Chapter 2: Quantum Entanglement

They don’t think it be like it is, but it do.

Oscar Gamble

I. QUANTUM STATES OF MULTI-PARTICLE SYSTEMS

So far, we have studied quantum mechanical systems consisting of single particles. The next important step is to look at systems of more than one particle. We shall see that the postulates of quantum mechanics, when applied to multi-particle systems, give rise to interesting and counterintuitive phenomena such as quantum entanglement.

Suppose we have two particles labeled A and B. If each individual particle is treated as a quantum system, the postulates of quantum mechanics require that its state be described by a vector in a Hilbert space. Let H_A and H_B denote the respective single-particle Hilbert spaces. Then the Hilbert space for the combined system of two particles is

$$ H = H_A \otimes H_B. \quad (2.1) $$

The symbol \otimes refers to a tensor product, a mathematical operation that combines two Hilbert spaces to form another Hilbert space. It is most easily understood in terms of explicit basis vectors: let H_A be spanned by a basis $\{|\mu_1\rangle, |\mu_2\rangle, |\mu_3\rangle, \ldots\}$, and H_B be spanned by $\{|\nu_1\rangle, |\nu_2\rangle, |\nu_3\rangle, \ldots\}$. Then $H_A \otimes H_B$ is a space spanned by basis vectors consisting of pairwise combinations of basis vectors drawn from the H_A and H_B bases:

$$ \text{\{ } |\mu_i\rangle \otimes |\nu_j\rangle \text{ for all } |\mu_i\rangle, |\nu_j\rangle \text{ \}}, \quad (2.2) $$

Thus, if H_A has dimension d_A and H_B has dimension d_B, then $H_A \otimes H_B$ has dimension $d_A d_B$. Any two-particle state can be written as a superposition of these basis vectors:

$$ |\psi\rangle = \sum_{ij} c_{ij} |\mu_i\rangle \otimes |\nu_j\rangle. \quad (2.3) $$

The inner product between the tensor product basis states is defined as follows:

$$ \left(|\mu_i\rangle \otimes |\nu_j\rangle, |\mu_p\rangle \otimes |\nu_q\rangle \right) \equiv \left(\langle \mu_i | \otimes \langle \nu_j | \right) \left(|\mu_p\rangle \otimes |\nu_q\rangle \right) \equiv \langle \mu_i | \mu_p \rangle \langle \nu_j | \nu_q \rangle = \delta_{ip}\delta_{jq}. \quad (2.4) $$

In other words, the inner product is performed “slot-by-slot”. We calculate the inner product for A, calculate the inner product for B, and then multiply the two resulting numbers. You can check that this satisfies all the formal requirements for an inner product in linear algebra (see Exercise 1).

For example, suppose H_A and H_B are both 2D Hilbert spaces describing spin-$1/2$ degrees of freedom. Each space can be spanned by an orthonormal basis $\{|+z\rangle, |-z\rangle\}$, representing “spin-up” and “spin-down”. Then the tensor product space H is a 4D space spanned by

$$ \text{\{ } |+z\rangle \otimes |+z\rangle, |+z\rangle \otimes |-z\rangle, |-z\rangle \otimes |+z\rangle, |-z\rangle \otimes |-z\rangle \text{ \}}. \quad (2.5) $$
We now make an important observation. If A is in state $|\mu\rangle$ and B is in state $|\nu\rangle$, then the state of the combined system is fully specified: $|\mu\rangle \otimes |\nu\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$. But the reverse is not generally true! There exist states of the combined system that \textit{cannot} be expressed in terms of definite states of the individual particles. For example, consider the following quantum state of two spin-$1/2$ particles:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|+z\rangle \otimes |-z\rangle - |-z\rangle \otimes |+z\rangle \right).$$ \quad (2.6)$$

This state is constructed from two of the four basis states in (2.5), and you can check that the factor of $1/\sqrt{2}$ ensures the normalization $\langle \psi | \psi \rangle = 1$ with the inner product rule (2.4). It is evident from looking at Eq. (2.6) that neither A nor B possesses a definite $|+z\rangle$ or $|-z\rangle$ state. Moreover, we shall show (in Section VI) that there’s \textit{no} choice of basis that allows this state to be expressed in terms of definite individual-particle states; i.e.,

$$|\psi\rangle \neq |\psi_A\rangle \otimes |\psi_B\rangle \quad \text{for any } |\psi_A\rangle \in \mathcal{H}_A, \ |\psi_B\rangle \in \mathcal{H}_B.$$ \quad (2.7)

In such a situation, the two particles are said to be \textbf{entangled}.

It is cumbersome to keep writing \otimes symbols, so we will henceforth omit the \otimes in cases where the tensor product is obvious. For instance,

$$\frac{1}{\sqrt{2}} \left(|+z\rangle \otimes |-z\rangle - |-z\rangle \otimes |+z\rangle \right) \equiv \frac{1}{\sqrt{2}} \left(|+z\rangle |-z\rangle - |-z\rangle |+z\rangle \right). \quad (2.8)$$

For systems of more than two particles, quantum states can be defined using multiple tensor products. Suppose a quantum system contains N particles described by the individual Hilbert spaces $\{\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_N\}$ having dimensionality $\{d_1, \ldots, d_N\}$. Then the overall system is described by the Hilbert space

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_N,$$ \quad (2.9)$$

which has dimensionality $d = d_1 d_2 \cdot \cdot \cdot d_N$. The dimensionality scales exponentially with the number of particles! For instance, if each particle has a 2D Hilbert space, a 20-particle system has a Hilbert space with $2^{20} = 1048576$ dimensions. Thus, even in quantum systems with a modest number of particles, the quantum state can carry huge amounts of information. This is one of the motivations behind the active research field of quantum computing.

Finally, a proviso: although we refer to subsystems like A and B as “particles” for narrative convenience, they need not be actual particles. All this formalism applies to general subsystems—i.e., subsets of a large quantum system’s degrees of freedom. For instance, if a quantum system has a position eigenbasis for 3D space, the x, y, and z coordinates are distinct degrees of freedom, so each position eigenstate is really a tensor product:

$$|\mathbf{r} = (x, y, z)\rangle \equiv |x\rangle |y\rangle |z\rangle.$$ \quad (2.10)$$

Also, if the subsystems really \textit{are} particles, we are going to assume for now that the particles are distinguishable. There are other complications that arise if the particles are “identical”, which will be the subject of the next chapter. (If you’re unsure what this means, just read on.)
II. PARTIAL MEASUREMENTS

Let us recall how measurements work in single-particle quantum theory. Each observable Q is described by some Hermitian operator \hat{Q}, which has an eigenbasis $\{ |q_i\rangle \}$ such that

$$\hat{Q} |q_i\rangle = q_i |q_i\rangle. \tag{2.10}$$

For simplicity, let the eigenvalues $\{q_i\}$ be non-degenerate. Suppose a particle initially has quantum state $|\psi\rangle$. This can always be expanded in terms of the eigenbasis of \hat{Q}:

$$|\psi\rangle = \sum_i \psi_i |q_i\rangle, \text{ where and } \psi_i = \langle q_i | \psi \rangle. \tag{2.11}$$

The measurement postulate of quantum mechanics states that if we measure Q, then (i) the probability of obtaining the measurement outcome q_i is $P_i = |\psi_i|^2$, the absolute square of the coefficient of $|q_i\rangle$ in the basis expansion; and (ii) upon obtaining this outcome, the system instantly “collapses” into state $|q_i\rangle$.

