Chapter 3

Ramification Theory

This chapter introduces ramification theory, which roughly speaking asks the following question: if one takes a prime (ideal) \(p \) in the ring of integers \(\mathcal{O}_K \) of a number field \(K \), what happens when \(p \) is lifted to \(\mathcal{O}_L \), where \(L \) is an extension of \(K \). We know by the work done in the previous chapter that \(p\mathcal{O}_L \) has a factorization as a product of primes, so the question is: will \(p\mathcal{O}_L \) still be a prime? or will it factor somehow?

In order to study the behavior of primes in \(L/K \), we first consider absolute extensions, that is when \(K = \mathbb{Q} \), and define the notions of discriminant, inertial degree and ramification index. We show how the discriminant tells us about ramification. When we are lucky enough to get a “nice” ring of integers \(\mathcal{O}_L \), that is \(\mathcal{O}_L = \mathbb{Z}[\theta] \) for \(\theta \in L \), we give a method to compute the factorization of primes in \(\mathcal{O}_L \). We then generalize the concepts introduced to relative extensions, and study the particular case of Galois extensions.

3.1 Discriminant

Let \(K \) be a number field of degree \(n \). Recall from Corollary 1.8 that there are \(n \) embeddings of \(K \) into \(\mathbb{C} \).

Definition 3.1. Let \(K \) be a number field of degree \(n \), and set

\[
\begin{align*}
 r_1 &= \text{number of real embeddings} \\
 r_2 &= \text{number of pairs of complex embeddings}
\end{align*}
\]

The couple \((r_1, r_2)\) is called the **signature** of \(K \). We have that

\[n = r_1 + 2r_2. \]

Examples 3.1.

1. The signature of \(\mathbb{Q} \) is \((1, 0)\).

2. The signature of \(\mathbb{Q}(\sqrt{d}), d > 0 \), is \((2, 0)\).
3. The signature of $Q(\sqrt{d})$, $d < 0$, is $(0, 1)$.

4. The signature of $Q(\sqrt{2})$ is $(1, 1)$.

Let K be a number field of degree n, and let O_K be its ring of integers. Let $\sigma_1, \ldots, \sigma_n$ be its n embeddings into C. We define the map

$$\sigma : K \rightarrow C^n$$

$$x \mapsto (\sigma_1(x), \ldots, \sigma_n(x)).$$

Since O_K is a free abelian group of rank n, we have a \mathbb{Z}-basis $\{\alpha_1, \ldots, \alpha_n\}$ of O_K. Let us consider the $n \times n$ matrix M given by

$$M = (\sigma_i(\alpha_j))_{1 \leq i,j \leq n}.$$

The determinant of M is a measure of the density of O_K in K (actually of K/O_K). It tells us how sparse the integers of K are. However, $\det(M)$ is only defined up to sign, and is not necessarily in either R or K. So instead we consider

$$\det(M^2) = \det(M^tM)$$

$$= \det\left(\sum_{k=1}^n \sigma_k(\alpha_i)\sigma_k(\alpha_j)\right)_{i,j}$$

$$= \det(\text{Tr}_{K/Q}(\alpha_i\alpha_j))_{i,j} \in \mathbb{Z},$$

and this does not depend on the choice of a basis.

Definition 3.2. Let $\alpha_1, \ldots, \alpha_n \in K$. We define

$$\text{disc}(\alpha_1, \ldots, \alpha_n) = \det(\text{Tr}_{K/Q}(\alpha_i\alpha_j))_{i,j}.$$

In particular, if $\alpha_1, \ldots, \alpha_n$ is any \mathbb{Z}-basis of O_K, we write Δ_K, and we call discriminant the integer

$$\Delta_K = \det(\text{Tr}_{K/Q}(\alpha_i\alpha_j))_{1 \leq i,j \leq n}.$$

We have that $\Delta_K \neq 0$. This is a consequence of the following lemma.

Lemma 3.1. The symmetric bilinear form

$$K \times K \rightarrow \mathbb{Q}$$

$$(x, y) \mapsto \text{Tr}_{K/Q}(xy)$$

is non-degenerate.

Proof. Let us assume by contradiction that there exists $0 \neq \alpha \in K$ such that $\text{Tr}_{K/Q}(\alpha\beta) = 0$ for all $\beta \in K$. By taking $\beta = \alpha^{-1}$, we get

$$\text{Tr}_{K/Q}(\alpha\beta) = \text{Tr}_{K/Q}(1) = n \neq 0.$$
3.2. PRIME DECOMPOSITION

Now if we had that $\Delta_K = 0$, there would be a non-zero column vector $(x_1, \ldots, x_n)^t$, $x_i \in \mathbb{Q}$, killed by the matrix $(\text{Tr}_{K/\mathbb{Q}}(\alpha_i\alpha_j))_{1 \leq i, j \leq n}$. Set $\gamma = \sum_{i=1}^n \alpha_i x_i$, then $\text{Tr}_{K/\mathbb{Q}}(\alpha_j \gamma) = 0$ for each j, which is a contradiction by the above lemma.

Example 3.2. Consider the quadratic field $K = \mathbb{Q}(\sqrt{5})$. Its two embeddings into \mathbb{C} are given by

- $\sigma_1: a + b\sqrt{5} \mapsto a + b\sqrt{5}$,
- $\sigma_2: a + b\sqrt{5} \mapsto a - b\sqrt{5}$.

