Locating such collision is usually done by sorting the elements of
R1 and/or Ry in lookup tables, the minimum memory requirement
is min(|Ry|, |Rz|), and (|R1| + |R2|) computations.
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Birthday Attack and its Memory Requirement

Birthday Attack

Given function f : D — R, find x,y € D and x # y such that
f(x) = f(y). Randomly pick x from D, compute f(x) and store
the pair (x, f(x)) in a table, repeat until a collision on f(x) is hit.
With probability 1/2, it is expected to repeat 1.18 x |R|'/? times
before hitting a collision, and hence memory requirement is in the
order of |R|*/2.
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f(x) = f(y). Randomly pick x from D, compute f(x) and store
the pair (x, f(x)) in a table, repeat until a collision on f(x) is hit.
With probability 1/2, it is expected to repeat 1.18 x |R|'/? times
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Floyd's cycle-finding algorithm [8] in 1967
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Xt = Xt+s- ) ) ‘/‘
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(tortoise and the hare). Xo
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Birthday Attack and its Memory Requirement

Birthday Attack

Given function f : D — R, find x,y € D and x # y such that
f(x) = f(y). Randomly pick x from D, compute f(x) and store
the pair (x, f(x)) in a table, repeat until a collision on f(x) is hit.
With probability 1/2, it is expected to repeat 1.18 x |R|'/? times
before hitting a collision, and hence memory requirement is in the
order of |R|*/2.

Floyd's cycle-finding algorithm [8] in 1967

When D = R, randomly choose Xy € D, X
define X; = f(Xi_1) (i.e., X; = f/(Xp)) for "(ﬂ\
i=1,2,3,..., there exist s,t € ZT such that Koyt P t..s
Xt = Xt+s- ) . \/‘ S
There exists j such that f%(Xp) = f/(Xp) .‘/ o

(tortoise and the hare).

Price: Time Complexity: 3 - |R|'/2, more Time-Memory trade-off
in [21].



Introduction Early Applications to Block Ciphers Preimages of Hash Functions New Applications to Block Ciphers

Parallel Birthday Attack with Distinguished Points
Distinguished Point [22] 1999

values with distinguished properties, e.g., last z bits are '0's.

1 if y is distinguished point, with probability 27%
D(y) =

0 otherwise



Introduction Early Applications to Block Ciphers Preimages of Hash Functions New Applications to Block Ciphers

Parallel Birthday Attack with Distinguished Points
Distinguished Point [22] 1999

values with distinguished properties, e.g., last z bits are '0's.
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Parallel Birthday Attack with Distinguished Points
Distinguished Point [22] 1999

values with distinguished properties, e.g., last z bits are '0's.

D(y) =

1 if y is distinguished point, with probability 27
0 otherwise

Parallel Attack

Randomly choose xg, and compute
trail x;41 = f(x;) for i =0,1,2,---
until a distinguished point x; is hit w1
(D(XJ) = ].), store onIy (X(]7 XJ) distinguished points: o
figure credit: [22]
Complexties: Memory 2-7 - |R|/2, p parallel nodes with
p < 27%-|R|/2, Time: linear speedup, i.e., |R|}/?/p for each node.
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MITM Attacks: Memory and Parallelization

Morita-Ohta-Miyaguchi [19] 1991: f,g: D — R with D = R,
define a random function s : D — {0, 1}, and

700 = {f(x) if s(x) :E
g(x) else s(x)=1

Apply Floyd's cycle finding algorithm to T, with probability 1/2,
collision of T is collision of f and g.
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MITM Attacks: Memory and Parallelization

Morita-Ohta-Miyaguchi [19] 1991: f,g: D — R with D = R,
define a random function s : D — {0, 1}, and

700 = {f(x) if s(x) :E
g(x) else s(x)=1

Apply Floyd's cycle finding algorithm to T, with probability 1/2,
collision of T is collision of f and g.

Parallel computation with distinguished points applies too.

Open Question: what if D # R?
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Application to DES

double DES with different keys (i.e., C = DESk2(DESk1(P))).

Diffie-Hellman [5] 1977: one can carry out MITM attack on the
functions DESk1(-) and DES,2(-).

