Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ Nanocomposites via a Liquid-Phase Sintering Process

Chaohua Zhang, Hongkuan Ng, Zhong Li, Khiam Aik Khor, and Qihua Xiong

1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
2College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
3School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

ABSTRACT: Minority carrier blocking through heterointerface barriers has been theoretically proposed to enhance the thermoelectric figure of merit (ZT) of bismuth telluride based nanocomposites at elevated temperatures recently (Phys. Rev. B 2016, 93, 165209). Here, to experimentally realize the minority carrier blocking, a liquid-phase sintering process enabled by excess Te is applied to the solution-processed $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ nanocomposites to introduce interfacial energy barriers. The controlling parameters in the liquid-phase sintering process such as the amount of excess Te, sintering temperature and holding time, and the Bi composition (x) are systemically tuned and investigated to fully understand the minority carrier blocking mechanism. These interface-engineering parameters are optimized for introducing maximum lattice imperfections and band-bending interfaces that are responsible for blocking the minority carrier and wide-range scattering of the phonons toward enhanced thermoelectric performance. High $ZT > 1.4$ at 375 K is realized in the $\text{Bi}_0\text{Sb}_{1.7}\text{Te}_3$ sample, which is much higher than those of the state-of-the-art commercial ingots ($ZT \sim 1$) and other solution-processed nanocomposites. The enhanced ZT at elevated temperatures is mostly due to the suppression of bipolar thermal conductivity by minority carrier blocking as well as the reduction of lattice thermal conductivity. Adapting this solution synthesis process to design favorable heterointerfaces for minority carrier blocking in the liquid-phase sintering process holds promise to further enhance the ZT values.

KEYWORDS: minority carrier blocking, liquid-phase sintering, bismuth antimony telluride, solution-processed, thermoelectrics

1. INTRODUCTION

Solid-state thermoelectric devices are silent, reliable, and scalable, making them ideal for distributed electric power generation from waste-heat and on-demand cooling of electronic components. The widespread use of thermoelectric devices in daily life is still limited by their low energy efficiency. The efficiency of thermoelectric materials can be evaluated by the dimensionless figure of merit (ZT), $ZT = (S^2/\rho \kappa)T$, where S is Seebeck coefficient, ρ resistivity, κ thermal conductivity, and T the absolute temperature. The κ is usually the sum of three contributions, which are lattice thermal conductivity (κ_l), electronic thermal conductivity (κ_e), and bipolar thermal conductivity (κ_b). Recently, various approaches such as the band-structure engineering to introduce resonant states, quantum confinement, and increasing valley degeneracy to enhance power factor ($PF = S^2/\rho$) and the nanostructuring to decrease the thermal conductivity have been proposed and demonstrated to improve the ZT values effectively. Although nanostructuring engineering was first theoretically proposed to increase the power factor by the quantum confinement effect, most of the following experiments on nanostructured bulk (nanobulk) materials had showed that the reduction of lattice thermal conductivity is the dominant effect because of the wide-frequency phonon scattering by different nanostructures and interfaces. Besides the reduction of lattice thermal conductivity, the suppression of bipolar thermal conductivity is also a potential way to enhance the ZT values, especially for applications at elevated temperatures such as for power generation by scavenging the waste heat. Actually, the bipolar carrier transport (thermally excited electron–hole pairs) is detrimental to thermoelectric performance as it decreases the Seebeck coefficient and increases the bipolar contributions to the total thermal conductivity. To block the bipolar carrier transport, some theoretical models of minority carrier blocking by the heterobarrier have been proposed recently.