Mathematically, these two rules can be summarized using the projection operator

$$\hat{\Pi}(q_i) = |q_i\rangle \langle q_i|. \tag{2.12}$$

Applying this operator to $|\psi\rangle$ gives

$$|\psi'\rangle = |q_i\rangle \langle q_i | \psi \rangle, \tag{2.13}$$

which is not normalized to unity. Then:

1. The probability of obtaining this outcome is $\langle \psi' | \psi' \rangle = |\langle q_i | \psi \rangle|^2$.
2. The post-collapse state is obtained by the re-normalization $|\psi'\rangle \to |q_i\rangle$.

For multi-particle systems, there is a new complication: what if a measurement is performed on just one particle?

Consider a system of two particles A and B, with two-particle Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$. We perform a measurement on particle A, corresponding to a Hermitian operator $\hat{\mu}$ that acts upon \mathcal{H}_A and has eigenvectors $\{ |\mu_1\rangle, |\mu_2\rangle, \ldots \}$. We can write any state $|\psi\rangle$ using the eigenbasis of $\hat{\mu}$ for the \mathcal{H}_A part, and an arbitrary basis $\{ |\nu_1\rangle, |\nu_2\rangle, \ldots \}$ for the \mathcal{H}_B part:

$$|\psi\rangle = \sum_{ij} \psi_{ij} |\mu_i\rangle |\nu_j\rangle$$

$$= \sum_i |\mu_i\rangle |\varphi_i\rangle, \text{ where } |\varphi_i\rangle \equiv \sum_j \psi_{ij} |\nu_j\rangle. \tag{2.14}$$

Unlike the single-particle case, the “coefficient” of $|\mu_i\rangle$ in this basis expansion is not a complex number, but a vector $|\varphi_i\rangle \in \mathcal{H}_B$. Proceeding by analogy, the probability of obtaining the outcome μ_i ought to be the “absolute square” of this “coefficient”, $\langle \varphi_i | \varphi_i \rangle$. To make the analogy a bit more rigorous, let us define the partial projector

$$\hat{\Pi}(\mu_i) = |\mu_i\rangle \langle \mu_i| \otimes I. \tag{2.15}$$
This contains a projector, $|\mu_i\rangle\langle \mu_i|$, which only acts upon the \mathcal{H}_A part of the two-particle space. Applying this to the above multi-particle state gives
\begin{equation}
|\psi'\rangle = \hat{\Pi}(\mu_i)|\psi\rangle = |\mu_i\rangle|\varphi_i\rangle.
\end{equation}

Now we can follow the same measurement rules as before. The outcome probability is
\begin{equation}
P_i = \langle \psi'|\psi'\rangle = \sum_j |\psi_{ij}|^2,
\end{equation}
and the post-measurement collapsed state is obtained by the re-normalization
\begin{equation}
|\psi'\rangle \rightarrow \frac{1}{\sqrt{\sum_j |\psi_{ij}|^2}} \sum_j \psi_{ij} |\mu_i\rangle|\nu_j\rangle.
\end{equation}

Let’s work through an example. Consider a system of two spin-1/2 particles, with state
\begin{equation}
|\psi\rangle = \frac{1}{\sqrt{2}} \left(|+z\rangle|-z\rangle - |−z\rangle|+z\rangle \right).
\end{equation}

For each particle, $|+z\rangle$ and $|-z\rangle$ denote eigenstates of the operator \hat{S}_z, with eigenvalues $+\hbar/2$ and $-\hbar/2$ respectively. Suppose we measure S_z on particle A. There are two possible outcomes:

- **First outcome**: $+\hbar/2$. The projection operator is $|+z\rangle\langle +z| \otimes I$, and applying this to $|\psi\rangle$ yields $|\psi'\rangle = (1/\sqrt{2}) |+z\rangle|-z\rangle$. Hence, the outcome probability is $P_+ = \langle \psi'|\psi'\rangle = 1/2$ and the post-collapse state is $|+z\rangle|-z\rangle$.

- **Second outcome**: $-\hbar/2$. The projection operator is $|-z\rangle\langle -z| \otimes I$, and applying this to $|\psi\rangle$ yields $|\psi'\rangle = (1/\sqrt{2}) |-z\rangle|+z\rangle$. Hence, the outcome probability is $P_- = \langle \psi'|\psi'\rangle = 1/2$ and the post-collapse state is $|-z\rangle|+z\rangle$.

The two possible outcomes, $+\hbar/2$ and $-\hbar/2$, occur with equal probability. In either case, the two-particle state collapses so that A is in the observed spin eigenstate, and B has the opposite spin. After the collapse, the two-particle state is no longer entangled.

III. THE EINSTEIN-PODOLSKY-ROSEN “PARADOX”

In 1935, Einstein, Podolsky, and Rosen (EPR) used the counter-intuitive features of quantum entanglement to formulate a thought experiment known as the **EPR paradox**. They tried to use this thought experiment to argue that quantum theory cannot serve as a fundamental description of reality. Subsequently, however, it was shown that the EPR paradox is not an actual paradox; physical systems *really do* have the strange behavior that the thought experiment highlighted.

The EPR paradox begins with an entangled state like this state of two spin-1/2 particles:
\begin{equation}
|\psi\rangle = \frac{1}{\sqrt{2}} \left(|+z\rangle|-z\rangle - |−z\rangle|+z\rangle \right).
\end{equation}
As before, let the two particles be labeled A and B. Measuring S_z on A collapses the system into a two-particle state that is unentangled, where each particle has a definite spin. If the measurement outcome is $+\hbar/2$, the new state is $|+z\rangle|z\rangle$, whereas if the outcome is $-\hbar/2$, the new state is $|-z\rangle|z\rangle$.

The postulates of quantum theory seem to indicate that the state collapse happens instantaneously, regardless of the distance separating the particles. Imagine that we prepare the two-particle state in a laboratory, transport particle A to the Alpha Centauri star system, and transport particle B to the Betelgeuse system, separated by ~ 640 light years. In principle, this can be done carefully enough to avoid disturbing the two-particle quantum state.