Merkle-Hellman [18] 1981: application to triple-DES
C = DESk1(DESK2(DESK1(P))), MITM on functions
DES; 1 (ENC(DES,1(+))) and DESk»(+)

— all in mode level, i.e., regardless of the internal details of the
cipher.

28
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Application to Reduced DES/AES

Attacking the details of the cipher:

m Chaum-Evertse [4] 1985: Application to 6-7 rounds of DES.

m Dunkelman-Sekar-Preneel [7] 2007 :Improved Results with
similar rounds.

m Many attacks against AES, e.g., Dunkelman-Keller-Shamir [6]
2010: 7-round AES-128
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Basic Attack against Compression Functions

When the compression function follows Davies-Meyer, i.e.,

Message Expansion
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Complexities: with / neutral bits, Time 2"~/ & Memory 2'.
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Basic Attack against Compression Functions

When the compression function follows Davies-Meyer, i.e.,

Message Expansion
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Complexities: with / neutral bits, Time 2"~/ & Memory 2'.

Limitations: the number of steps that can be attacked is very
limited.



How to Attack More Steps

Preimages of Hash Functions

Initial Structure (Biclique?)

split match
chunk p /\\h‘unk q
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Preimages of Hash Functions

How to Attack More Steps

Initial Structure (Biclique?)

split match

chunk p /\\h‘unkq
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Partial Matching and its Variants
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Techniques Developed

m Splice-and-Cut
m Initial Structure, Probabilistic Initial Structure, Bicliques

m Partial Matching, Indirect Partial Matching, Probabilistic
Partial Matching, Partial Matching with Differential View
(Fuzzy Matching)
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Preimages of Hash Functions

Initial Structure
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Figure: 4-step Initial Structure - An example of SHA-2

12/28



Introduction Early Applications to Block Ciphers Preimages of Hash Functions New Applications to Block Ciphers

Initial Structure: Trade-off between Neutral Bits and Steps

The case of SHA-2
m 2 steps: 32 bits
m 3 steps: 16 bits
m 4 steps: 11 bits [9]
m 6 steps: 3 bits (biclique) [14]

More steps < Less Neutral bits < Higher Time Complexity &
Less Memory Requirement
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Initial Structure: Trade-off between Neutral Bits and Steps

The case of SHA-2

m 2 steps: 32 bits

m 3 steps: 16 bits

m 4 steps: 11 bits [9]

m 6 steps: 3 bits (biclique) [14]

More steps < Less Neutral bits < Higher Time Complexity &
Less Memory Requirement

Difference between Initial Structure and Biclique?

a single key, and in our opinion they have smaller potential. Indeed, even a single operation for each
key implies a lower bound on the complexity which is not far from exhaustive search. Also from the
technical point of view, the use of bicliques in those settings is not much different from earlier use of
initial structures.

From [12]
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Preimages of Hash Functions

Probabilistic Initial Structure
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Figure: 17-step Initial Structure with Prob. 278 - An example of MD4

Tradeoff between Time Complexity and Attacked Steps.
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(Indirect) Partial Matching
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Figure: O-step Indirect Partial Matching for SHA-2 with 32 matching bits
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Partial Matching: Trade-off

more matching steps
& less matching bits
< (maybe) higher time complexity
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Preimages of Hash Functions

Partial Matching: Trade-off

more matching steps
& less matching bits
< (maybe) higher time complexity

Overall: it is natural that one can attack more steps (more steps
for both initial structure and partial matching) with less neutral
bits, which results in higher time complexity.
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Mode of Operations

[20] 2011: first application of MITM attack using the state value
alone, regardless of the key/key schedule.
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Mode of Operations

[20] 2011: first application of MITM attack using the state value
alone, regardless of the key/key schedule.
[3] 2010: notation of 3-subset MITM attack

plaintext
o | iy

2R

3R

4R
5R

6R
key

Hy

7R

figure credit: Sasaki [20], results in preimage attack in DM mode,
and second-preimage attack in MMO/MP modes. o
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Converting Pseudo-Preimages to Preimages

Large Precomputations Storage 2"/, Time 2"~/ Memory 2/.
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Converting Pseudo-Preimages to Preimages

Large Precomputations Storage 2"/, Time 2"~/ Memory 2/.