Bismuth telluride based materials (like p-type $\text{Bi}_x\text{Sb}_{2-x}\text{Te}_3$ and n-type Bi_3Te_5) are the best commercialized thermo-
electric materials for electric power generation and refrigeration in the near room-temperature region.1,17 Commercial bismuth telluride based ingots are produced by high-temperature solid-solution-alloying method, and their ZT values can reach up to 1.0 with appropriate composition and doping levels.17 Recently the enhancement of the ZT values of bismuth telluride based materials, especially the p-type Bi$_{0.5}$Sb$_{1.5}$Te$_3$, is mainly realized by various nanostructuring approaches11,18–20 that are effective in the reduction of lattice thermal conductivity. Usually, to achieve nanobulk materials, nanostructured powders are first prepared and then sintered to bulk samples. Nanostructured powders can be prepared by top-down methods using bulk ingot as starting materials or bottom-up approaches starting from chemical precursors. Nanostructured p-type Bi$_{0.5}$Sb$_{1.5}$Te$_3$ materials with ZT > 1.4 in the near room-temperature region have been achieved by top-down approaches like ball milling followed by hot pressing51 and melt spinning combined with spark plasma sintering (SPS).20 Compared with top-down methods, bottom-up approaches like chemical solution synthesis are other types of facile and non-energy-intensive ways to achieve nanostructured powders.21 Although there are many reports on the thermoelectric properties of bottom-up solution-processed bismuth telluride based samples,22–34 most of them usually have much lower power factor ($<$1.8 × 10$^{-3}$ W m$^{-1}$ K$^{-2}$) at room temperature, even though the lattice thermal conductivity is indeed greatly reduced. This limits any further enhancement of their ZT values. Reducing the lattice thermal conductivity without compromising much of the power factor is still a challenge for further improving the ZT values in bottom-up solution-processed samples.

Recently, p-type Bi$_{0.5}$Sb$_{1.5}$Te$_3$ with a higher ZT of 1.86 ± 0.15 at 320 K is realized by modified melt spinning followed by the SPS method, where excess tellurium enabled the liquid-phase sintering (LPS) process.19 By introducing the LPS process to bottom-up solution-processed samples, we have achieved p-type Bi$_{0.5}$Sb$_{1.5}$Te$_3$ bulk samples with nanoscale grains (from 1 nm to 20 nm) and other nanostructured interfaces.29 These nanobulk samples have ZT of 1.59 ± 0.16 at 370 K,35 which are much higher than those of solution-processed samples previously reported.22,26,31,33,34,36–38 Unlike dense dislocation arrays at grain boundaries in melt-spun samples, our solution-processed samples show composition-segregated phases between the boundaries,35 which can serve as interfaces for phonon scattering and most importantly the heterobarrier for blocking minority carrier. LPS is a process where solid grains meet wetting liquid phase in the sintering conditions.39 In the LPS process, controlling the starting solid–liquid ratio as well as the following grain coalescence and arrangements is especially important for the interface engineering. Other processing parameters such as sintering temperature and holding time and the grain sizes of starting powders can also influence the LPS process.39 In the LPS process of solution-processed samples, the interfaces between grains can be well developed to scatter more phonons and minority carrier but less majority carrier, which is favorable for improving the ZT values. To make full use of this strategy, systemic understanding on the tuning of thermoelectric performance by the LPS process is essential to further improve the ZT values.

Here, we have studied the optimization of the LPS process for enhancing the ZT values of the solution-processed p-type Bi$_{0.5}$Sb$_{2−x}$Te$_3$ (especially Bi$_{0.5}$Sb$_{1.5}$Te$_3$) nanobulk samples. The excess tellurium (Te) is introduced in the chemical solution-synthesis process to enable the LPS process. To understand the LPS process, the excess amount of Te, sintering temperature, sintering time, grain sizes, and composition are systemically studied. The band bending mechanism at the grain interfaces can be introduced to understand the phonon and electron scattering between the interfaces, especially the minority carrier blocking. Optimized LPS conditions are crucial for reducing the lattice thermal conductivity and suppressing bipolar thermal conductivity while maintaining the power factor of solution-processed Bi$_{0.5}$Sb$_{2−x}$Te$_3$ nanocomposites. With the important enhancement in ZT by the LPS process, solution-processed bismuth telluride based nanocomposites show great promise for their widespread use in thermoelectric devices.

