
GRAPH PARTITIONING USING TABU SEARCH

Andrew LIM* Yeow-Meng CHEEt

Abstract

In this paper, we present another approach to the balanced
minimum cut graph partitioning problem. This approach is
based on the meta-heuristic known as tabu search. Our
experimental results compare favorably with two of the most
effecitive methods available in terms of quality of solutions
and computational times. Our experience and experiments
suggest that this technique can be applied effectively to many
NP-hard combinatorial optimization problems.

1 Introduction

Let G = (V,E) be a undirected graph with a cost c(u,v)
associated with each edge (u,v) E E. We consider only
graphs with IVI even. The balanced minimum cut graph
partitioning problem (BGPP) is to partition the vertices of G
into two subsets of equal sizes such that the cut set has
minimum cost, i.e. the sum of the cost of all those edges
with end points in different subsets is minimum. It is clear
that if we just want a cut set with minimum cost without
regard to the size of the subsets in the partition, we can apply
any polynomial time max-flow algorithm to obtain the
optimal solution efficiently. However, if we restrict the
sizes of the subsets, the problem becomes much harder:
BGPP is NP-hard [GJ79]. BGPP has several useful
applications in the areas of VLSI layout, systems, and
computer networks.

In 1970, Kernighan and Lin [KL70] gave a heuristic for
obtaining good solutions. After that, Fiduccia and
Mattheyses [FM82] improved the speed of the Kernighan-
Lin heuristic by a faster implementation using efficient data
structures. We shall refer to this algorithm as the KLFM
algorithm. Unfortunately, we observed that the performance
of the KLFM algorithm is very erratic. Similar findings are
reported in [Kri84, NOP871. Another approach for obtaining
good solutions is the simulated annealing approach
[KGV83]. Although the annealing approach gives superior
solutions, it is very time consuming. In addition, it is not
clear to us how to choose effective parameters for the
annealing algorithm without substantial simulation with test
data. Lam and Delosme [LD88] gave an efficient
implementation of an annealing-like algorithm for BGPP
making use of a Kemighan-Lin-like heuristic in choosing
moves. Such an adaptation gave a good speedup at the

*Department of Computer Science, University of Minnesota,

hformation Technology Institute, National Computer Board, 71
Minneapolis, MN 55455, U.S.A.

Science Park Drive, SO51 1, Republic of Singapore.

expense of solution quality in some test cases, whereas in
other test cases noticeable improvement may be obtained.

In this paper, we present a viable technique called tabu
search that is capable of obtaining solutions of competitive
quality in high speed when compared to simulated annealing
and the KLFM algorithm.

2 Tabu Search

Recently, a general technique, called tabu search, was
proposed by Glover [Glo86, GG89, Glo891 for finding
good solutions to combinatorial optimization problems. This
technique is conceptually simple and elegant. It has also
proven itself to be very useful in providing good solutions
for large instances of many NP-hard problems in a
reasonable amount of time [FHW89, HW89, WH891. For
the general framework of tabu search, refer to figure 1.

Input

Defnitiom
An instance of the problem to be solved

X : Set of feasible solutions
f : Objective function
N (x) : Neighborhood of x E X
T : Tabu List(s)
A : Aspirationfunction
m m : Maximum number of iterations between

improvement
Initialization

S e t i = Q
Generate an initial solution Xi E X;
Initialize tabu list(s) T and aspiration function A;
Set best = X i , bestcost = f(best) and besti = i;

Body
while (i - besti < m m) [

i = i + l ;
locate the best Xi in N(xi-1) where Xi does not
satisfy tabu conditons or if aspiration function
overrules tabu conditions;
if (f (X j) < bestcost) [

1
update tabu list(s) T;
update aspiration function A;

best and bestcost

best = X i ; bestcost = f(best); besti = i;

