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Abstract 

In this paper, we present another approach to the balanced 
minimum cut graph partitioning problem. This approach is 
based on the meta-heuristic known as tabu search. Our 
experimental results compare favorably with two of the most 
effecitive methods available in terms of quality of solutions 
and computational times. Our experience and experiments 
suggest that this technique can be applied effectively to many 
NP-hard combinatorial optimization problems. 

1 Introduction 

Let G = (V,E) be a undirected graph with a cost c(u,v) 
associated with each edge (u,v) E E. We consider only 
graphs with IVI even. The balanced minimum cut graph 
partitioning problem (BGPP) is to partition the vertices of G 
into two subsets of equal sizes such that the cut set has 
minimum cost, i.e. the sum of the cost of all those edges 
with end points in different subsets is minimum. It is clear 
that if we just want a cut set with minimum cost without 
regard to the size of the subsets in the partition, we can apply 
any polynomial time max-flow algorithm to obtain the 
optimal solution efficiently. However, if we restrict the 
sizes of the subsets, the problem becomes much harder: 
BGPP is NP-hard [GJ79]. BGPP has several useful 
applications in the areas of VLSI layout, systems, and 
computer networks. 

In 1970, Kernighan and Lin [KL70] gave a heuristic for 
obtaining good solutions. After that, Fiduccia and 
Mattheyses [FM82] improved the speed of the Kernighan- 
Lin heuristic by a faster implementation using efficient data 
structures. We shall refer to this algorithm as the KLFM 
algorithm. Unfortunately, we observed that the performance 
of the KLFM algorithm is very erratic. Similar findings are 
reported in [Kri84, NOP871. Another approach for obtaining 
good solutions is the simulated annealing approach 
[KGV83]. Although the annealing approach gives superior 
solutions, it is very time consuming. In addition, it is not 
clear to us how to choose effective parameters for the 
annealing algorithm without substantial simulation with test 
data. Lam and Delosme [LD88] gave an efficient 
implementation of an annealing-like algorithm for BGPP 
making use of a Kemighan-Lin-like heuristic in choosing 
moves. Such an adaptation gave a good speedup at the 
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expense of solution quality in some test cases, whereas in 
other test cases noticeable improvement may be obtained. 

In this paper, we present a viable technique called tabu 
search that is capable of obtaining solutions of competitive 
quality in high speed when compared to simulated annealing 
and the KLFM algorithm. 

2 Tabu Search 

Recently, a general technique, called tabu search, was 
proposed by Glover [Glo86, GG89, Glo891 for finding 
good solutions to combinatorial optimization problems. This 
technique is conceptually simple and elegant. It has also 
proven itself to be very useful in providing good solutions 
for large instances of many NP-hard problems in a 
reasonable amount of time [FHW89, HW89, WH891. For 
the general framework of tabu search, refer to figure 1. 

Input 

Defnitiom 
An instance of the problem to be solved 

X : Set of feasible solutions 
f : Objective function 
N ( x )  : Neighborhood of x E X 
T : Tabu List(s) 
A : Aspirationfunction 
m m  : Maximum number of iterations between 

improvement 
Initialization 

S e t i = Q  
Generate an initial solution Xi E X; 
Initialize tabu list(s) T and aspiration function A; 
Set best = X i ,  bestcost = f(best) and besti = i; 

Body 
while ( i  - besti < m m )  [ 

i = i + l ;  
locate the best Xi in N(xi-1) where Xi does not 
satisfy tabu conditons or if aspiration function 
overrules tabu conditions; 
if ( f ( X j )  < bestcost) [ 

1 
update tabu list(s) T; 
update aspiration function A; 

best and bestcost 

best = X i ;  bestcost = f(best); besti = i; 

I 
Output 

Figure 1: General framework of Tabu Search 

CH30064/91/0000- 1164$1.000 IEEE 



in our experiments. Tabu search may be regarded as a "meta-heuristic" 
superimposed on another heuristic. The higher level heuristic 
organizes and directs the subordinate one. Although tabu 
seach and simulated annealing share the same property of 
being general iterative improvement techniques, the former 
does not resort to pure randomization to conquer 
intractability nor does it take the conservative approach that a 
proper rate of descent will lead us to a good local optimum, 
hopefully close to the the global one. Instead, it takes a 
more aggressive approach. Tabu search proceeds on the 
assumption that there is no value in choosing an inferior 
solution unless it is absolutely necessary, as in the case of 
getting out of a local optimum. At each iteration of the 
search, it selects the best neighborhood solution. This is 
unlike hill-climbing as it might make a down-hill move. 
Thus, the algorithm never runs out of choices for the next 
move. However, this approach may result in cycling, 
trapping the algorithm at locally optimal solutions. So two 
structures called tabu lists and aspiration functions are 
introduced. These two sturctures keep information about 
past moves in order to constrain and diversify the search for 
good solutions. 