2. EXPERIMENTAL SECTION

2.1. Solution Chemical Synthesis and Spark-Plasma Sintering. In the chemical synthesis of 4 mmol of Bi$_{0.5}$Sb$_{2−x}$Te$_3$ (x = 0, 0.2, 0.4, 0.5, 0.6) with 25% excess Te, 4x mmol of bismuth acetate (Bi(OOCCH$_3$)$_3$), 4(2 − x) mmol of antimony acetate (Sb(OOCCH$_3$)$_3$), 15 mmol of potassium telluride monohydrate (K$_2$TeO$_3$), 40 mmol of potassium hydroxide (KOH), and 0.4 g of polyvinylpyrrolidone (PVP, average M$_L$ ~ 55,000) were dispersed in 160 mL of diethylene glycol (DEG) solvent with the aid of sonication. Then 0.4 g of l-cysteine was added to the solution as reducing agent. The mixed solution was transferred to a 250 mL flask.
with a condenser for refluxing and heated at the boiling temperature of DEG (∼240 °C) for 3 h. To achieve other excess amounts (y%, y = 0, 6, 12.5, 50) of Te, the amount of potassium telluride monohydrate was set to 12(1 + y%) mmol. After synthesis, the as-prepared products were washed and centrifuged in acetone and isopropyl alcohol for several cycles and finally dried in a dry cabinet at room temperature. Then the powders were sintered to bulk disk samples using a spark-plasma sintering (SPS) system (Dr. Sinter 1050, Sumitomo Coal Mining, Japan) under the pressure of 60 MPa in vacuum (4–6 Pa), with the application of tunable temperatures (400, 460, 480 °C) and holding time (3, 4, 6 min). The densities of the bulk disk samples were measured by the Archimedes method, which were about 86%–91% of the commercial ingot samples.

2.2. Sample Characterizations. X-ray diffraction (XRD, Bruker D8) with Cu Kα radiation and scanning electron microscopy (SEM, JEOL 7100F) were carried out to investigate the structures and morphology of the as-synthesized and sintered samples. The sintered bulk samples were cut to bar shapes, and their thermoelectric...
properties (S, ρ, κ, and ZT) were characterized by the physical properties measurement system (PPMS, Quantum Design) equipped with thermal transport option, using single-timed mode (the fixed period set at each testing temperature was long enough to meet the requirement of steady-state measurement). The S, ρ, κ, and ZT are measured along the same direction, using the same bar-shape sample. The details of thermal transport measurement can be found in the Supporting Information or elsewhere.

3. RESULTS AND DISCUSSION

3.1. Morphology and Structure Characterization. The solution-synthesized Bi$_{0.5}$Sb$_{1.5}$Te$_3$ samples are usually hexagonal or truncated-edge hexagonal disc morphologies, while the excess Te usually appears as a wire shape, as reported in our previous results.

As a representative, the morphology of as-synthesized Bi$_{0.5}$Sb$_{1.5}$Te$_3$ with 50% excess Te is displayed in Figure 1a, which reveals the typical Bi$_{0.5}$Sb$_{1.5}$Te$_3$ nanoplates and Te nanowires. As demonstrated by XRD patterns in Figure 1b,c, the corresponding Te phase is noticeably shown in the as-synthesized powder with excess Te added in the solution synthesis. The Bi$_{0.5}$Sb$_{1.5}$Te$_3$ phase is nearly the same no matter whether the excess Te is added or not. During the SPS process, the excess Te in the powders is liquefied with other eutectic mixtures and can be expelled out under the high-pressure conditions, as proved in our previous experiment and Kim et al.’s work.

The nanoscale grains are revealed in the sintered bulk samples, as presented in our previous results (Figure S1).

As shown in Figure 1b,c, the sintered pellets all reveal the single Bi$_{0.5}$Sb$_{1.5}$Te$_3$ phase for both the samples with and without excess Te in the powders. However, compared with the powder samples, the pellets have preferred (006), (0015), and (0018) peaks, indicating that the alignment and reorientation of those nanoplates occurred under such sintering conditions. As revealed in Figures S2 and S3, the positions of the XRD peaks in sintered Bi$_{0.5}$Sb$_{1.5}$Te$_3$ pellets are nearly independent of the amount of excess Te, sintering temperature, and holding time. By tuning the compositions of Bi$_{0.5}$Sb$_{1.5}$Te$_3$, the positions of XRD peaks can be gradually shifted (Figure S4), which is the same as previous reports.

3.2. Excess Te Dependence. Figure 2 shows the temperature-dependent thermoelectric properties of solution-processed nanobulk Bi$_{0.5}$Sb$_{1.5}$Te$_3$ samples with different amounts of excess Te added in the chemical synthesis process, revealing that the parameters S, ρ, PF, κ, κ_p, and ZT do vary with the amount of excess Te. As shown in Figure 2a, the S increases with the temperature without reaching the maximum in the region 10–375 K for most samples except the sample without added excess Te, which has a maximum value of \sim246 μV K$^{-1}$ at 350 K. The S value at 300 K can vary from 192 to 224 μV K$^{-1}$, whose variation is mainly ascribed to the variation of carrier density ($n \sim 1.13 \times 1.55 \times 10^{19}$ cm$^{-3}$, confirmed by Hall measurement) depending on the amount of excess Te added in the synthesis process, as demonstrated by the carrier density dependent S (Pisarenko plot at 300 K) in Figure 3a. The relationship between S and n can be described by