Its ring of integers is $\mathbb{Z}[(1 + \sqrt{5})/2]$, so that the matrix M of embeddings is

$$M = \begin{pmatrix} \sigma_1(1) & \sigma_2(1) \\ \sigma_1(\frac{1+\sqrt{5}}{2}) & \sigma_2(\frac{1+\sqrt{5}}{2}) \end{pmatrix}$$

and its discriminant Δ_K can be computed by

$$\Delta_K = \det(M^2) = 5.$$

3.2 Prime decomposition

Let p be a prime ideal of \mathcal{O}. Then $p \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}. Indeed, one easily verifies that this is an ideal of \mathbb{Z}. Now if a, b are integers with $ab \in p \cap \mathbb{Z}$, then we can use the fact that p is prime to deduce that either a or b belongs to p and thus to $p \cap \mathbb{Z}$ (note that $p \cap \mathbb{Z}$ is a proper ideal since $p \cap \mathbb{Z}$ does not contain 1, and $p \cap \mathbb{Z} \neq \emptyset$, as $N(p) = |\mathcal{O}/p| < \infty$).

Since $p \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}, there must exist a prime number p such that $p \cap \mathbb{Z} = p\mathbb{Z}$. We say that p is above p.

$$p \subset \mathcal{O}_K \subset K$$

$$p\mathbb{Z} \subset \mathbb{Z} \subset \mathbb{Q}$$

We call residue field the quotient of a commutative ring by a maximal ideal. Thus the residue field of $p\mathbb{Z}$ is $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$. We are now interested in the residue field \mathcal{O}_K/p. We show that \mathcal{O}_K/p is a \mathbb{F}_p-vector space of finite dimension. Set

$$\phi: \mathbb{Z} \to \mathcal{O}_K \to \mathcal{O}_K/p,$$

where the first arrow is the canonical inclusion ι of \mathbb{Z} into \mathcal{O}_K, and the second arrow is the projection π, so that $\phi = \pi \circ \iota$. Now the kernel of ϕ is given by

$$\ker(\phi) = \{a \in \mathbb{Z} \mid a \in p\} = p \cap \mathbb{Z} = p\mathbb{Z},$$

so that ϕ induces an injection of $\mathbb{Z}/p\mathbb{Z}$ into \mathcal{O}_K/p, since $\mathbb{Z}/p\mathbb{Z} \simeq \text{Im}(\phi) \subset \mathcal{O}_K/p$.

By Lemma 2.1, \mathcal{O}_K/p is a finite set, thus a finite field which contains $\mathbb{Z}/p\mathbb{Z}$ and we have indeed a finite extension of \mathbb{F}_p.
Definition 3.3. We call inertial degree, and we denote by f_p, the dimension of the \mathbb{F}_p-vector space O/\mathfrak{p}, that is

$$f_p = \dim_{\mathbb{F}_p}(O/\mathfrak{p}).$$

Note that we have

$$N(\mathfrak{p}) = |O/\mathfrak{p}| = |\mathbb{F}_p^{f_p}| = |\mathbb{F}_p|^{f_p} = p^{f_p}.$$

Example 3.3. Consider the quadratic field $K = \mathbb{Q}(i)$, with ring of integers $\mathbb{Z}[i]$, and let us look at the ideal $2\mathbb{Z}[i]$:

$$2\mathbb{Z}[i] = (1 + i)(1 - i)\mathbb{Z}[i] = \mathfrak{p}^2, \quad \mathfrak{p} = (1 + i)\mathbb{Z}[i]$$

since $(-i)(1 + i) = 1 - i$. Furthermore, $\mathfrak{p} \cap \mathbb{Z} = 2\mathbb{Z}$, so that $\mathfrak{p} = (1 + i)$ is said to be above 2. We have that

$$N(\mathfrak{p}) = N_{K/\mathbb{Q}}(1 + i) = (1 + i)(1 - i) = 2$$

and thus $f_p = 1$. Indeed, the corresponding residue field is

$$O_K/\mathfrak{p} \simeq \mathbb{F}_2.$$

Let us consider again a prime ideal \mathfrak{p} of O. We have seen that \mathfrak{p} is above the ideal $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$. We can now look the other way round: we start with the prime $p \in \mathbb{Z}$, and look at the ideal pO of O. We know that pO has a unique factorization into a product of prime ideals (by all the work done in Chapter 2). Furthermore, we have that $p \subset \mathfrak{p}$, thus \mathfrak{p} has to be one of the factors of pO.

Definition 3.4. Let $p \in \mathbb{Z}$ be a prime. Let \mathfrak{p} be a prime ideal of O above p. We call ramification index of p, and we write e_p, the exact power of \mathfrak{p} which divides pO.

We say that p is ramified if $e_p_i > 1$ for some i. On the contrary, p is non-ramified if

$$pO = p_1^{e_1} \cdots p_g^{e_g},$$

where $e_p_i > 1$ for some i. Both the inertial degree and the ramification index are connected via the degree of the number field as follows.

Proposition 3.2. Let K be a number field and O_K its ring of integers. Let $p \in \mathbb{Z}$ and let

$$pO = p_1^{e_p_1} \cdots p_g^{e_p_g}$$

be its factorization in O. We have that

$$n = [K : \mathbb{Q}] = \sum_{i=1}^{g} e_p_i f_p_i.$$
3.2. PRIME DECOMPOSITION

Proof. By Lemma 2.1, we have

\[N(p\mathcal{O}) = |N_{K/Q}(p)| = p^n, \]

where \(n = [K : \mathbb{Q}] \). Since the norm \(N \) is multiplicative (see Corollary 2.12), we deduce that

\[N(p_1^{e_1} \cdots p_g^{e_g}) = \prod_{i=1}^g N(p_i)^{e_i} = \prod_{i=1}^g p^{f_i e_i}. \]

There is, in general, no straightforward method to compute the factorization of \(p\mathcal{O} \). However, in the case where the ring of integers \(\mathcal{O} \) is of the form \(\mathcal{O} = \mathbb{Z}[\theta] \), we can use the following result.

