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Introduction

Problem
Given functions f : D1 −→ R and g : D2 −→ R, find x ∈ D1 and
y ∈ D2 so that f (x) = g(y).

MITM attacks
Randomly pick a list L1 of x ’s from D1 and a list L2 of y ’s from
D2, and compute the sets R1 = {f (x) | x ∈ L1} and
R2 = {g(y) | y ∈ L2}. When |R1|x |R2| ≥ |R|, the chance that
there is at least one common element in R1 and R2 becomes
non-negligible.

Locating such collision is usually done by sorting the elements of
R1 and/or R2 in lookup tables, the minimum memory requirement
is min(|R1|, |R2|), and (|R1|+ |R2|) computations.
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Birthday Attack and its Memory Requirement

Birthday Attack

Given function f : D −→ R, find x , y ∈ D and x 6= y such that
f (x) = f (y). Randomly pick x from D, compute f (x) and store
the pair (x , f (x)) in a table, repeat until a collision on f (x) is hit.
With probability 1/2, it is expected to repeat 1.18× |R|1/2 times

before hitting a collision, and hence memory requirement is in the
order of |R|1/2.

Floyd’s cycle-finding algorithm [8] in 1967
When D = R, randomly choose X0 ∈ D,
define Xi = f (Xi−1) (i.e., Xi = f i (X0)) for
i = 1, 2, 3, . . ., there exist s, t ∈ Z+ such that
Xt = Xt+s .
There exists j such that f 2j(X0) = f j(X0)
(tortoise and the hare).

Price: Time Complexity: 3 · |R|1/2, more Time-Memory trade-off
in [21].
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Parallel Birthday Attack with Distinguished Points

Distinguished Point [22] 1999

values with distinguished properties, e.g., last z bits are ’0’s.

D(y) =

{
1 if y is distinguished point, with probability 2−z

0 otherwise

Parallel Attack

1 Randomly choose x0, and compute
trail xi+1 = f (xi ) for i = 0, 1, 2, · · ·
until a distinguished point xj is hit
(D(xj) = 1), store only (x0, xj).

figure credit: [22]

Complexties: Memory 2−z · |R|1/2, p parallel nodes with
p < 2−z · |R|1/2, Time: linear speedup, i.e., |R|1/2/p for each node.
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MITM Attacks: Memory and Parallelization

Morita-Ohta-Miyaguchi [19] 1991: f , g : D −→ R with D = R,
define a random function s : D −→ {0, 1}, and

T (x) =

{
f (x) if s(x) = 0

g(x) else s(x) = 1

Apply Floyd’s cycle finding algorithm to T , with probability 1/2,
collision of T is collision of f and g .

Parallel computation with distinguished points applies too.

Open Question: what if D 6= R?

6 / 28



Introduction Early Applications to Block Ciphers Preimages of Hash Functions New Applications to Block Ciphers

MITM Attacks: Memory and Parallelization

Morita-Ohta-Miyaguchi [19] 1991: f , g : D −→ R with D = R,
define a random function s : D −→ {0, 1}, and

T (x) =

{
f (x) if s(x) = 0

g(x) else s(x) = 1

Apply Floyd’s cycle finding algorithm to T , with probability 1/2,
collision of T is collision of f and g .

Parallel computation with distinguished points applies too.

Open Question: what if D 6= R?

6 / 28



Introduction Early Applications to Block Ciphers Preimages of Hash Functions New Applications to Block Ciphers

MITM Attacks: Memory and Parallelization

Morita-Ohta-Miyaguchi [19] 1991: f , g : D −→ R with D = R,
define a random function s : D −→ {0, 1}, and

T (x) =

{
f (x) if s(x) = 0

g(x) else s(x) = 1

Apply Floyd’s cycle finding algorithm to T , with probability 1/2,
collision of T is collision of f and g .

Parallel computation with distinguished points applies too.

Open Question: what if D 6= R?

6 / 28



Introduction Early Applications to Block Ciphers Preimages of Hash Functions New Applications to Block Ciphers

Application to DES

double DES with different keys (i.e., C = DESK2(DESK1(P))).

Diffie-Hellman [5] 1977: one can carry out MITM attack on the
functions DESK1(·) and DES−1

K2 (·).

Merkle-Hellman [18] 1981: application to triple-DES
C = DESK1(DESK2(DESK1(P))), MITM on functions
DES−1

K1 (ENC (DES−1
K1 (·))) and DESK2(·)

— all in mode level, i.e., regardless of the internal details of the
cipher.
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Application to Reduced DES/AES

Attacking the details of the cipher:

Chaum-Evertse [4] 1985: Application to 6-7 rounds of DES.