$$S = \frac{2k_B^2T}{3\hbar^2} \left(\frac{\pi}{3n} \right)^{2/3} m^*(1 + r)$$

where k_B is the Boltzmann constant; e is the elementary charge; \hbar is the reduced Planck constant; m^* is the effective mass of the carrier; and r is the scattering parameter ($r = 0$ for acoustic phonon scattering, which is used for the fitting of our experiments). The solid curve in Figure 3a represents the plot of eq 1 with $m^* = 0.58 m_e$, where m_e is the electron mass. The solid curve fits our data well except for the sample-12.5% which has a larger deviation from the fitting line.

The ρ of all samples increases with the temperature, revealing the heavily doped degenerate semiconducting behavior, as shown in Figure 2b. In the entire temperature region, the ρ in the sample without excess Te is noticeably higher than those in the samples with excess Te added in the synthesis process. At 300 K, the ρ varies from 1.42 to 1.82×10^{-5} Ωm for different amount of excess Te (from 6% to 50%), while the ρ in the sample without excess Te can be as high as 2.63×10^{-5} Ωm. As the ρ is dependent on the carrier density n and mobility μ with the relationship $1/\rho = n\mu$, the excess Te dependence of μ at 300 K can be calculated as shown in Figure 3b. The μ at 300 K of the sample without adding excess Te is \sim210 cm2 V$^{-1}$ s$^{-1}$, which is lower than that of the sample with adding excess Te, varying from 242 to 289 cm2 V$^{-1}$ s$^{-1}$. As displayed in Figure 2c, the PF is nearly independent of temperature, exhibiting a peak around 275 K. Compared with the sample without adding excess Te ($PF \sim 1.9 \times 10^{-3}$ W m$^{-1}$ K$^{-2}$ at 300 K), the PF values of the samples with adding excess Te have been significantly improved ($PF \sim 2.1–3.0 \times 10^{-3}$ W m$^{-1}$ K$^{-2}$ at 300 K).

In the total thermal conductivity $\kappa = \kappa_l + \kappa_m + \kappa_f$, the κ_l is calculated by the Wiedemann–Franz law $\kappa_l = LT/\rho$, where the Lorenz number L is estimated using an approximation equation $L = 1.5 \times \exp(\pm 116)$ for degenerated semiconductors (where L is in units 10^{-8} W Ω K$^{-2}$ and S in μV K$^{-1}$). As the κ_f from the thermally generated electron–hole pair is only significant at the high-temperature region, the κ_f is usually estimated by subtracting the κ_l from κ as $\kappa = \kappa_l$; though the κ_{fi} is still included in the calculated κ. Theoretically, the κ_l can be expressed as a sum of contributions from different-frequency phonons and written as

$$\kappa_l = \int \kappa_l(\omega)\omega d\omega = \int \frac{1}{3} C_s(\omega)v(\omega)l(\omega)d\omega$$

where $\kappa_l(\omega)$, $C_s(\omega)$, $v(\omega)$, and $l(\omega)$ are the spectral lattice total conductivity, specific heat capacity, phonon-group velocity, and phonon mean free path, respectively. As shown in Figure 2d, the κ_l first increases at low temperature (<50 K) and then starts to decrease with temperature up to \sim300 K. At higher temperature (>300 K), the κ_l of most of the samples starts to stop decreasing with temperature, except that the κ_l of the sample-25% continues to decrease with temperature. As displayed in Figure 2e, the increase of κ_l in the low-temperature region (<50 K) is mainly ascribed to the Debye θD law of the heat capacity, while the decrease of κ_l is due to the dominated phonon–phonon scattering (Umklapp process) when the temperature is sufficiently high. At higher temperatures (>300 K), the κ_{fi} starts to contribute to the increase of κ_l, leading to the increase of calculated κ_l.