Proposition 3.3. Let \(K \) be a number field, with ring of integers \(\mathcal{O}_K \), and let \(p \) be a prime. Let us assume that there exists \(\theta \) such that \(\mathcal{O} = \mathbb{Z}[\theta] \), and let \(f \) be the minimal polynomial of \(\theta \), whose reduction modulo \(p \) is denoted by \(\bar{f} \). Let

\[\bar{f}(X) = \prod_{i=1}^g \phi_i(X)^{e_i} \]

be the factorization of \(f(X) \) in \(\mathbb{F}_p[X] \), with \(\phi_i(X) \) coprime and irreducible. We set

\[p_i = (p, f_i(\theta)) = p\mathcal{O} + f_i(\theta)\mathcal{O} \]

where \(f_i \) is any lift of \(\phi_i \) to \(\mathbb{Z}[X] \), that is \(f_i \equiv \phi_i \mod p \). Then

\[p\mathcal{O} = p_1^{e_1} \cdots p_g^{e_g} \]

is the factorization of \(p\mathcal{O} \) in \(\mathcal{O} \).

Proof. Let us first notice that we have the following isomorphism

\[\mathcal{O}/p\mathcal{O} = \mathbb{Z}[\theta]/p\mathbb{Z}[\theta] \cong \frac{\mathbb{Z}[X]/f(X)}{p(\mathbb{Z}[X]/f(X))} \cong \mathbb{Z}[X]/(p, f(X)) \cong \mathbb{F}_p[X]/\bar{f}(X), \]

where \(\bar{f} \) denotes \(f \mod p \). Let us call \(A \) the ring

\[A = \mathbb{F}_p[X]/\bar{f}(X). \]

The inverse of the above isomorphism is given by the evaluation in \(\theta \), namely, if \(\psi(X) \in \mathbb{F}_p[X] \), with \(\psi(X) \mod \bar{f}(X) \in A \), and \(g \in \mathbb{Z}[X] \) such that \(\bar{g} = \psi \), then its preimage is given by \(g(\theta) \). By the Chinese Theorem, recall that we have

\[A = \mathbb{F}_p[X]/\bar{f}(X) \cong \prod_{i=1}^g \mathbb{F}_p[X]/\phi_i(X)^{e_i}, \]

since by assumption, the ideal \((\bar{f}(X))\) has a prime factorization given by \((\bar{f}(X)) = \prod_{i=1}^g (\phi_i(X))^{e_i} \).
CHAPTER 3. RAMIFICATION THEORY

We are now ready to understand the structure of prime ideals of both \(\mathcal{O}/p\mathcal{O} \) and \(A \), thanks to which we will prove that \(p_i \) as defined in the assumption is prime, that any prime divisor of \(p\mathcal{O} \) is actually one of the \(p_i \), and that the power \(e_i \) appearing in the factorization of \(f \) are bigger or equal to the ramification index \(e_{p_i} \) of \(p_i \). We will then invoke the proposition that we have just proved to show that \(e_i = e_{p_i} \), which will conclude the proof.

By the factorization of \(A \) given above by the Chinese theorem, the maximal ideals of \(A \) are given by \((\phi_i(X))A \), and the degree of the extension \(A/(\phi_i(X))A \) over \(\mathbb{F}_p \) is the degree of \(\phi_i \). By the isomorphism \(A \simeq \mathcal{O}/p\mathcal{O} \), we get similarly that the maximal ideals of \(\mathcal{O}/p\mathcal{O} \) are the ideals generated by \(f_i(\theta) \mod p\mathcal{O} \).

We consider the projection \(\pi: \mathcal{O} \to \mathcal{O}/p\mathcal{O}. \) We have that

\[
\pi(p_i) = \pi(p\mathcal{O} + f_i(\theta)\mathcal{O}) = f_i(\theta)\mathcal{O} \mod p\mathcal{O}.
\]

Consequently, \(p_i \) is a prime ideal of \(\mathcal{O} \), since \(f_i(\theta)\mathcal{O} \) is. Furthermore, since \(p_i \supset p\mathcal{O} \), we have \(p_i \mid p\mathcal{O} \), and the inertial degree \(f_{p_i} = [\mathcal{O}/p_i : \mathbb{F}_p] \) is the degree of \(\phi_i \), while \(e_{p_i} \) denotes the ramification index of \(p_i \).

Now, every prime ideal \(p \) in the factorization of \(p\mathcal{O} \) is one of the \(p_i \), since the image of \(p \) by \(\pi \) is a maximal ideal of \(\mathcal{O}/p\mathcal{O} \), that is

\[
p\mathcal{O} = p_1^{e_1} \cdots p_g^{e_g}
\]

and we are thus left to look at the ramification index.