Once ready, an experimentalist at Alpha Centauri measures \hat{S}_z on particle A, which induces an instantaneous collapse of the two-particle state. Immediately afterwards, an experimentalist at Betelgeuse measures \hat{S}_z on particle B, and obtains—with 100% certainty—the opposite spin. During the time interval between these two measurements, no classical signal could have traveled between the two star systems, not even at the speed of light. Yet the state collapse induced by the measurement at Alpha Centauri has a definite effect on the result of the measurement at Betelgeuse.

There are three noteworthy aspects of this phenomenon:

First, it dispels some commonsensical but mistaken “explanations” for quantum state collapse in terms of perturbative effects. For instance, it is sometimes explained that if we want to measure a particle’s position, we need to shine a light beam on it, or disturb it in some way, and this disturbance generates an uncertainty in the particle’s momentum. The EPR paradox shows that such stories don’t capture the full weirdness of quantum state collapse, for we can collapse the state of a particle by doing a measurement on another particle far away!

Second, the experimentalist has a certain amount of control over the state collapse, due to the choice of what measurement to perform. So far, we have considered S_z measurements performed on particle A. But the experimentalist at Alpha Centauri can choose to measure the spin of A along another axis, say S_x. In the basis of spin-up and spin-down states, the operator \hat{S}_x has matrix representation

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$ \hspace{1cm} (2.21)
The eigenvalues and eigenvectors are
\[s_x = \frac{\hbar}{2}, \quad |x\rangle = \frac{1}{\sqrt{2}} (|+z\rangle + |-z\rangle) \]
\[s_x = -\frac{\hbar}{2}, \quad |-x\rangle = \frac{1}{\sqrt{2}} (|+z\rangle - |-z\rangle) \].

Conversely, we can write the \(\hat{S}_x \) eigenstates in the \(\{|+x\rangle, |-x\rangle\} \) basis:
\[|+z\rangle = \frac{1}{\sqrt{2}} (|+x\rangle + |-x\rangle) \]
\[|-z\rangle = \frac{1}{\sqrt{2}} (|+x\rangle - |-x\rangle) \].

This allows us to write the two-particle entangled state in the \(\hat{S}_x \) basis:
\[|\psi\rangle = \frac{1}{\sqrt{2}} (|-x\rangle|+x\rangle - |+x\rangle|-x\rangle) \].

The Alpha Centauri measurement still collapses the particles into definite spin states with opposite spins—but now spin states of \(S_x \) rather than \(S_z \).

Third, this ability to choose the measurement axis does not allow for superluminal communication. The experimentalist at Alpha Centauri can choose whether to (i) measure \(S_z \) or (ii) measure \(S_x \), and this choice instantaneously affects the quantum state of particle \(B \). If the Betelgeuse experimentalist can find a way to distinguish between the cases (i) and (ii), even statistically, this would serve as a method for instantaneous communication, violating the theory of relativity! Yet this turns out to be impossible. The key problem is that quantum states themselves cannot be measured; only observables can be measured. Suppose the Alpha Centauri measurement is \(\hat{S}_z \), which collapses \(B \) to either \(|+z\rangle \) or \(|-z\rangle \), each with probability \(1/2 \). The Betelgeuse experimentalist must now choose which measurement to perform. If \(S_z \) is measured, the outcome is \(+\hbar/2\) or \(-\hbar/2\) with equal probabilities. If \(S_x \) is measured, the probabilities are:
\[P(S_x = +\hbar/2) = \frac{1}{2} \left| \langle +x|+z \rangle \right|^2 + \frac{1}{2} \left| \langle +x|-z \rangle \right|^2 = \frac{1}{2} \]
\[P(S_x = -\hbar/2) = \frac{1}{2} \left| \langle -x|+z \rangle \right|^2 + \frac{1}{2} \left| \langle -x|-z \rangle \right|^2 = \frac{1}{2} \].

The probabilities are still equal! Repeating this analysis for any other choice of spin axis, we find that the two possible outcomes always have equal probability. Thus, the Betelgeuse measurement does not yield any information about the choice of measurement axis at Alpha Centauri.

Since quantum state collapse does not allow for superluminal communication, it is consistent in practice with the theory of relativity. However, state collapse is still nonlocal, in the sense that unobservable ingredients of the theory (quantum states) can change faster than light can travel between two points. For this reason, EPR argued that quantum theory is philosophically inconsistent with relativity.

EPR suggested an alternative: maybe quantum mechanics is an approximation of some deeper theory, whose details are currently unknown, but which is deterministic and local.
Such a “hidden variable theory” may give the appearance of quantum state collapse in the following way. Suppose each particle has a definite but “hidden” value of S_z, either $S_z = +\hbar/2$ or $S_z = -\hbar/2$; let us denote these as $[+]$ or $[-]$. We can hypothesize that the two-particle quantum state $|\psi\rangle$ is not an actual description of reality; rather, it corresponds to a statistical distribution of “hidden variable” states, denoted by $[+; -]$ (i.e., $S_z = +\hbar/2$ for particle A and $S_z = -\hbar/2$ for particle B), and $[-; +]$ (the other way around).

When the Alpha Centauri experimentalist measures S_z, the value of the hidden variable is revealed. A result of $+z$ implies $[+; -]$, whereas $-z$ implies $[-; +]$. When the Betelgeuse experimentalist subsequently measures S_z, the result obtained is the opposite of the Alpha Centauri result. But those were simply the values all along—there is no instantaneous physical influence traveling from Alpha Centauri to Betelgeuse.

Clearly, there are many missing details in this hypothetical description. Any actual hidden variable theory would also need to replicate the huge list of successful predictions made by quantum theory. Trying to come up with a suitable theory of this sort seems difficult, but with enough hard work, one might imagine that it is doable.

IV. BELL’S THEOREM

In 1964, however, John S. Bell published a bombshell paper showing that the predictions of quantum theory are inherently inconsistent with hidden variable theories. The amazing thing about this result, known as Bell’s theorem, is that it requires no knowledge about the details of the hidden variable theory, just that it is deterministic and local. Here, we present a simplified version of Bell’s theorem, based on Mermin (1981).

We again consider spin-1/2 particle pairs, with particle A sent to Alpha Centauri and particle B sent to Betelgeuse. At each location, an experimentalist can measure the particle’s spin along three distinct choices of spin axis. These spin observables are denoted by S_1, S_2, and S_3. We will not specify the actual directions of these spin axes until later in the proof. For now, just note that the axes need not correspond to orthogonal spatial directions.

We now repeatedly prepare two-particle systems, and send the particles to Alpha Centauri and Betelgeuse. Each time, the prepared two-particle state is

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|+z\rangle|-z\rangle - |-z\rangle|+z\rangle \right).$$

During each round of the experiment, each experimentalist randomly chooses one of the three spin axes S_1, S_2, or S_3, and performs that spin measurement. It doesn’t matter which experimentalist performs the measurement first; the experimentalists can’t influence each
other, as there is not enough time for a light-speed signal to travel between the two locations. Many rounds of the experiment are conducted; for each round, both experimentalists’ choices of spin axis are recorded, along with their measurement results.