I
Output

Figure 1: General framework of Tabu Search

CH30064/91/0000- 1164$1.000 IEEE

in our experiments. Tabu search may be regarded as a "meta-heuristic"
superimposed on another heuristic. The higher level heuristic
organizes and directs the subordinate one. Although tabu
seach and simulated annealing share the same property of
being general iterative improvement techniques, the former
does not resort to pure randomization to conquer
intractability nor does it take the conservative approach that a
proper rate of descent will lead us to a good local optimum,
hopefully close to the the global one. Instead, it takes a
more aggressive approach. Tabu search proceeds on the
assumption that there is no value in choosing an inferior
solution unless it is absolutely necessary, as in the case of
getting out of a local optimum. At each iteration of the
search, it selects the best neighborhood solution. This is
unlike hill-climbing as it might make a down-hill move.
Thus, the algorithm never runs out of choices for the next
move. However, this approach may result in cycling,
trapping the algorithm at locally optimal solutions. So two
structures called tabu lists and aspiration functions are
introduced. These two sturctures keep information about
past moves in order to constrain and diversify the search for
good solutions.

Tabu lists may be structured in many ways depending on
the problem in question. The most simplified form of a tabu
list is a linear list which stores the k most recent moves. The
main purpose of the list is to constrain the direction of
search. It prevents the algorithm from going back to a state
which was reached previously. Such an action hopefully
prevents us from being trapped in any local optimum. Tabu
conditions are satisfied if the current move mes to undo a
move previously made which is still in the tabu list. It is
clear that if the search is unconstrained, upon leaving a local
optimum, there is a very high probability that we may return
to the same local optimum. In addition to tabu lists, we also
have aspiration functions. An aspiration function has the
ability to overrule tabu conditions. This serves as a
mechanism to diversify the search and encourage the
exploration of new regions in the search space.

3 Implementation of the Algorithm

The input to our balanced minimum cut graph partitioning
algorithm is a graph G = (V,E), and a cost c(u,v) associated
with each edge (u,v) E E . We define the set of feasible
solutions X to be

and the objective functionf(x), x = (SI,$) E X , to be
x = { (SI&) I S1 U S2 = v, IS11 = IS21),

f(x) = c c(u, v).
U E SI, v E s2

This is the simplest and most intuitive; Lam and Delosme
[LDSS], and Sechen and Chen [SCSS] uses a different
objective function which seems to perform very well also.
The purpose is to minimize f(x).

In our implementation, we generate the initial solution
randomly. We are currently investigating if clustering
algorithms will help in improving the quality of solutions.

In our algorithm, we define N (x) of x E X to be the set
of configurations that can be reached from x via a single
pair-exchange between members of the two different subsets
of x . Naturally, the best neighbor of x corresponds to the
member in N(x) that gives us the highest decrement in cost.
N(x) can also be regarded as the neighborhood configuration
of x. The following neighborhood search function was used

Method
We keep the subset S1 sorted according to the linear
order G : U << v if and only if the decrement in cost
when vertex U is moved from SI to S2 is no smaller
than the decrement in cost when vertex v is moved
from SI to S2. S2 is sorted similarly. To make a
move, we look for the pair of exchange that produces
the greatest decrement in cost from the first K (a
constant) elements of both SI and S2. The time
required to look for the exchange is O(1) since K is a
constant. Maintaining the sorted order of the two
subsets SI and S2 can be done in O(nloglV1) time,
where n is the number of vertices adjacent to the two
vertices that were chosen to be exchanged. In the
worst case, n = IVI. So this method takes at most
O(IVl1oglVI) time.

There are several ways of structuring the tabu list to
prevent cycling and to constrain the search direction. We
took the simplest approach, we used a circular tabu list. It
was observed from our test runs that when the length of the
tabu list is between 7 and 13, good results were obtained.

Each member of the list stores an exchange that took
place. For example, if the current exchange pair is (u,v), U E

SI and v E S2, we add (v,u) to the tabu list to replace the
oldest member unless (v,u) is already in the tabu list (this
can happen if a tabu condition is overruled by the aspiration
function). The tabu list prevents a move in the near future to
undo what was done before. It serves as some sort of short
term memory to constrain the search. Of course, such a
prevention is by no means absolute, as exchanges like (v.w)
and (w,u) can still undo our previous exchange. However,
such situations are unlikely to happen.

Another way to structure the tabu list may be just to keep
a particular vertex that has just been involved in an exchange
for at least K iterations of the algorithm before it can be
exchanged again. However, we found that our structure of
the list quite effective as indicated by our experimental
results.