The ideal \(\phi_i^e A \) of \(A \) belongs to \(\mathcal{O}/p\mathcal{O} \) via the isomorphism between \(\mathcal{O}/p\mathcal{O} \simeq A \), and its preimage in \(\mathcal{O} \) by \(\pi^{-1} \) contains \(p_i^{e_i} \) (since if \(\alpha \in p_i^{e_i} \), then \(\alpha \) is a sum of products \(\alpha_1 \cdots \alpha_{e_i} \), whose image by \(\pi \) will be a sum of product \(\pi(\alpha_1) \cdots \pi(\alpha_{e_i}) \) with \(\pi(\alpha_i) \in \phi_i A \). In \(\mathcal{O}/p\mathcal{O} \), we have \(0 = \cap_i^{g} (\phi_i(\theta))^{e_i} \), that is

\[
p\mathcal{O} = \pi^{-1}(0) = \cap_i^{g} \pi^{-1}(\phi_i^e A) \supset \cap_i^{g} p_i^{e_i} = \prod_i^{g} p_i^{e_i}.
\]

We then have that this last product is divided by \(p\mathcal{O} = \prod_i^{g} p_i^{e_i} \), that is \(e_i \geq e_{p_i} \).

Let \(n = [K : \mathbb{Q}] \). To show that we have equality, that is \(e_i = e_{p_i} \), we use the previous proposition:

\[
n = [K : \mathbb{Q}] = \sum_{i=1}^{g} e_{p_i} f_{p_i} \leq \sum_{i=1}^{g} e_i \deg(\phi_i) = \dim_{\mathbb{F}_p}(A) = \dim_{\mathbb{F}_p}(\mathbb{Z}/p\mathbb{Z}^n) = n.
\]

\[\square\]

The above proposition gives a concrete method to compute the factorization of a prime \(p\mathcal{O}_K \):

1. Choose a prime \(p \in \mathbb{Z} \) whose factorization in \(p\mathcal{O}_K \) is to be computed.
2. Let \(f \) be the minimal polynomial of \(\theta \) such that \(\mathcal{O}_K = \mathbb{Z}[\theta] \).
3.2. PRIME DECOMPOSITION

3. Compute the factorization of $\bar{f} = f \mod p$:

$$\bar{f} = \prod_{i=1}^{g} \phi_i(X)^{e_i}.$$

4. Lift each ϕ_i in a polynomial $f_i \in \mathbb{Z}[X]$.

5. Compute $p_i = (p, f_i(\theta))$ by evaluating f_i in θ.

6. The factorization of $p \mathcal{O}$ is given by

$$p \mathcal{O} = p_1^{e_1} \cdots p_g^{e_g}.$$

Examples 3.4.

1. Let us consider $K = \mathbb{Q}(\sqrt{2})$, with ring of integers $\mathcal{O}_K = \mathbb{Z}[\sqrt{2}]$. We want to factorize $5\mathcal{O}_K$. By the above proposition, we compute

$$X^3 - 2 \equiv (X - 3)(X^2 + 3X + 4) \equiv (X + 2)(X^2 - 2X - 1) \mod 5.$$

We thus get that

$$5\mathcal{O}_K = p_1 p_2, \quad p_1 = (5, 2 + \sqrt{2}), \quad p_2 = (5, \sqrt{4} - 2\sqrt{2} - 1).$$

2. Let us consider $\mathbb{Q}(i)$, with $\mathcal{O}_K = \mathbb{Z}[i]$, and choose $p = 2$. We have $\theta = i$ and $f(X) = X^2 + 1$. We compute the factorization of $f(X) = f(X) \mod 2$:

$$X^2 + 1 \equiv X^2 - 1 \equiv (X - 1)(X + 1) \equiv (X - 1)^2 \mod 2.$$

We can take any lift of the factors to $\mathbb{Z}[X]$, so we can write

$$2\mathcal{O}_K = (2, i - 1)(2, i + 1) \text{ or } 2 = (2, i - 1)^2$$

which is the same, since $(2, i - 1) = (2, 1 + i)$. Furthermore, since $2 = (1 - i)(1 + i)$, we see that $(2, i - 1) = (1 + i)$, and we recover the result of Example 3.3.

Definition 3.5. We say that p is inert if $p \mathcal{O}$ is prime, in which case we have $g = 1$, $e = 1$ and $f = n$. We say that p is totally ramified if $e = n$, $g = 1$, and $f = 1$.

The discriminant of K gives us information on the ramification in K.

Theorem 3.4. Let K be a number field. If p is ramified, then p divides the discriminant Δ_K.
We are thus left to prove that \(\alpha \notin p\mathcal{O} \). We write
\[
\alpha = b_1\alpha_1 + \ldots + b_n\alpha_n, \quad b_i \in \mathbb{Z}.
\]
Since \(\alpha \notin p\mathcal{O} \), there exists a \(b_i \) which is not divisible by \(p \), say \(b_1 \). Recall that
\[
\Delta_K = \det \begin{pmatrix}
\sigma_1(\alpha_1) & \ldots & \sigma_1(\alpha_n) \\
\vdots & \ddots & \vdots \\
\sigma_n(\alpha_1) & \ldots & \sigma_n(\alpha_n)
\end{pmatrix}^2
\]
where \(\sigma_i, \ i = 1, \ldots, n \) are the \(n \) embeddings of \(K \) into \(\mathbb{C} \). Let us replace \(\alpha_1 \) by \(\alpha \), and set
\[
D = \det \begin{pmatrix}
\sigma_1(\alpha) & \ldots & \sigma_1(\alpha_n) \\
\vdots & \ddots & \vdots \\
\sigma_n(\alpha) & \ldots & \sigma_n(\alpha_n)
\end{pmatrix}.
\]
Now \(D \) and \(\Delta_K \) are related by
\[
D = \Delta_K b_1^2,
\]
since \(D \) can be rewritten as
\[
D = \det \begin{pmatrix}
\sigma_1(\alpha_1) & \ldots & \sigma_1(\alpha_n) \\
\vdots & \ddots & \vdots \\
\sigma_n(\alpha_1) & \ldots & \sigma_n(\alpha_n)
\end{pmatrix} \begin{pmatrix} b_1 & 0 & \ldots & 0 \\ b_2 & 1 & \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ b_n & \ldots & 1 \end{pmatrix}^2
\]
We are thus left to prove that \(p \mid D \), since by construction, we have that \(p \) does not divide \(b_1^2 \).