At the end, the experimental records are brought together and examined. We assume that the results are consistent with the predictions of quantum theory. Among other things, this means that whenever the experimentalists happen to choose the same measurement axis, they always find opposite spins. (For example, this is the case during “Experiment 4” in the above figure, where both experimentalists happened to measure S_3.)

Can a hidden variable theory reproduce the results predicted by quantum theory? In a hidden variable theory, each particle must have a definite value for each spin observable. For example, particle A might have $S_1 = +\frac{\hbar}{2}$, $S_2 = +\frac{\hbar}{2}$, $S_3 = -\frac{\hbar}{2}$. Let us denote this by $[+ + -]$. To be consistent with the predictions of quantum theory, the hidden spin variables for the two particles must have opposite values along each direction. This means that there are 8 distinct possibilities, which we can denote as

\[
[+ + +; - - -], [+ + -; - + -], [+ - +; - + -], [+ - -; - + +], [- + +; + - -], [- + -; + - +], [- - +; + + -], [- - -; + + +].
\]

For instance, $[+ + -; - + +]$ indicates that for particle A, $S_1 = S_2 = +\frac{\hbar}{2}$ and $S_3 = -\frac{\hbar}{2}$, while particle B has the opposite spin values, $S_1 = S_2 = -\frac{\hbar}{2}$ and $S_3 = +\frac{\hbar}{2}$. So far, however, we don’t know anything about the relative probabilities of these 8 cases.

Let’s now focus on the subset of experiments in which the two experimentalists happened to choose different spin axes (e.g., Alpha Centauri chose S_1 and Betelgeuse chose S_2). Within this subset, what is the probability for the two measurement results to have opposite signs (i.e., one $+$ and one $-$)? To answer this question, we first look at the following 6 cases:

\[
[+ + -; - - +], [+ - +; - + -], [+ - -; - + +], [- + +; + - -], [- + -; + - +], [- - +; + + -].
\]

These are the cases which do not have all $+$ or all $-$ for each particle. Consider one of these, say $[+ + -; - - +]$. The two experimentalists picked their measurement axes at random each time, and amongst the experiments where they picked different axes, there are two ways for the measurement results to have opposite signs: (S_1, S_2) or (S_2, S_1). There are four ways to get the same sign: (S_1, S_3), (S_2, S_3), (S_3, S_1) and (S_3, S_2). Thus, for this particular
set of hidden variables, the probability for measurement results with opposite signs is 1/3. If we go through all 6 of the cases listed above, we find that in all cases, the probability for opposite signs is 1/3.

Now look at the remaining 2 cases:

\([+ + ; - - -], [- - -; + + +]\).

For these, the experimentalists always obtain results that have opposite signs. Combining this with the findings from the previous paragraph, we obtain the following statement:

Given that the two experimentalists choose different spin axes, the probability that their results have opposite signs is \(P \geq 1/3\).

This is called **Bell’s inequality**. If we can arrange a situation where quantum theory predicts a probability \(P < 1/3\) (i.e., a violation of Bell’s inequality), that would mean that quantum theory is inherently inconsistent with local deterministic hidden variables. This conclusion would hold regardless of the “inner workings” of the hidden variable theory. In particular, note that the above derivation made no assumptions about the relative probabilities of the hidden variable states.

To complete the proof, we must find a set \(\{S_1, S_2, S_3\}\) such that the predictions of quantum mechanics violate Bell’s inequality. One simple choice is to align \(S_1\) with the \(z\) axis, and align \(S_2\) and \(S_3\) along the \(x\)-\(z\) plane at 120° (2\(\pi/3\) radians) from \(S_1\), as shown below:

![Diagram](image)

The corresponding spin operators can be written in the eigenbasis of \(\hat{S}_z\):

\[
\hat{S}_1 = \frac{\hbar}{2} \sigma_3 \\
\hat{S}_2 = \frac{\hbar}{2} \left[\cos(2\pi/3)\sigma_3 + \sin(2\pi/3)\sigma_1 \right] \\
\hat{S}_3 = \frac{\hbar}{2} \left[\cos(2\pi/3)\sigma_3 - \sin(2\pi/3)\sigma_1 \right].
\]

Suppose the Alpha Centauri experimentalist chooses \(S_1\), and obtains \(+\hbar/2\). Particle \(A\) collapses to state \(|+z\rangle\), and particle \(B\) collapses to state \(|-z\rangle\). The Betelgeuse experimentalist is assumed to choose a different spin axis. If the choice is \(S_2\), the expectation value is

\[
\langle -z | S_2 | -z \rangle = \frac{\hbar}{2} \left[\cos(2\pi/3)\langle -z | \sigma_3 | -z \rangle + \sin(2\pi/3)\langle -z | \sigma_1 | -z \rangle \right] \\
= \frac{\hbar}{2} \cdot \frac{1}{2}.
\]

If \(P_+\) and \(P_-\) respectively denote the probability of measuring \(+\hbar/2\) and \(-\hbar/2\) in this measurement, the above equation implies that \(P_+ - P_- = +1/2\). Moreover, \(P_+ + P_- = 1\) by probability conservation. It follows that the probability of obtaining a negative value (the
opposite sign from the Alpha Centauri measurement) is $P_+ = 1/4$. All the other possible scenarios are worked out in a similar way.

The result is that if the two experimentalists choose different measurement axis, they obtain results of opposite signs with probability $1/4$. Therefore, Bell’s inequality is violated.

Last of all, we must consult Nature itself. Is it possible to observe, in an actual experiment, probabilities that violate Bell’s inequality? In the decades following Bell’s 1964 paper, many experiments were performed to answer this question. These experiments are all substantially more complicated than the simple two-particle spin-1/2 model that we’ve studied, and they are subject to various uncertainties and “loopholes” that are beyond the scope of our discussion. But in the end, the experimental consensus appears to be a clear yes: Nature really does behave according to quantum mechanics, and in a manner that cannot be replicated by deterministic local hidden variables! A summary of the experimental evidence can be found in Aspect (1999).

V. DENSITY OPERATORS

We will now introduce a theoretical construct called the density operator, which helps to streamline many calculations in multi-particle quantum mechanics.

Consider a quantum system with a d-dimensional Hilbert space \mathcal{H}. Given an arbitrary state $|\psi\rangle \in \mathcal{H}$, we can define an operator

$$\hat{\rho} = |\psi\rangle \langle \psi|.$$

(2.29)

This is simply the projection operator associated with $|\psi\rangle$, but in this context we call it a density operator. (Some authors call it a density matrix, based on the understanding that quantum operators can be represented as matrices).