An aspiration function has the ability to overrule tabu
conditions if a particular exchange is attractive even though it
satisfies tabu conditions. This action diversifies the search.
The aspiration function A b) we choose is a simple one. It is
one less than the cost of the best configuration that has been
reached from a configuration of cost y. Intuitively, it means
that the tabu conditions are overruled if the new
configuration has a lower cost than any other configuration
reached from a configuration with current cost.

The updating of the aspiration function is given below:

if (A(f(xi-1)) >f(xi)) {

1 else if (A(f(X1)) >f(XI-l)) {

1

A(f(xL-1)) =f(x*) - 1;

A(f(x1)) =f(x'-l) - 1;

4 Experimental Results

4 . 1 Test Data

We conducted our experiments on two types of randomly

1 I65

generated graphs. The first type is the standard random
graph R,,,, where n is the number of vertices and m is the
number of edges. The m edges are randomly generated for
the n vertices. The second type of graphs are the geometric
graphs. Geometric graphs have clustering structures (see
Figure 2). The may be closer to real applications. The
geometric grap; Cn,d can be generated by algorithm G. We
note that the expected degree of each vertex is approximately
n&n. All edges have a cost of 1 in our test cases.

R-graphs

n 1 k
250 I 10

Input : n and d

step 1
Generate n points in a unit square.
Each point represents a vertex.

For any two points within Euclidean distance d, put
an edge between the two points.

step 2

Algorithm G: To generate a geometric graph G,,,d

Anneahng KLFM Our Algorithm
Best I Ave I U I Time

341 I 2131 355 I 381 I 14 I .25 349 I 370 I 11 I .28
Result I Time Best 1 Ave I (r I Time

4 . 2 Our Competitors

We implemented both the simulated annealing algorithm and
the KLFM algorithm. In the simulated annealing algorithm,
the starting temperature is set at the value such that the
moves attempted are accepted with a probability of 0.7. This
value is determined in a preprocessing phase. The annealing
schedule used is Tk = ctTk-1, where ct varies between 0.87
and 0.98. The algorithm is terminated when the temperature
Tk 2 0.1, or when the acceptance percentage drops below
0.1%. We do not claim our implementation of the annealing
algorithm to be the best. Nevertheless, we have
experimented with its parameters for a while and believe that
they are reasonably good. We also approximated the
computation of exp(-A/T) by 1 - A/T since exp(-A/T) is
computed many times. Considerable savings in computation
times (as much as 30%) are made without noticeable
degradation of the quality of solutions.

500
1000

4 . 3 Test Runs

Since different starting configurations may result in different
final solutions, we need to run our algorithm, the simulated
annealing algorithm and the KLFM algorithm many times,
each time with a different initial configuration. Currently,
due to resource constraints, we are unable to run the
simulated annealing algorithm as many times as we like in all
the test cases. We will report our experiments once they are
ready. We believe, however, that the annealing algorithm,
unlike the KLFM algorithm, is less susceptible to the effects
of different starting configurations.

In all our experiments, the KLFM algorithm and our
algorithm were run 100 times for each graph. The annealing
algorithm is run only once. Results are summarized in
Tables 1 and 2. In the tables, k, Best, Ave, 6, and Time, are
respectively, the expected degree of a vertex of the graph,
the cost of the best solution, the average cost of solutions
generated, the standard deviation, and the average run time
for one test run over all runs. All times reported are in
seconds.

All programs were written in Pascal and ran on a SUN
SPARCstation 1 computer.

10 693 3978 726 763 16 0.9 724 754 14 1.0

10 1385 7234 1484 1536 27 4.3 1475 1528 18 4.2

Our Alnori th ing I KLFM G-gr
n

250
500

1000
250
500

1000

250
500

1000

-
-

- -

ha
k
5

-
-

5
5

10
10
10
20

20
20 - -

Ann
Result

12
70

143
28

130
246

102

220
560

__
-

~ __

Time I Best I Ave

36 66.8
1017 75 133

42 87.2
1213 83 173
1997 137 302
1899 102 205
2956 196 372
5117 408 747

-
Best

12
37
53
31
69

120
102
143
274 - -

Table 2: Results on Geometric Graphs
Figure 2: This is a geometric graph G with 500 vertices and