Intuitively, the trick of this proof is to replace proving that \(p \mid \Delta_K \) where we have no clue how the factor \(p \) appears, with proving that \(p \mid D \), where \(D \) has been built on purpose as a function of a suitable \(\alpha \) which we will prove below is such that all its conjugates are above \(p \).

Let \(L \) be the Galois closure of \(K \), that is, \(L \) is a field which contains \(K \), and which is a normal extension of \(\mathbb{Q} \). The conjugates of \(\alpha \) all belong to \(L \). We know that \(\alpha \) belongs to all the primes of \(\mathcal{O}_K \) above \(p \). Similarly, \(\alpha \in K \subseteq L \) belongs to all primes \(\mathfrak{P} \) of \(\mathcal{O}_L \) above \(p \). Indeed, \(\mathfrak{P} \cap \mathcal{O}_K \) is a prime ideal of \(\mathcal{O}_K \) above \(p \), which contains \(\alpha \).

We now fix a prime \(\mathfrak{P} \) above \(p \) in \(\mathcal{O}_L \). Then \(\sigma_i(\mathfrak{P}) \) is also a prime ideal of \(\mathcal{O}_L \) above \(p \) (\(\sigma_i(\mathfrak{P}) \) is in \(L \) since \(L/\mathbb{Q} \) is Galois, \(\sigma_i(\mathfrak{P}) \) is prime since \(\mathfrak{P} \) is, and \(p = \sigma_i(p) \in \sigma_i(\mathfrak{P}) \)). We have that \(\sigma_i(\alpha) \in \mathfrak{P} \) for all \(\sigma_i \), thus the first column of the matrix involves in the computation of \(D \) is in \(\mathfrak{P} \), so that \(D \in \mathfrak{P} \) and \(D \in \mathbb{Z} \), to get
\[
D \in \mathfrak{P} \cap \mathbb{Z} = p\mathbb{Z}.
\]
3.3. RELATIVE EXTENSIONS

We have just proved that if \(p \) is ramified, then \(p \mid \Delta_K \). The converse is also true.

Examples 3.5.

1. We have seen in Example 3.2 that the discriminant of \(K = \mathbb{Q}(\sqrt{5}) \) is \(\Delta_K = 5 \). This tells us that only 5 is ramified in \(\mathbb{Q}(\sqrt{5}) \).

2. In Example 3.3, we have seen that 2 ramifies in \(K = \mathbb{Q}(i) \). So 2 should appear in \(\Delta_K \). One can actually check that \(\Delta_K = -4 \).

Corollary 3.5. There is only a finite number of ramified primes.

Proof. The discriminant only has a finite number of divisors. \(\square \)

3.3 Relative Extensions

Most of the theory seen so far assumed that the base field is \(\mathbb{Q} \). In most cases, this can be generalized to an arbitrary number field \(K \), in which case we consider a number field extension \(L/K \). This is called a relative extension. By contrast, we may call absolute an extension whose base field is \(\mathbb{Q} \). Below, we will generalize several definitions previously given for absolute extensions to relative extensions.

Let \(K \) be a number field, and let \(L/K \) be a finite extension. We have correspondingly a ring extension \(\mathcal{O}_K \to \mathcal{O}_L \). If \(\mathfrak{P} \) is a prime ideal of \(\mathcal{O}_L \), then \(p = \mathfrak{P} \cap \mathcal{O}_K \) is a prime ideal of \(\mathcal{O}_K \). We say that \(\mathfrak{P} \) is above \(p \). We have a factorization

\[
p\mathcal{O}_L = \prod_{i=1}^{g} \mathfrak{P}_i^{e_{\mathfrak{P}_i/p}},
\]

where \(e_{\mathfrak{P}_i/p} \) is the relative ramification index. The relative inertial degree is given by

\[
f_{\mathfrak{P}_i/p} = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/p].
\]

We still have that

\[
[L : K] = \sum e_{\mathfrak{P}/p} f_{\mathfrak{P}/p}
\]

where the summation is over all \(\mathfrak{P} \) above \(p \).

Let \(M/L/K \) be a tower of finite extensions, and let \(\mathfrak{P}, \mathfrak{P}', \mathfrak{P}'' \) be prime ideals of respectively \(M, L, \) and \(K \). Then we have that

\[
f_{\mathfrak{P}/p} = f_{\mathfrak{P}/\mathfrak{P}', \mathfrak{P}/\mathfrak{P}'}
\]

\[
e_{\mathfrak{P}/p} = e_{\mathfrak{P}/\mathfrak{P}', e_{\mathfrak{P}/\mathfrak{P}'''}}.
\]

Let \(I_K, I_L \) be the groups of fractional ideals of \(K \) and \(L \) respectively. We can also generalize the application norm as follows:

\[
N: \quad I_L \to I_K
\]

\[
\mathfrak{P} \mapsto p^{f_{\mathfrak{P}/p}}.
\]
which is a group homomorphism. This defines a relative norm for ideals, which
is itself an ideal!