In the language of linear algebra, $\hat{\rho}$ is formed by the “matrix outer product” of $|\psi\rangle$ with its Hermitian conjugate. It has the following noteworthy features:

1. It is a Hermitian operator. Moreover, one eigenvalue is 1 (with eigenvector $|\psi\rangle$), and the other $d - 1$ eigenvalues are all 0 (the corresponding eigenvectors consist of $d - 1$ vectors spanning the subspace orthogonal to $|\psi\rangle$). Thus,

$$\text{All eigenvalues of } \hat{\rho} \text{ are real numbers in } [0, 1].$$

$$\text{Sum of eigenvalues of } \hat{\rho} = \text{Tr}[\hat{\rho}] = 1.$$

(2.30)

2. With the system in state $|\psi\rangle$, suppose we perform a measurement corresponding to the Hermitian operator \hat{Q}, which has eigenvalues $\{q_1, q_2, \ldots\}$ and eigenvectors $\{|q_1\rangle, |q_2\rangle, \ldots\}$. The probability for outcome q_i is $|\langle q_i|\psi\rangle|^2 = \langle q_i|\psi\rangle\langle\psi|q_i\rangle$; thus,

$$P(q_i) = \langle q_i|\hat{\rho}|q_i\rangle.$$

(2.31)

3. The expectation value of the \hat{Q} observable is $\langle Q \rangle = \sum_q q_i P(q_i)$, and after a few lines of algebra we can show that

$$\langle Q \rangle = \text{Tr}[\hat{Q} \hat{\rho}].$$

(2.32)

This is a nice expression, because the trace is a basis-independent operation, so $\langle Q \rangle$ is explicitly shown to be basis-independent.
Now, suppose again that the quantum system consists of two particles (subsystems) A and B, with Hilbert spaces \mathcal{H}_A and \mathcal{H}_B, where $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. Suppose we are interested in the physical behavior of A—specifically, the expectation values of partial measurements performed on A, the corresponding outcome probabilities, etc. These quantities can, of course, be calculated from the overall system state $|\psi\rangle$, but this might be inconvenient to deal with (e.g., if A is a relatively simple subsystem but B is large and complicated).

However, it turns out that there is a way to describe the behavior of A in its own terms. This is done by defining a reduced density operator for A:

$$\hat{\rho}_A = \text{Tr}_B[\hat{\rho}].$$ (2.33)

Here, $\text{Tr}_B[\cdots]$ refers to a partial trace, which means tracing over the \mathcal{H}_B part of the Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. The partial trace yields an operator acting on \mathcal{H}_A.

To better understand Eq. (2.33), let us work in an explicit basis. Let $\{|\mu_i\rangle\}$ be a basis for \mathcal{H}_A, and $\{|\nu_j\rangle\}$ be a basis for \mathcal{H}_B. Any given state of the combined system can be written in the tensor product basis:

$$|\psi\rangle = \sum_{ij} \psi_{ij} |\mu_i\rangle |\nu_j\rangle,$$ (2.34)

for some complex coefficients ψ_{ij}. We require $\sum_{ij} |\psi_{ij}|^2 = 1$ so that $|\psi\rangle$ is normalized to unity. The density operator of the combined system is

$$\hat{\rho} = |\psi\rangle \langle \psi| = \sum_{ij} \left(|\mu_i\rangle \langle \nu_j| \right) \psi_{ij} \psi_{ij}^* \left(\langle \mu_{i'}| \langle \nu_{j'}| \right),$$ (2.35)

The reduced density operator for subsystem A is

$$\hat{\rho}_A = \sum_j \langle \nu_j| \hat{\rho} |\nu_j\rangle = \sum_{ij} |\mu_i\rangle \rho_{ii'}^A \langle \mu_{i'}| \psi_{ij} \psi_{ij}^*,$$ (2.36)

where $\rho_{ii'}^A \equiv \sum_j \psi_{ij} \psi_{ij}^*$.

From this, we see that $\hat{\rho}_A$ is Hermitian. Moreover, if we happen to take the $\{|\mu_i\rangle\}$ basis to be the eigenbasis for $\hat{\rho}_A$, the eigenvalues are $\rho_{ii'}^A = \sum_j |\psi_{ij}|^2$. We can thus prove that:

All eigenvalues of $\hat{\rho}_A$ are real numbers in $[0,1]$.

\[\text{Sum of eigenvalues of } \hat{\rho}_A = \text{Tr}[\hat{\rho}_A] = 1. \] (2.37)

The reduced density operator contains all the information required to calculate outcome probabilities for any partial measurement performed on A. Suppose we perform a measurement on A corresponding to a Hermitian operator $\hat{\mu}$. Without loss of generality, we can choose the basis $\{|\mu_i\rangle, |\mu_2\rangle, \ldots \}$ to be the eigenvectors of $\hat{\mu}$. We claim that the probability of obtaining outcome μ_i is

$$P(\mu_i) = \langle \mu_i| \hat{\rho}_A |\mu_i\rangle = \rho_{ii}^A = \sum_j |\psi_{ij}|^2.$$ (2.38)
To prove this, recall the rules for partial measurements from Section II. The projection operator for measurement outcome μ_i is
\[
\hat{\Pi}(\mu_i) = |\mu_i\rangle \langle \mu_i| \otimes \hat{I}.
\] (2.40)

Therefore,
\[
P(\mu_i) = \langle \psi | \hat{\Pi}(\mu_i) \hat{\Pi}(\mu_i) | \psi \rangle = \langle \psi | (|\mu_i\rangle \langle \mu_i| \otimes |\nu_j\rangle \langle \nu_j|) | \psi \rangle = \sum_j \langle \mu_i | \langle \nu_j| \langle \psi | \mu_i\rangle \langle \nu_j| | \psi \rangle
\] (2.41)

It also follows that the expectation value for this measurement is
\[
\langle \mu \rangle = \text{Tr}_A \left[\hat{\mu} \hat{\rho}_A \right].
\] (2.42)

The reduced density operator’s properties (2.37), (2.38), and (2.42) are precisely the same as the original density operator’s properties (2.30), (2.31), (2.32). Hence, we deduce that these are the general properties of any density operator, reduced or not. The special class of density operators that can be written in the form $\hat{\rho} = |\psi\rangle \langle \psi|$ (i.e., in terms of an explicit quantum state, like the one we started this discussion with) are said to describe pure states. Density operators that cannot be written in such a form are said to describe mixed states.