Tabu lists may be structured in many ways depending on 
the problem in question. The most simplified form of a tabu 
list is a linear list which stores the k most recent moves. The 
main purpose of the list is to constrain the direction of 
search. It prevents the algorithm from going back to a state 
which was reached previously. Such an action hopefully 
prevents us from being trapped in any local optimum. Tabu 
conditions are satisfied if the current move mes to undo a 
move previously made which is still in the tabu list. It is 
clear that if the search is unconstrained, upon leaving a local 
optimum, there is a very high probability that we may return 
to the same local optimum. In addition to tabu lists, we also 
have aspiration functions. An aspiration function has the 
ability to overrule tabu conditions. This serves as a 
mechanism to diversify the search and encourage the 
exploration of new regions in the search space. 

3 Implementation of the Algorithm 

The input to our balanced minimum cut graph partitioning 
algorithm is a graph G = (V,E), and a cost c(u,v) associated 
with each edge (u,v) E E .  We define the set of feasible 
solutions X to be 

and the objective functionf(x), x = (SI,$) E X ,  to be 
x = { (SI&) I S1 U S2 = v,  IS11 = IS21 ), 

f(x) = c c(u, v). 
U E SI, v E s2 

This is the simplest and most intuitive; Lam and Delosme 
[LDSS], and Sechen and Chen [SCSS] uses a different 
objective function which seems to perform very well also. 
The purpose is to minimize f(x). 

In our implementation, we generate the initial solution 
randomly. We are currently investigating if clustering 
algorithms will help in improving the quality of solutions. 

In our algorithm, we define N ( x )  of x E X to be the set 
of configurations that can be reached from x via a single 
pair-exchange between members of the two different subsets 
of x .  Naturally, the best neighbor of x corresponds to the 
member in N(x)  that gives us the highest decrement in cost. 
N(x) can also be regarded as the neighborhood configuration 
of x. The following neighborhood search function was used 

Method 
We keep the subset S1 sorted according to the linear 
order G : U << v if and only if the decrement in cost 
when vertex U is moved from SI to S2 is no smaller 
than the decrement in cost when vertex v is moved 
from SI to S2. S2 is sorted similarly. To make a 
move, we look for the pair of exchange that produces 
the greatest decrement in cost from the first K (a 
constant) elements of both SI and S2. The time 
required to look for the exchange is O( 1) since K is a 
constant. Maintaining the sorted order of the two 
subsets SI and S2 can be done in O(nloglV1) time, 
where n is the number of vertices adjacent to the two 
vertices that were chosen to be exchanged. In the 
worst case, n = IVI. So this method takes at most 
O(IVl1oglVI) time. 

There are several ways of structuring the tabu list to 
prevent cycling and to constrain the search direction. We 
took the simplest approach, we used a circular tabu list. It 
was observed from our test runs that when the length of the 
tabu list is between 7 and 13, good results were obtained. 

Each member of the list stores an exchange that took 
place. For example, if the current exchange pair is (u,v), U E 

SI and v E S2, we add (v,u) to the tabu list to replace the 
oldest member unless (v,u) is already in the tabu list (this 
can happen if a tabu condition is overruled by the aspiration 
function). The tabu list prevents a move in the near future to 
undo what was done before. It serves as some sort of short 
term memory to constrain the search. Of course, such a 
prevention is by no means absolute, as exchanges like (v.w) 
and (w,u) can still undo our previous exchange. However, 
such situations are unlikely to happen. 

Another way to structure the tabu list may be just to keep 
a particular vertex that has just been involved in an exchange 
for at least K iterations of the algorithm before it can be 
exchanged again. However, we found that our structure of 
the list quite effective as indicated by our experimental 
results. 

An aspiration function has the ability to overrule tabu 
conditions if a particular exchange is attractive even though it 
satisfies tabu conditions. This action diversifies the search. 
The aspiration function A b )  we choose is a simple one. It is 
one less than the cost of the best configuration that has been 
reached from a configuration of cost y. Intuitively, it means 
that the tabu conditions are overruled if the new 
configuration has a lower cost than any other configuration 
reached from a configuration with current cost. 

The updating of the aspiration function is given below: 

if (A(f(xi-1)) >f(xi)) { 

1 else if (A(f(X1)) >f(XI-l)) { 

1 

A(f(xL-1)) =f(x*) - 1; 

A(f(x1)) =f(x'-l) - 1; 

4 Experimental Results 

4 . 1  Test Data 

We conducted our experiments on two types of randomly 
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generated graphs. The first type is the standard random 
graph R,,,, where n is the number of vertices and m is the 
number of edges. The m edges are randomly generated for 
the n vertices. The second type of graphs are the geometric 
graphs. Geometric graphs have clustering structures (see 
Figure 2). The may be closer to real applications. The 
geometric grap; Cn,d can be generated by algorithm G. We 
note that the expected degree of each vertex is approximately 
n&n. All edges have a cost of 1 in our test cases. 