In order to generalize the discriminant, we would like to have an \(\mathcal{O}_K \)-basis
of \(\mathcal{O}_L \) (similarly to having a \(\mathbb{Z} \)-basis of \(\mathcal{O}_K \)), however such a basis does not exist
in general. Let \(\alpha_1, \ldots, \alpha_n \) be a \(K \)-basis of \(L \) where \(\alpha_i \in \mathcal{O}_L, \ i = 1, \ldots, n \). We set
\[
disc_{L/K}(\alpha_1, \ldots, \alpha_n) = \det \begin{pmatrix}
\sigma_1(\alpha_1) & \cdots & \sigma_n(\alpha_1) \\
\vdots & & \vdots \\
\sigma_1(\alpha_n) & \cdots & \sigma_n(\alpha_n)
\end{pmatrix}^2
\]
where \(\sigma_i : L \to \mathbb{C} \) are the embeddings of \(L \) into \(\mathbb{C} \) which fix \(K \). We define \(\Delta_{L/K} \) as the ideal generated by all \(\disc_{L/K}(\alpha_1, \ldots, \alpha_n) \). It is called relative
discriminant.

3.4 Normal Extensions

Let \(L/K \) be a Galois extension of number fields, with Galois group \(G = \text{Gal}(L/K) \).
Let \(\mathfrak{p} \) be a prime of \(\mathcal{O}_K \). If \(\mathfrak{P} \) is a prime above \(\mathfrak{p} \) in \(\mathcal{O}_L \), and \(\sigma \in G \), then \(\sigma(\mathfrak{P}) \)
is a prime ideal above \(\mathfrak{p} \). Indeed, \(\sigma(\mathfrak{P}) \cap \mathcal{O}_K \subset K \), thus \(\sigma(\mathfrak{P}) \cap \mathcal{O}_K = \mathfrak{P} \cap \mathcal{O}_K \) since \(K \) is fixed by \(\sigma \).

Theorem 3.6. Let
\[
p\mathcal{O}_L = \prod_{i=1}^g \mathfrak{P}_i^{e_i}
\]
be the factorization of \(p\mathcal{O}_L \) in \(\mathcal{O}_L \). Then \(G \) acts transitively on the set \(\{\mathfrak{P}_1, \ldots, \mathfrak{P}_g\} \).
Furthermore, we have that
\[
e_1 = \ldots = e_g = e \quad \text{where } e_i = e_{\mathfrak{P}_i}\mathfrak{p}
\]
\[
f_1 = \ldots = f_g = f \quad \text{where } f_i = f_{\mathfrak{P}_i}\mathfrak{p}
\]
and
\[
[L : K] = efg.
\]
Proof. \(G \) acts transitively. Let \(\mathfrak{P} \) be one of the \(\mathfrak{P}_i \). We need to prove that
there exists \(\sigma \in G \) such that \(\sigma(\mathfrak{P}_j) = \mathfrak{P} \) for \(\mathfrak{P}_j \) any other of the \(\mathfrak{P}_i \). In the proof
of Corollary 2.10, we have seen that there exists \(\beta \in \mathfrak{P} \) such that \(\beta\mathcal{O}_L \mathfrak{P}^{-1} \) is
an integral ideal coprime to \(p\mathcal{O}_L \). The ideal
\[
I = \prod_{\sigma \in G} \sigma(\beta\mathcal{O}_L \mathfrak{P}^{-1})
\]
is an integral ideal of \(\mathcal{O}_L \) (since \(\beta\mathcal{O}_L \mathfrak{P}^{-1} \) is), which is furthermore coprime to
\(p\mathcal{O}_L \) (since \(\sigma(\beta\mathcal{O}_L \mathfrak{P}^{-1}) \) and \(\sigma(p\mathcal{O}_L) \) are coprime and \(\sigma(p\mathcal{O}_L) = \sigma(p)\sigma(\mathcal{O}_L) = p\mathcal{O}_L \).
3.4. NORMAL EXTENSIONS

Thus I can be rewritten as

$$I = \frac{\prod_{\sigma \in G} \sigma(\beta)\mathcal{O}_L}{\prod_{\sigma \in G} \sigma(\mathfrak{P})} = \frac{N_{L/K}(\beta)\mathcal{O}_L}{\prod_{\sigma \in G} \sigma(\mathfrak{P})}$$

and we have that

$$I \prod_{\sigma \in G} \sigma(\mathfrak{P}) = N_{L/K}(\beta)\mathcal{O}_L.$$

Since $N_{L/K}(\beta) = \prod_{\sigma \in G} \sigma(\beta)$, $\beta \in \mathfrak{P}$ and one of the σ is the identity, we have that $N_{L/K}(\beta) \in \mathfrak{P}$. Furthermore, $N_{L/K}(\beta) \in \mathcal{O}_K$ since $\beta \in \mathcal{O}_L$, and we get that $N_{L/K}(\beta) \in \mathfrak{P} \cap \mathcal{O}_K = \mathfrak{p}$, from which we deduce that \mathfrak{p} divides the right hand side of the above equation, and thus the left hand side. Since I is coprime to \mathfrak{p}, we get that \mathfrak{p} divides $\prod_{\sigma \in G} \sigma(\mathfrak{P})$. In other words, using the factorization of \mathfrak{p}, we have that

$$\prod_{\sigma \in G} \sigma(\mathfrak{P}) \text{ is divisible by } \mathfrak{p}\mathcal{O}_L = \prod_{i=1}^{g} \mathfrak{P}_i^{e_i}$$

and each of the \mathfrak{P}_i has to be among $\{\sigma(\mathfrak{P})\}_{\sigma \in G}$.