Compare with commercial Bi$_{0.5}$Sb$_{1.5}$Te$_3$ ingots with $\kappa_l \sim 0.8–0.9$ W m$^{-1}$ K$^{-1}$ at 300 K, our solution-processed Bi$_{0.5}$Sb$_{1.5}$Te$_3$ nanobulk samples have much lower κ_l ranging from 0.36 to 0.56 W m$^{-1}$ K$^{-1}$ at 300 K, especially the sample-25%, as shown in Figure 3b. What’s more, the suppression of κ_{fi} is quite significant in the sample-25% compared with other samples, as shown in Figures 2e and 3c.d. As the theoretical κ_l exhibits a $1/T$ temperature dependence due to the Umklapp
process at the high-temperature region, the bipolar contribution is evaluated by subtracting the linearly 1/T fitting data from the experimental $\kappa - \kappa_{\text{irr}}$ as displayed in Figure 3c. The approach that we adopted to determine the bipolar thermal conductivity has also been widely used in the previous literature.$^{33-35}$ For the sample-0%, the κ_{irr} becomes noticeable from 300 K and starts to increase with the temperature (Figure 3c,d, Figure S5). However, the sample-25% still agrees well with the 1/T fit even up to 375 K, indicating the great suppression of κ_{irr} at the high-temperature region. Adding excess Te is quite effective to reduce the κ_{irr} and the optimized amount of excess Te is crucial to realize the outstanding reduction of κ and κ_{irr} (Figure 3b, 3d, Figure S5). The minimum κ can reach to \sim0.23 W m$^{-1}$ K$^{-1}$ at 375 K for the sample-25%, which is lower than the reported values of Bi$_{0.5}$Sb$_{1.5}$Te$_3$ with dense dislocations (\sim0.33 W m$^{-1}$ K$^{-1}$ at 320 K)19 and other solution-processed samples (\sim0.29 W m$^{-1}$ K$^{-1}$ at 300 K).34

Figure 2f reveals the temperature dependence of ZT values for the samples with different amounts of excess Te. The sample-0% and sample-50% have a similar ZT performance, showing ZT peaks of 0.94 and 0.97 at 350 K, respectively, which are close to the value of commercial ingots \sim1.5 The ZT values of sample-6% and sample-12.5% are improved compared with sample-0%, reaching to 1.14 and 1.22 at 370 K, respectively. Although the sample-25% does not have the highest carrier mobility, the great reduction of κ and suppression of κ_{irr} make the sample-25% exhibit the best TE performance, especially at high temperatures ($>$300 K). The ZT of sample-25% can reach up to 1.48 at 375 K, which is much higher compared with other reported solution-processed Bi$_{0.5}$Sb$_{1.5}$Te$_3$ samples.2,26,31,33,34

3.3. Band Bending at the Boundary

As shown in Figure 4a, the band bending structure at the boundaries is proposed to understand the excess Te dependence of thermoelectric performance. The local electrostatic force built in the interfaces because of the enrichment or the void of charge densities will lead to the band bending at the interfaces, which has also been proposed to enhance the thermoelectric performance.46 Without excess Te to enable the LPS process, the void of hole carrier at the solid–solid connection boundary can lead to the downward band bending at the interfaces, which will scatter the majority hole carrier more significantly than that of the minority electron carrier, especially those low-energy holes. This kind of energy filtering effect for scattering low-energy majority carriers has been widely proposed to enhance the Seebeck coefficients.$^{47-50}$ However, the energy filtering effect can also lead to the decrease of carrier density and mobility,51,52 which agrees well with our observation (Figure 3a,b). Thus, this kind of downward band bending is not conducive to improve the hole-carrier mobility and suppress the bipolar transport, which agrees well with the lowest μ at 300 K and high κ_{irr} for sample-0% (Figure 3b and 3d). In contrast, with the excess Te to enable the LPS process at high SPS-sintering temperature (460 °C, larger than \sim420 °C, the eutectic temperature of the mixture of Bi$_{0.5}$Sb$_{1.5}$Te$_3$ and Te), as presented in the phase diagram in Figure 4b), liquid Te with other eutectic phases exists between solid grains, which facilitates the grain coarsening and rearrangement. After the liquid Te and other eutectic phases are expelled during high-pressure sintering, the trace of liquid phase between solid grains can be found in the Sb-rich region, as observed in our previous samples by transmission electron microscopy.35 For p-type Bi$_{0.5}$Sb$_{1.5}$Te$_3$ samples, the hole-carrier density increases when the amount of Sb increases, which can be proved in our previous results51 as discussed below. The composition of matrix agrees well with the nominal composition of Bi$_{0.5}$Sb$_{1.5}$Te$_3$, though the segregated Sb-rich region exists in the nanoscale boundaries.35 The hole-carrier-rich phase (Sb-rich region) between the grain boundaries can lead to the upward band bending at the boundaries, based on the alignment of the final Fermi level in the matrix. As shown in Figure 4a, the built-in energy barrier (ΔE) by the upward band bending will not scatter the transport of hole carrier much, but it will greatly suppress the transport of thermally excited minority carrier electrons (especially the low-energy electrons). Compared with sample-0%, the higher carrier mobility of the samples with excess Te added (from 6% to 50%) benefits from this upward band bending besides the good grain rearrangement enabled by the LPS process. However, to reduce the κ_{irr} and suppress κ_{irr} ultimately, the interface contacting areas or interface densities between the grains and the Sb-rich region at the boundaries need to be optimized to the maximum for intensively scattering phonons.
and minority electrons. An optimized ratio of liquid phase versus solid grains in the LPS process is the key to achieve the largest band-bending interfaces. As shown in the phase diagram of Bi$_{0.5}$Sb$_{1.5}$Te$_3$−Te (Figure 4b) by applying the lever rule, the amount of liquid phase will increase with the amount of excess Te added in the synthesis process. Thus, an optimized amount of excess Te for maximizing the interface densities between the solid Bi$_{0.5}$Sb$_{1.5}$Te$_3$ phase and Te-rich liquid phase is expired for minimizing the κ_l and suppressing κ_{bi}, as observed in the sample-25% under our experimental conditions.