R-graphs 

n 1 k 
250 I 10 

Input : n and d 

step 1 
Generate n points in a unit square. 
Each point represents a vertex. 

For any two points within Euclidean distance d, put 
an edge between the two points. 

step 2 

Algorithm G: To generate a geometric graph G,,,d 

Anneahng KLFM Our Algorithm 
Best I Ave I U I Time 

341 I 2131 355 I 381 I 14 I .25 349 I 370 I 11 I .28 
Result I Time Best 1 Ave I (r I Time 

4 . 2  Our Competitors 

We implemented both the simulated annealing algorithm and 
the KLFM algorithm. In the simulated annealing algorithm, 
the starting temperature is set at the value such that the 
moves attempted are accepted with a probability of 0.7. This 
value is determined in a preprocessing phase. The annealing 
schedule used is Tk = ctTk-1, where ct varies between 0.87 
and 0.98. The algorithm is terminated when the temperature 
Tk 2 0.1, or when the acceptance percentage drops below 
0.1%. We do not claim our implementation of the annealing 
algorithm to be the best. Nevertheless, we have 
experimented with its parameters for a while and believe that 
they are reasonably good. We also approximated the 
computation of exp(-A/T) by 1 - A/T since exp(-A/T) is 
computed many times. Considerable savings in computation 
times (as much as 30%) are made without noticeable 
degradation of the quality of solutions. 

500 
1000 

4 . 3  Test Runs 

Since different starting configurations may result in different 
final solutions, we need to run our algorithm, the simulated 
annealing algorithm and the KLFM algorithm many times, 
each time with a different initial configuration. Currently, 
due to resource constraints, we are unable to run the 
simulated annealing algorithm as many times as we like in all 
the test cases. We will report our experiments once they are 
ready. We believe, however, that the annealing algorithm, 
unlike the KLFM algorithm, is less susceptible to the effects 
of different starting configurations. 

In all our experiments, the KLFM algorithm and our 
algorithm were run 100 times for each graph. The annealing 
algorithm is run only once. Results are summarized in 
Tables 1 and 2. In the tables, k, Best, Ave, 6, and Time, are 
respectively, the expected degree of a vertex of the graph, 
the cost of the best solution, the average cost of solutions 
generated, the standard deviation, and the average run time 
for one test run over all runs. All times reported are in 
seconds. 

All programs were written in Pascal and ran on a SUN 
SPARCstation 1 computer. 

10 693 3978 726 763 16 0.9 724 754 14 1.0 

10 1385 7234 1484 1536 27 4.3 1475 1528 18 4.2 
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n 
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10 
10 
10 
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Ann 
Result 

12 
70 

143 
28 

130 
246 

102 

220 
560 

__ 
- 

~ __ 

Time I Best I Ave 

36 66.8 
1017 75 133 

42 87.2 
1213 83 173 
1997 137 302 
1899 102 205 
2956 196 372 
5117 408 747 

- 
Best 

12 
37 
53 
31 
69 

120 
102 
143 
274 - - 

Table 2: Results on Geometric Graphs 
Figure 2: This is a geometric graph G with 500 vertices and 

expected degree 10 

64.4 13.2 
111 22.8 

75.0 19.5 
150 28.3 

250 48.1 
169 41 
295 67 
527 113 

- 
Time 

.25 
1.0 
4.1 
.27 
1.1 

4.3 
.30 

1.1 
4.5 

- 

- - 

5 Closing Remarks 

Our experimental results indicate that our algorithm 
consistently outperformed the KLFM algorithm. 
Improvements in the quality of solutions can be as high as 
33%. The speed of our algorithm is also comparable. 
Improvements on random graphs are small, but 
improvements on geometric graphs are very significant. Our 
algorithm is also less erratic. 

When compared with the simulated annealing algorithm, 
our algorithm did not perform as well in terms of quality of 
solutions on random graphs, even though in most cases the 
results are close. However, our algorithm outperformed the 
annealing algorithm in almost all the test cases on geometric 
graphs. Our algorithm is also faster by two to three orders 
of magnitude. 



Our results on BGPP gave very positive indications that 
tabu search may be used in providing good solutions to 
many NP-hard combinatorial optimization problems. Others 
have experienced similar findings in solving the node 
coloring, travelling salesman, and flow-shop scheduling 
problems. Since many of the computer-aided design (CAD) 
problems in VLSI, like placement, routing, and PLA 
folding, can be modelled as combinatorial optimization 
problems, more studies are needed to see in what context 
tabu search would work well on these problems. 
Investigations need to be conducted on the generation of 
neighborhood solutions, structuring of the tabu lists, 
definition of aspiration functions, updating of aspiration 
functions, and convergence properties of tabu search. 

Studies comparing various general optimization 
techniques like simulated annealing, genetic algorithms, 
neural networks, and tabu search, can also be undertaken to 
compare the merits and applicability of these different 
techniques. 
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