All the ramification indices are equal. By the first part, we know that there exists $\sigma \in G$ such that $\sigma(\mathfrak{P}_i) = \mathfrak{P}_k$, $i \neq k$. Now, we have that

$$\sigma(\mathfrak{p}\mathcal{O}_L) = \prod_{i=1}^{g} \sigma(\mathfrak{P}_i)^{e_i} = p\mathcal{O}_L = \prod_{i=1}^{g} \mathfrak{P}_i^{e_i}$$

where the second equality holds since $\mathfrak{p} \in \mathcal{O}_K$ and L/K is Galois. By comparing the two factorizations of \mathfrak{p} and its conjugates, we get that $e_i = e_L$.

All the inertial degrees are equal. This follows from the fact that σ induces the following field isomorphism

$$\mathcal{O}_L/\mathfrak{P}_i \simeq \mathcal{O}_L/\sigma(\mathfrak{P}_i).$$

Finally we have that

For now on, let us fix \mathfrak{P} above \mathfrak{p}.

Definition 3.6. The stabilizer of \mathfrak{P} in G is called the **decomposition group**, given by

$$D = D_{\mathfrak{P}/\mathfrak{p}} = \{\sigma \in G \mid \sigma(\mathfrak{P}) = \mathfrak{P}\} < G.$$
The index \([G : D]\) must be equal to the number of elements in the orbit \(G\mathfrak{P}\) of \(\mathfrak{P}\) under the action of \(G\), that is \([G : D] = |G\mathfrak{P}|\) (this is the orbit-stabilizer theorem).

By the above theorem, we thus have that \([G : D] = g\), where \(g\) is the number of distinct primes which divide \(p\mathcal{O}_L\). Thus

\[
\begin{align*}
 n &= efg \\
 &= ef\frac{|G|}{|D|}
\end{align*}
\]

and

\[
|D| = ef.
\]

If \(\mathfrak{P}'\) is another prime ideal above \(p\), then the decomposition groups \(D_{\mathfrak{P}/p}\) and \(D_{\mathfrak{P}'/p}\) are conjugate in \(G\) via any Galois automorphism mapping \(\mathfrak{P}\) to \(\mathfrak{P}'\) (in formula, we have that if \(\mathfrak{P}' = \tau(\mathfrak{P})\), then \(\tau D_{\mathfrak{P}/p} \tau^{-1} = D_{\tau(\mathfrak{P})/p}\)).

Proposition 3.7. Let \(D = D_{\mathfrak{P}/p}\) be the decomposition group of \(\mathfrak{P}\). The subfield

\[
L^D = \{\alpha \in L \mid \sigma(\alpha) = \alpha, \ \sigma \in D\}
\]

is the smallest subfield \(M\) of \(L\) such that \((\mathfrak{P} \cap \mathcal{O}_M)\mathcal{O}_L\) does not split. It is called the decomposition field of \(\mathfrak{P}\).

Proof. We first prove that \(L/L^D\) has the property that \((\mathfrak{P} \cap \mathcal{O}_M)\mathcal{O}_L\) does not split. We then prove its minimality.

We know by Galois theory that \(\text{Gal}(L/L^D)\) is given by \(D\). Furthermore, the extension \(L/L^D\) is Galois since \(L/K\) is. Let \(\Omega = \mathfrak{P} \cap \mathcal{O}_L\) be a prime below \(\mathfrak{P}\).

By Theorem 3.6, we know that \(D\) acts transitively on the set of primes above \(\Omega\), among which is \(\mathfrak{P}\). Now by definition of \(D = D_{\mathfrak{P}/p}\), we know that \(\mathfrak{P}\) is fixed by \(D\). Thus there is only \(\mathfrak{P}\) above \(\Omega\).

Let us now prove the minimality of \(L^D\). Assume that there exists a field \(M\) with \(L/M/K\), such that \(\Omega = \mathfrak{P} \cap \mathcal{O}_M\) has only one prime ideal of \(\mathcal{O}_L\) above it. Then this unique ideal must be \(\mathfrak{P}\), since by definition \(\mathfrak{P}\) is above \(\Omega\). Then \(\text{Gal}(L/M)\) is a subgroup of \(D\), since its elements are fixing \(\mathfrak{P}\). Thus \(M \supset L^D\). \(\square\)
Proposition 3.8. Let \(\Omega \) be the prime of \(L^D \) below \(\mathfrak{P} \). We have that
\[
f_{\Omega/p} = e_{\Omega/p} = 1.
\]
If \(D \) is a normal subgroup of \(G \), then \(p \) is completely split in \(L^D \).

Proof. We know that \([G : D] = g(\mathfrak{P}/p)\) which is equal to \([L^D : K]\) by Galois theory. The previous proposition shows that \(g(\mathfrak{P}/\Omega) = 1 \) (recall that \(g \) counts how many primes are above). Now we compute that
\[
e(\mathfrak{P}/\Omega)f(\mathfrak{P}/\Omega) = \frac{[L : L^D]}{g(\mathfrak{P}/\Omega)} = \frac{[L : L^D]}{[L : K]} = \frac{[L^D : K]}{[L : K]}.
\]
Since we have that
\[
[L : K] = e(\mathfrak{P}/p)f(\mathfrak{P}/p)g(\mathfrak{P}/p)
\]
and \([L^D : K] = g(\mathfrak{P}/p)\), we further get
\[
e(\mathfrak{P}/\Omega)f(\mathfrak{P}/\Omega) = \frac{e(\mathfrak{P}/p)f(\mathfrak{P}/p)g(\mathfrak{P}/p)}{g(\mathfrak{P}/p)} = e(\mathfrak{P}/p)f(\mathfrak{P}/p) = e(\mathfrak{P}/\Omega)f(\mathfrak{P}/\Omega)e(\Omega/p)f(\Omega/p)
\]
where the last equality comes from transitivity. Thus
\[
e(\Omega/p)f(\Omega/p) = 1
\]
and \(e(\Omega/p) = f(\Omega/p) = 1 \) since they are positive integers.