O

Unbalanced MITM
Time 27 //2+1 Memory 2/

Tree Constructions

Time [27~/, 27=//2+1] Memory < 22/
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Conversion: Large Computations [9]

Observation: with 2"~/ computations, a pseudo-preimage can be
found, and the possible input chaining is limited to a set S of size
2n=1,

One can find all linking messages (i.e., for all h € S, find

H(IV, M) = h) and store (M, h).
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Preimages of Hash Functions

Conversion: Large Computations [9]

Observation: with 2"~/ computations, a pseudo-preimage can be
found, and the possible input chaining is limited to a set S of size
2n=1,

One can find all linking messages (i.e., for all h € S, find

H(IV, M) = h) and store (M, h).

Overall Complexities: storage 2"/, online computation 2"/,
memory 2/.

Problem: without other shortcuts, precomputation takes 2".

19/28
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Conversion: Unbalanced MITM [17]

@

Inverting the compression function takes 2"~/ and computing
forward takes 2° = 1, we are to meet in the middle on n bits.
Best solution: repeat inversion 21/2 times, and forward
computation 27~//2, and overall computation results in 27//2+1,
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Conversion: Tree Construction [15, 9]

Observation: Multi-target pseudo-preimage attack usually works
faster.
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Observation: Multi-target pseudo-preimage attack usually works
faster.

[15] 2008: MD4 pseudo-preimage attack speeds up linearly.

[9] 2010: Usually with 2/ targets, the attack speeds up by 2//2.
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Conversion: Tree Construction [15, 9]

Observation: Multi-target pseudo-preimage attack usually works
faster.

[15] 2008: MD4 pseudo-preimage attack speeds up linearly.

[9] 2010: Usually with 2/ targets, the attack speeds up by 2//2.

OO

:)—-l Expandable M ge link

[9]: Time Complexity 3-2"2//3 v.s. 2"=//2 by unbalanced MITM
approach.
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Converting to Pseudo-Collision Attack [16]

When the matching point located at the end of the compression
function, pseudo-collision can be found in 27/2=//2 v.s. 2"/2 in the
ideal case.

22/28



Introduction Early Applications to Block Ciphers Preimages of Hash Functions New Applications to Block Ciphers

Converting to Pseudo-Collision Attack [16]

When the matching point located at the end of the compression
function, pseudo-collision can be found in 27/2=//2 v.s. 2"/2 in the
ideal case.

The idea: preset matching / bits of the target to a constant C,
with 2/ computations, one gets 2/ candidates with the target / bits
set to C. Apply birthday attack to the remaining n — / bits.



Preimages of Hash Functions

Converting to Pseudo-Collision Attack [16]

When the matching point located at the end of the compression
function, pseudo-collision can be found in 27/2=//2 v.s. 2"/2 in the
ideal case.

The idea: preset matching / bits of the target to a constant C,
with 2/ computations, one gets 2/ candidates with the target / bits
set to C. Apply birthday attack to the remaining n — / bits.

Complexity: Time 2("=))/2 Memory 2/.
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New Applications to Block Ciphers

KTANTAN [3, 23], 2010, 2011
GOST [10], 2011

8-round AES-128 [2], 2011
7.5-round IDEA [13], 2012

more ...

Details to be shown in next talk ...
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New Applications to Block Ciphers

How far should we go

m Time 2"¢, how big € shall we consider it as “attack”? 2"/n?

m Should we consider the bruteforce on part of the cipher as
“attack”? One can attack lots more steps by increasing the
time complexity by a little bit.

Suggestion from Guo: work toward reducing the time complexity,
and only on those who have the potential to be improved!
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How far should we go

m Time 2"¢, how big € shall we consider it as “attack”? 2"/n?

m Should we consider the bruteforce on part of the cipher as
“attack”? One can attack lots more steps by increasing the
time complexity by a little bit.

Suggestion from Guo: work toward reducing the time complexity,
and only on those who have the potential to be improved!

Thank You!
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