A mixed state can also be interpreted as a probability distribution of quantum states. To see this, let us return to Eq. (2.36):
\[
\hat{\rho}_A = \sum_{i\nu_j} |\mu_i\rangle \psi_{ij} \psi_{ij}^\dagger \langle \mu_{i'}| = \sum_j |\psi_j\rangle \langle \psi_j| \text{ where } |\psi_j\rangle \equiv \sum_i \psi_{ij} |\mu_i\rangle.
\] (2.43)

However, the $|\psi_j\rangle$ vectors inside the sum are not normalized. Re-normalizing them yields the expression
\[
\hat{\rho}_A = \sum_j p_j |\Psi_j\rangle \langle \Psi_j| \text{ where } \begin{cases} p_j = \langle \psi_j | \psi_j \rangle = \sum_i |\psi_{ij}|^2 \\ |\Psi_j| = \frac{1}{\sqrt{p_j}} |\psi_j\rangle, \text{ so } \langle \Psi_j | \Psi_j \rangle = 1. \end{cases}
\] (2.44)

This is a weighted sum, where each term involves a pure state $|\Psi_j\rangle \langle \Psi_j|$ and a weight p_j. The p_j’s are real numbers between 0 and 1, and sum to unity, so they can be regarded as probabilities. We can therefore interpret $\hat{\rho}_A$ as describing an “ensemble” of different quantum systems, weighted by a set of probabilities p_j.
Although this interpretation is highly suggestive, one should not take it too seriously. For one thing, the decomposition is not unique: it is possible to express a given density operator using different weighted sums, each having a different set of probabilities. For an example, see Exercise 3. Ultimately, the information about the mixed state is encoded in the mathematical object $\hat{\rho}_A$ itself, which cannot really be simplified any further.

VI. ENTANGLEMENT ENTROPY

Previously, we said that a multi-particle system is entangled if the individual particles lack definite quantum states. It would be nice to make this statement more precise, and in fact physicists have come up with several different quantitative measures of entanglement. In this section, we will describe the most common measure, entanglement entropy, which is closely related to the entropy concept from thermodynamics, statistical mechanics, and information theory.

We have seen from the previous section that if a subsystem A is (possibly) entangled with some other subsystem B, the information required to calculate all partial measurement outcomes on A is stored within a reduced density operator $\hat{\rho}_A$. We can use this to define a quantity called the entanglement entropy of A:

$$S_A = -k_b \text{Tr}_A \{ \hat{\rho}_A \ln [\hat{\rho}_A] \}. \quad (2.45)$$

In this formula, $\ln[\cdots]$ denotes the logarithm of an operator, which is the inverse of the exponential: $\ln(\hat{P}) = \hat{Q} \Rightarrow \exp(\hat{Q}) = \hat{P}$. The prefactor k_b is Boltzmann’s constant, and ensures that S_A has the same units as thermodynamic entropy.

The definition of the entanglement entropy is based on an analogy with the entropy concept from classical thermodynamics, statistical mechanics and information theory. In those classical contexts, entropy is a quantitative measure of uncertainty (i.e., lack of information) about a system’s underlying microscopic state, or “microstate”. Suppose a system has W possible microstates that occur with probabilities $\{p_1, p_2, \ldots, p_W\}$, satisfying $\sum_i p_i = 1$. Then we define the classical entropy

$$S_{\text{cl}} = -k_b \sum_{i=1}^W p_i \ln(p_i). \quad (2.46)$$

In a situation of complete certainty where the system is known to be in a specific microstate k ($p_k = \delta_{ik}$), the formula gives $S_{\text{cl}} = 0$. (Note that $x \ln(x) \to 0$ as $x \to 0$). In a situation of complete uncertainty where all microstates are equally probable ($p_i = 1/W$), we get $S_{\text{cl}} = k_b \ln W$, the entropy of a microcanonical ensemble in statistical mechanics. For any other distribution of probabilities, it can be shown that the entropy lies between these two extremes: $0 \leq S_{\text{cl}} \leq k_b \ln W$. For a review of the properties of entropy, see Appendix C.

The concept of entanglement entropy aims to quantify the uncertainty arising from a quantum (sub)system’s lack of a definite quantum state, due to it being possibly entangled with another (sub)system. When formulating it, the key issue we need to be careful about is how to extend classical notions of probability to quantum systems. We have seen that when performing a measurement on A whose possible outcomes are $\{\mu_1, \mu_2, \ldots\}$, the probability
of getting \(\mu_i \) is \(p_i = \langle \mu_i | \hat{\rho}_A | \mu_i \rangle \). However, it is problematic to directly substitute these probabilities \(\{ p_i \} \) into the classical entropy formula, since they are basis-dependent (i.e., the set of probabilities is dependent on the choice of measurement). Eq. (2.45) bypasses this problem by using the trace, which is basis-independent.

In the special case where \(\{|\mu_i\rangle\} \) is the eigenbasis for \(\hat{\rho}_A \), the connection is easier to see. From (2.37), the eigenvalues \(\{ p_i \} \) are all real numbers between 0 and 1, and summing to unity, so they can be regarded as probabilities. Then the entanglement entropy is

\[
S_A = -k_b \sum_i \langle \mu_i | \hat{\rho}_A \ln(\hat{\rho}_A) | \mu_i \rangle = -k_b \sum_i p_i \ln(p_i).
\]

Therefore, in this particular basis the expression for the entanglement entropy is consistent with the classical definition of entropy, with the eigenvalues of \(\hat{\rho}_A \) serving as the relevant probabilities.

By analogy with the classical entropy formula (see Appendix C), the entanglement entropy has the following bounds:

\[
0 \leq S_A \leq k_b \ln(d_A),
\]

where \(d_A \) is the dimension of \(\mathcal{H}_A \).

For an unentangled system—i.e., a pure state—we can write \(\hat{\rho} = |\psi\rangle \langle \psi| \) for some state \(|\psi\rangle \). In this case, \(|\psi\rangle \) is itself an eigenstate of \(\hat{\rho} \) with eigenvalue 1, so \(S_A = 0 \). This corresponds to the lower bound of (2.48). Conversely, if we find that a system has \(S_A \neq 0 \), that implies that \(\hat{\rho}_A \) cannot be written as a pure state \(|\psi\rangle \langle \psi| \) for any \(|\psi\rangle \); hence, it must be entangled—i.e., \(\hat{\rho}_A \) must describe a mixed state.

A system is said to be maximally entangled if it saturates the upper bound of (2.48), \(S_A = k_b \ln(d_A) \). This occurs if and only if the eigenvalues of the density operator are all equal: i.e., \(p_i = 1/d_A \) for all \(i = 1, \ldots, d_A \).

As an example, consider the following state of two spin-1/2 particles:

\[
|\psi\rangle = \frac{1}{\sqrt{2}} \left(|+z\rangle |-z\rangle - |-z\rangle |+z\rangle \right).
\]

The density operator for the two-particle system is

\[
\hat{\rho}(\psi) = \frac{1}{2} \left(|+z\rangle \langle +z| - |-z\rangle \langle -z| + |+z\rangle \langle -z| + |-z\rangle \langle +z| \right).
\]

Tracing over subsystem \(B \) gives the reduced density operator

\[
\hat{\rho}_A(\psi) = \frac{1}{2} \left(|+z\rangle \langle +z| + |-z\rangle \langle -z| \right).
\]

This can be expressed as a matrix in the \(\{ |+z\rangle, |-z\rangle \} \) basis:

\[
\hat{\rho}_A(\psi) = \begin{pmatrix}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{pmatrix}.
\]

Next, we can use \(\hat{\rho}_A \) to compute the entropy of subsystem \(A \):

\[
S_A = -k_b \text{Tr} \{ \hat{\rho}_A \ln(\hat{\rho}_A) \} = -k_b \text{Tr} \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) \right) = k_b \ln(2).
\]

Hence, subsystems \(A \) and \(B \) are maximally entangled.
VII. THE MANY WORLDS INTERPRETATION

We conclude this chapter by discussing a set of compelling but controversial ideas arising from the phenomenon of quantum entanglement: the Many Worlds Interpretation as formulated by Hugh Everett (1956).