If \(D \) is normal, we have that \(L^D/K \) is Galois. Thus
\[
[L^D : K] = e(\Omega/p)f(\Omega/p)g(\Omega/p) = g(\Omega/p)
\]
and \(p \) completely splits.

\[\square\]
Let σ be in D. Then σ induces an automorphism of O_L/\mathfrak{P} which fixes $O_K/p = \mathbb{F}_p$. That is we get an element $\phi(\sigma) \in \text{Gal}(\mathbb{F}_p/\mathbb{F}_p)$. We have thus constructed a map

$$\phi : D \rightarrow \text{Gal}(\mathbb{F}_p/\mathbb{F}_p).$$

This is a group homomorphism. We know that $\text{Gal}(\mathbb{F}_p/\mathbb{F}_p)$ is cyclic, generated by the Frobenius automorphism defined by

$$\text{Frob}_p(x) = x^q, \quad q = |\mathbb{F}_p|.$$

Definition 3.7. The inertia group $I = I_{\mathfrak{p}/p}$ is defined as being the kernel of ϕ.

Example 3.6. Let $K = \mathbb{Q}(i)$ and $O_K = \mathbb{Z}[i]$. We have that K/\mathbb{Q} is a Galois extension, with Galois group $G = \{1, \sigma\}$ where $\sigma : a + ib \mapsto a - ib$.

- We have that

 $$(2) = (1 + i)^2 \mathbb{Z}[i],$$

 thus the ramification index is $e = 2$. Since $efg = n = 2$, we have that $f = g = 1$. The residue field is $\mathbb{Z}[i]/(1 + i)\mathbb{Z}[i] = \mathbb{F}_2$. The decomposition group D is G since $\sigma((1 + i)\mathbb{Z}[i]) = (1 + i)\mathbb{Z}[i]$. Since $f = 1$, $\text{Gal}(\mathbb{F}_2/\mathbb{F}_2) = \{1\}$ and $\phi(\sigma) = 1$. Thus the kernel of ϕ is $D = G$ and the inertia group is $I = G$.

- We have that

 $$(13) = (2 + 3i)(2 - 3i),$$

 thus the ramification index is $e = 1$. Here $D = 1$ for $(2 + 3i)$ since $\sigma((2 + 3i)\mathbb{Z}[i]) \neq (2 - 3i)\mathbb{Z}[i]$. We further have that $g = 2$, thus $efg = 2$ implies that $f = 1$, which as for 2 implies that the inertia group is $I = G$. We have that the residue field for $(2 + 3i)$ is $\mathbb{Z}[i]/(2 + 3i)\mathbb{Z}[i] = \mathbb{F}_{13}$.

- We have that $(7)\mathbb{Z}[i]$ is inert. Thus $D = G$ (the ideal belongs to the base field, which is fixed by the whole Galois group). Since $e = g = 1$, the inertial degree is $f = 2$, and the residue field is $\mathbb{Z}[i]/(7)\mathbb{Z}[i] = \mathbb{F}_{49}$. The Galois group $\text{Gal}(\mathbb{F}_{49}/\mathbb{F}_7) = \{1, \tau\}$ with $\tau : x \mapsto x^7$, $x \in \mathbb{F}_{49}$. Thus the inertia group is $I = \{1\}$.

We can prove that ϕ is surjective and thus get the following exact sequence:

$$1 \rightarrow I \rightarrow D \rightarrow \text{Gal}(\mathbb{F}_p/\mathbb{F}_p) \rightarrow 1.$$

The decomposition group is so named because it can be used to decompose the field extension L/K into a series of intermediate extensions each of which has a simple factorization behavior at p. If we denote by L^I the fixed field of I, then the above exact sequence corresponds under Galois theory to the following
3.4. NORMAL EXTENSIONS

Intuitively, this decomposition of the extension says that L^D / K contains all of the factorization of \mathfrak{p} into distinct primes, while the extension L^I / L^D is the source of all the inertial degree in \mathfrak{P} over \mathfrak{p}. Finally, the extension L / L^I is responsible for all of the ramification that occurs over \mathfrak{p}.

Note that the map ϕ plays a special role for further theories, including reciprocity laws and class field theory.

The main definitions and results of this chapter are

- Definition of discriminant, and that a prime ramifies if and only if it divides the discriminant.
- Definition of signature.
- The terminology relative to ramification: prime above/below, inertial degree, ramification index, residue field, ramified, inert, totally ramified, split.
- The method to compute the factorization if $\mathcal{O}_K = \mathbb{Z}[\theta]$.
- The formula $[L : K] = \sum_{i=1}^{g} e_i f_i$.
- The notion of absolute and relative extensions.
- If L/K is Galois, that the Galois group acts transitively on the primes above a given \mathfrak{p}, that $[L : K] = efg$, and the concepts of decomposition group and inertia group.