expected degree 10

64.4 13.2
111 22.8

75.0 19.5
150 28.3

250 48.1
169 41
295 67
527 113

-
Time

.25
1.0
4.1
.27
1.1

4.3
.30

1.1
4.5

-

- -

5 Closing Remarks

Our experimental results indicate that our algorithm
consistently outperformed the KLFM algorithm.
Improvements in the quality of solutions can be as high as
33%. The speed of our algorithm is also comparable.
Improvements on random graphs are small, but
improvements on geometric graphs are very significant. Our
algorithm is also less erratic.

When compared with the simulated annealing algorithm,
our algorithm did not perform as well in terms of quality of
solutions on random graphs, even though in most cases the
results are close. However, our algorithm outperformed the
annealing algorithm in almost all the test cases on geometric
graphs. Our algorithm is also faster by two to three orders
of magnitude.

Our results on BGPP gave very positive indications that
tabu search may be used in providing good solutions to
many NP-hard combinatorial optimization problems. Others
have experienced similar findings in solving the node
coloring, travelling salesman, and flow-shop scheduling
problems. Since many of the computer-aided design (CAD)
problems in VLSI, like placement, routing, and PLA
folding, can be modelled as combinatorial optimization
problems, more studies are needed to see in what context
tabu search would work well on these problems.
Investigations need to be conducted on the generation of
neighborhood solutions, structuring of the tabu lists,
definition of aspiration functions, updating of aspiration
functions, and convergence properties of tabu search.

Studies comparing various general optimization
techniques like simulated annealing, genetic algorithms,
neural networks, and tabu search, can also be undertaken to
compare the merits and applicability of these different
techniques.

References

[FHW89] C. Friden, A. Hertz and D. de Werra (1989),
STABULUS: a technique for finding stable sets
in large graphs with tabu search, Computing 42,
35-44.

C.M. Fiduccia and R.M. Mattheyses (1982), A
linear-time heuristic for improving network
partitions, Proceedings of the 19th Design
Automation Conference (ACM Press) 175-1982.

[GJ79] M.R. Garey and D.S. Johnson (1979),
Computers and Intractability: A Guide to the
Theory of NP-Completeness (Freeman, San
Francisco, CA).

[FM82]

[Glo86] F. Glover (1986), Future paths for integer
programming and links to artificial intelligence,
Computer and Operations Research 13, 533-
549.

[Glo89] F. Glover (1989), Tabu search - part I, ORSA
Journal on Computing 1, 190-206.

F. Glover and H.J. Greenberg (1989), New
approaches for heuristic search: a bilateral linkage
with artificial intelligence, European Journal of
Operational Research 39,119-130.

A. Hertz and D. de Werra (1989), Using tabu
search techniques for graph coloring, Computing

[KGV83] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi
(1983), Optimization by simulated annealing,
Science 220, 67 1-680.

B.W. Kemighan and S. Lin (1970), An efficient
heuristic procedure for partitioning graphs, Bell
System Technical Journal 49,291-307.

B. Krishnanmurthy (1984), An improved min-
cut algorithm for partitioning of VLSI networks,
IEEE Transaction on Computers 33,438-446.

[GG89]

[HW89]

39, 345-351.

[KL70]

[Kri84]

[LD88] J. Lam and J.M. Delosme (1988), Simulated
annealing: a fast heuristic for some generic layout
problems, Proceedings of the International
Conference on Computer-Aided Design (ACM
Press) 510-513.

[NOP87] T.K. Ng, J. Oldfield and V. Pitchumami (1987),
Improvement of a mincut partition algorithm,
Proceedings of the International Conference on
Computer-Aided Design (ACM Press) 470-473.

C. Sechen and D. Chen (1988), An improved
objective function for mincut circuit partitioning,
Proceedings of the International Conference on
Computer-Aided Design (ACM Press) 502-505.

[SCSS]

[WH89] M. Widmer and A. Hertz (1989), A new
heuristic method for the flow shop sequencing
problem, European Journal of Operational
Research 41, 186-193.

1167