So far, when describing the phenomenon of state collapse, we have relied on the measurement postulate (see Section II), which is part of the Copenhagen Interpretation of quantum mechanics. This is how quantum mechanics is typically taught, and how physicists think about the theory when doing practical, everyday calculations.

However, the measurement postulate has two bad features:

1. It stands apart from the other postulates of quantum mechanics, for it is the only place where randomness (or “indeterminism”) creeps into quantum theory. The other postulates do not refer to probabilities. In particular, the Schrödinger equation

\[i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H}(t)|\psi(t)\rangle \]

(2.54)

is completely deterministic. If you know \(\hat{H}(t) \) and are given the state \(|\psi(t_0)\rangle \) at some time \(t_0 \), you can in principle determine \(|\psi(t)\rangle \) for all \(t \). This time-evolution consists of a smooth, non-random rotation of the state vector within its Hilbert space. A measurement process, however, has a completely different character: it causes the state vector to jump discontinuously to a randomly-selected value. It is strange that quantum theory contains two completely different ways for a state to change.

2. The measurement postulate is silent on what constitutes a measurement. Does measurement require a conscious observer? Surely not: as Einstein once exasperatedly asked, are we really expected to believe that the Moon exists only when we look at it? But if a given device interacts with a particle, what determines whether it acts via the Schrödinger equation, or performs a measurement?

The Many Worlds Interpretation seeks to resolve these problems by positing that the measurement postulate is not a fundamental postulate of quantum mechanics. Rather, what we call “measurement”, including state collapse and the apparent randomness of measurement results, is an emergent phenomenon that can be derived from the behavior of complex many-particle quantum systems obeying the Schrödinger equation. The key idea is that a measurement process can be described by applying the Schrödinger equation to a quantum system containing both the thing being measured and the measurement apparatus itself.

We can study this using a toy model formulated by Albrecht (1993). Consider a spin-1/2 particle, and an apparatus designed to measure \(S_z \). Let \(\mathcal{H}_S \) be the spin-1/2 Hilbert space (which is 2D), and \(\mathcal{H}_A \) be the Hilbert space of the apparatus (which has dimension \(d \)). We will assume that \(d \) is very large, as actual experimental apparatuses are macroscopic objects containing \(10^{23} \) or more atoms! The Hilbert space of the combined system is

\[\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_A, \]

(2.55)

and is \(2d \)-dimensional. Let us suppose the system is prepared in an initial state

\[|\psi(0)\rangle = (a_+ |+ z\rangle + a_- |- z\rangle) \otimes |\Psi\rangle, \]

(2.56)
where \(a_+ \in \mathbb{C} \) are the quantum amplitudes for the particle to be initially spin-up or spin-down, and \(|\Psi\rangle \in \mathcal{H}_A \) is the initial state of the apparatus.

The combined system now evolves via the Schrödinger equation. We aim to show that if the Hamiltonian has the form
\[
\hat{H} = \hat{S}_z \otimes \hat{V},
\]
where \(\hat{S}_z \) is the operator corresponding to the observable \(S_z \), then time evolution has an effect equivalent to the measurement of \(S_z \).

It turns out that we can show this without making any special choices for \(\hat{V} \) or \(|\Psi\rangle \). We only need \(d \gg 2 \), and for both \(\hat{V} \) and \(|\Psi\rangle \) to be “sufficiently complicated”. We choose \(|\Psi\rangle \) to be a random state vector, and choose random matrix components for the operator \(\hat{V} \). The precise generation procedures will be elaborated on later. Once we decide on \(|\Psi\rangle \) and \(\hat{V} \), we can evolve the system by solving the Schrödinger equation
\[
|\psi(t)\rangle = U(t)|\psi(0)\rangle, \text{ where } U(t) = \exp \left[-\frac{i}{\hbar}\hat{H}t \right].
\]

Because the part of \(\hat{H} \) acting on the \(\mathcal{H}_S \) subspace is \(\hat{S}_z \), the result necessarily has the following form:
\[
|\psi(t)\rangle = \hat{U}(t) \left(a_+|+z\rangle + a_-|−z\rangle \right) \otimes |\Psi\rangle
= a_+|+z\rangle \otimes |\Psi_+(t)\rangle + a_-|−z\rangle \otimes |\Psi_-(t)\rangle.
\]
Here, \(|\Psi_+(t)\rangle \) and \(|\Psi_-(t)\rangle \) are apparatus states that are “paired up” with the \(|+z\rangle\) and \(|−z\rangle\) states of the spin-1/2 subsystem. At \(t = 0 \), both \(|\Psi_+(t)\rangle \) and \(|\Psi_-(t)\rangle \) are equal to \(|\Psi\rangle \); for \(t > 0 \), they rotate into different parts of the state space \(\mathcal{H}_A \). If the dimensionality of \(\mathcal{H}_A \) is sufficiently large, and both \(\hat{V} \) and \(|\Psi\rangle \) are sufficiently complicated, we can guess (and we will verify numerically) that the two state vectors rotate into completely different parts of the state space, so that
\[
\langle \Psi_+(t)|\Psi_-(t)\rangle \approx 0 \text{ for sufficiently large } t.
\]

Once this is the case, the two terms in the above expression for \(|\psi(t)\rangle \) can be interpreted as two decoupled “worlds”. In one world, the spin has a definite value \(+\hbar/2\), and the apparatus is in a state \(|\Psi_+\rangle \) (which might describe, for instance, a macroscopically-sized physical pointer that is pointing to a “\(S_z = +\hbar/2 \)” reading). In the other world, the spin has a definite value \(-\hbar/2\), and the apparatus has a different state \(|\Psi_-\rangle \) (which might describe a physical pointer pointing to a “\(S_z = -\hbar/2 \)” reading). Importantly, the \(|\Psi_+\rangle \) and \(|\Psi_-\rangle \) states are orthogonal, so they can be rigorously distinguished from each other. The two worlds are “weighted” by \(|a_+|^2 \) and \(|a_-|^2 \), which correspond to the probabilities of the two possible measurement results.