Dunkelman-Sekar-Preneel [7] 2007 :Improved Results with
similar rounds.

Many attacks against AES, e.g., Dunkelman-Keller-Shamir [6]
2010: 7-round AES-128
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Basic Attack against Compression Functions

When the compression function follows Davies-Meyer, i.e.,
H ′ = EM(H)⊕ H.

Complexities: with l neutral bits, Time 2n−l & Memory 2l .

Limitations: the number of steps that can be attacked is very
limited.
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How to Attack More Steps

Initial Structure (Biclique?)

Partial Matching and its Variants
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Techniques Developed

Splice-and-Cut

Initial Structure, Probabilistic Initial Structure, Bicliques

Partial Matching, Indirect Partial Matching, Probabilistic
Partial Matching, Partial Matching with Differential View
(Fuzzy Matching)
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Initial Structure

Figure: 4-step Initial Structure - An example of SHA-2
12 / 28
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Initial Structure: Trade-off between Neutral Bits and Steps

The case of SHA-2

2 steps: 32 bits

3 steps: 16 bits

4 steps: 11 bits [9]

6 steps: 3 bits (biclique) [14]

More steps ⇔ Less Neutral bits ⇔ Higher Time Complexity &
Less Memory Requirement

Difference between Initial Structure and Biclique?

From [12]
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Probabilistic Initial Structure

Figure: 17-step Initial Structure with Prob. 2−8 - An example of MD4

Tradeoff between Time Complexity and Attacked Steps.
14 / 28
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(Indirect) Partial Matching

Figure: 9-step Indirect Partial Matching for SHA-2 with 32 matching bits
15 / 28
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Partial Matching: Trade-off

more matching steps
⇔ less matching bits
⇔ (maybe) higher time complexity

Overall: it is natural that one can attack more steps (more steps
for both initial structure and partial matching) with less neutral
bits, which results in higher time complexity.
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Mode of Operations
[20] 2011: first application of MITM attack using the state value
alone, regardless of the key/key schedule.

[3] 2010: notation of 3-subset MITM attack

figure credit: Sasaki [20], results in preimage attack in DM mode,
and second-preimage attack in MMO/MP modes.
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Converting Pseudo-Preimages to Preimages

Large Precomputations Storage 2n−l , Time 2n−l , Memory 2l .

Unbalanced MITM

Time 2n−l/2+1, Memory 2l

Tree Constructions

Time [2n−l , 2n−l/2+1], Memory < 22l
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Conversion: Large Computations [9]

Observation: with 2n−l computations, a pseudo-preimage can be
found, and the possible input chaining is limited to a set S of size
2n−l .
One can find all linking messages (i.e., for all h ∈ S , find
H(IV ,M) = h) and store (M, h).

Overall Complexities: storage 2n−l , online computation 2n−l ,
memory 2l .

Problem: without other shortcuts, precomputation takes 2n.
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Conversion: Unbalanced MITM [17]

Inverting the compression function takes 2n−l , and computing
forward takes 20 = 1, we are to meet in the middle on n bits.
Best solution: repeat inversion 2l/2 times, and forward
computation 2n−l/2, and overall computation results in 2n−l/2+1.

20 / 28
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Conversion: Tree Construction [15, 9]

Observation: Multi-target pseudo-preimage attack usually works
faster.

[15] 2008: MD4 pseudo-preimage attack speeds up linearly.

[9] 2010: Usually with 2l targets, the attack speeds up by 2l/2.

[9]: Time Complexity 3 · 2n−2l/3 v.s. 2n−l/2 by unbalanced MITM
approach.
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Converting to Pseudo-Collision Attack [16]

When the matching point located at the end of the compression
function, pseudo-collision can be found in 2n/2−l/2 v.s. 2n/2 in the
ideal case.

The idea: preset matching l bits of the target to a constant C ,
with 2l computations, one gets 2l candidates with the target l bits
set to C . Apply birthday attack to the remaining n − l bits.

Complexity: Time 2(n−l)/2, Memory 2l .
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New Applications to Block Ciphers

KTANTAN [3, 23], 2010, 2011

GOST [10], 2011

8-round AES-128 [2], 2011

7.5-round IDEA [13], 2012

more ...

Details to be shown in next talk ...
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How far should we go

Time 2n−ε, how big ε shall we consider it as “attack”? 2n/n?

Should we consider the bruteforce on part of the cipher as
“attack”? One can attack lots more steps by increasing the
time complexity by a little bit.

Suggestion from Guo: work toward reducing the time complexity,
and only on those who have the potential to be improved!

Thank You!
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