The above description can be tested numerically. Let us use an arbitrary basis for the apparatus space \(\mathcal{H}_A \); in that basis, let the \(d \) components of the initial apparatus state vector \(|\Psi\rangle \) be random complex numbers:
\[
|\Psi\rangle = \frac{1}{\sqrt{N}} \begin{pmatrix} \Psi_0 \\ \Psi_1 \\ \vdots \\ \Psi_{d-1} \end{pmatrix}, \text{ where Re}(\Psi_j), \text{Im}(\Psi_j) \sim N(0, 1).
\]
In other words, the real and imaginary parts of each complex number Ψ_j are independently drawn from the standard normal (Gaussian) distribution, denoted by $N(0,1)$. The normalization constant \mathcal{N} is defined so that $\langle \Psi | \Psi \rangle = 1$.

Likewise, we generate the matrix elements of \hat{V} according to the following random scheme:

$$A_{ij} \sim u_{ij} + iv_{ij}, \quad \text{where } u_{ij}, v_{ij} \sim N(0,1)$$

$$\hat{V} = \frac{1}{2\sqrt{d}} \left(\hat{A} + \hat{A}^\dagger \right).$$

(2.62)

This scheme produces a $d \times d$ matrix with random components, subject to the requirement that the overall matrix be Hermitian. The normalization factor $1/2\sqrt{d}$ is relatively unimportant; it ensures that the eigenvalues of \hat{V} lie in a fixed range, $[-2,2]$, instead of scaling with d. If you are interested in learning more about the properties of such “random matrices”, see Edelman and Rao (2005).

The Schrödinger equation can now be solved numerically. The results are shown below:

In the initial state, we let $a_+ = 0.7$, so $a_- = \sqrt{1 - 0.7^2} = 0.71414\ldots$ The upper panel plots the overlap between the two apparatus states, $|\langle \Psi_+ | \Psi_- \rangle|^2$, versus t. In accordance with the preceding discussion, the overlap is unity at $t = 0$, but subsequently decreases to nearly zero. For comparison, the lower panel plots the entanglement entropy between the two subsystems, $S_A = -k_b \text{Tr}_A \{ \hat{\rho}_A \ln \hat{\rho}_A \}$, where $\hat{\rho}_A$ is the reduced density matrix obtained by tracing over the spin subspace. We find that $S_A = 0$ at $t = 0$, due to the fact that the spin and apparatus subsystems start out with definite quantum states in $|\psi(0)\rangle$. As the system evolves, the subsystems become increasingly entangled, and S_A increases up to

$$S_A^{\max} / k_B = - \left(|a_+|^2 \ln |a_+|^2 + |a_-|^2 \ln |a_-|^2 \right) \approx 0.693$$

(2.63)

This value is indicated in the figure by a horizontal dashed line, and corresponds to the result of the classical entropy formula for probabilities $\{|a_+|^2, |a_-|^2\}$. Moreover, we see that the entropy reaches S_A^{\max} at around the same time that $|\langle \Psi_+ | \Psi_- \rangle|^2$ reaches zero. This demonstrates the close relationship between “measurement” and “entanglement”.
For details about the numerical linear algebra methods used to perform the above calculation, refer to Appendix D.

The “many worlds” concept can be generalized from the above toy model to the universe as a whole. In the viewpoint of the Many Worlds Interpretation of quantum mechanics, the entire universe can be described by a mind-bogglingly complicated quantum state, evolving deterministically according to the Schrödinger equation. This evolution involves repeated “branchings” of the universal quantum state, which continuously produces more and more worlds. The classical world that we appear to inhabit is just one of a vast multitude. It is up to you to decide whether this conception of reality seems reasonable. It is essentially a matter of preference, because the Copenhagen Interpretation and the Many Worlds Interpretation have identical physical consequences, which is why they are referred to as different “interpretations” of quantum mechanics, rather than different theories.

Exercises

1. Let \mathcal{H}_A and \mathcal{H}_B denote single-particle Hilbert spaces with well-defined inner products. That is to say, for all vectors $|\mu\rangle, |\mu'\rangle, |\mu''\rangle \in \mathcal{H}_A$, that Hilbert space’s inner product satisfies the inner product axioms

 (a) $\langle \mu | \mu' \rangle = \langle \mu' | \mu \rangle^*$

 (b) $\langle \mu | \mu \rangle \in \mathbb{R}^+_0$, and $\langle \mu | \mu \rangle = 0$ if and only if $|\mu\rangle = 0$.

 (c) $\langle \mu | (|\mu'\rangle + |\mu''\rangle) = \langle \mu | \mu' \rangle + \langle \mu | \mu'' \rangle$

 (d) $\langle \mu | (c|\mu'\rangle) = c \langle \mu | \mu' \rangle$ for all $c \in \mathbb{C}$,

 and likewise for vectors from \mathcal{H}_B with that Hilbert space’s inner product.

In Section I, we defined a tensor product space $\mathcal{H}_A \otimes \mathcal{H}_B$ as the space spanned by the basis vectors $\{ |\mu_i\rangle \otimes |\nu_j\rangle \}$, where $|\mu_i\rangle$ are basis vectors for \mathcal{H}_A and $|\nu_j\rangle$ are basis vectors for \mathcal{H}_B. Prove that we can define an inner product using

$$\left(\langle \mu_i | \otimes \langle \nu_j | \right) (|\mu_p\rangle \otimes |\nu_q\rangle) \equiv \langle \mu_i | \mu_p \rangle \langle \nu_j | \nu_q \rangle = \delta_{ip} \delta_{jq} \quad (2.64)$$

which satisfies the inner product axioms.

2. Consider the density operator

$$\hat{\rho} = \frac{1}{2} |+z\rangle \langle +z| + \frac{1}{2} |+x\rangle \langle +x| \quad (2.65)$$

where $|+x\rangle = \frac{1}{\sqrt{2}} (|+z\rangle + |-z\rangle)$. This can be viewed as an equal-probability sum of two different pure states. However, the density matrix can also be written as

$$\hat{\rho} = p_1 |\psi_1\rangle \langle \psi_1| + p_2 |\psi_2\rangle \langle \psi_2| \quad (2.66)$$

where $|\psi_{1,2}\rangle$ are the eigenvectors of $\hat{\rho}$. Show that p_1 and p_2 are not 1/2.
3. Consider two distinguishable particles, A and B. The 2D Hilbert space of A is spanned by $\{|\mu\rangle, |\nu\rangle\}$, and the 3D Hilbert space of B is spanned by $\{|p\rangle, |q\rangle, |r\rangle\}$. The two-particle state is

$$|\psi\rangle = \frac{1}{3} |\mu\rangle |p\rangle + \frac{1}{\sqrt{6}} |\mu\rangle |q\rangle + \frac{1}{\sqrt{18}} |\mu\rangle |r\rangle + \frac{\sqrt{2}}{3} |\nu\rangle |p\rangle + \frac{1}{\sqrt{3}} |\nu\rangle |q\rangle + \frac{1}{3} |\nu\rangle |r\rangle. \quad (2.67)$$

Find the entanglement entropy.

Further Reading

[2] Sakurai, §3.9