Introducing a designed energy barrier to prevent the transport of minority carrier without affecting the transport of majority carrier has also been theoretically proposed recently to drastically enhance the ZT value. The κ_{bi} is usually estimated with the T and bipolar transport bandgap E_{g}^b, using the following exponential relation

$$\kappa_{bi} \propto \exp\left(\frac{-E_{g}^b}{2\kappa_0 T}\right)$$

which indicates that the κ_{bi} exponentially increases with the temperature. Near the intrinsic regime ($n \approx p$), the bandgap of bipolar transport is equal to the bandgap of semiconductors E_{g}^b. At high doping levels, the κ_{bi} can also be dependent on the carrier concentration (related to energy difference between the Fermi level E_F and the valence band edge E_v for hole carrier, $E_g - E_v$) besides the bandgap. The potential barrier (E_b) at boundaries can also serve as a blocking barrier for minority carriers. As shown in Figure 4, the built-in barrier ΔE for the transport of the minority electron carrier through the boundaries is dependent on three parameters, E_F, $E_g - E_v$, and E_b. Besides the sufficiently high barrier ΔE, much longer barrier width (w) between the boundaries is also important to ensure the minority carriers to be blocked without tunneling. Thus, besides the amount of excess Te, the sintering temperature and holding time and the composition are also tuned to systemically understand the band bending at the interfaces by the LPS process, as to be discussed below.

3.4. Sintering Temperature and Holding Time.

Figure 5 shows the temperature dependence of thermoelectric properties (S, ρ, PF, κ, κ_l, and ZT) of solution-processed nanobulk Bi$_{0.5}$Sb$_{1.5}$Te$_3$ samples with different sintering temperatures and holding time (the amount of excess Te is set to 25%). As shown in Figure 5a, the S values are nearly the same as each other in the temperature region 10−375 K for the samples prepared with the same sintering temperature (460 °C) but different holding durations (3, 4, and 6 min), which is in good agreement with their nearly the same hole-carrier concentration as revealed in Figure 5g. As shown in Figure 5b, the resistivity decreases as the holding time increases from 3 min to 4 and 6 min (sintering temperature set at 460 °C), which can be understood by the increase of the carrier mobility. As shown in Figure 6c, the κ_l decreases as the holding time increases from 3 min to 4 and 6 min (sintering temperature set at 460 °C), which can be understood by the increase of the carrier mobility. As shown in Figure 6c, the κ_l decreases as the holding time increases from 3 min to 4 and 6 min (sintering temperature set at 460 °C), which can be understood by the increase of the carrier mobility.
increasing the temperature (from 400, 460, to 480 °C, with holding time set at 3 min), the S and n have a bit of variation as revealed in Figure 5a and 5g ($n \sim 1.18$--1.42×10^{19} cm$^{-3}$, $S \sim 196$--$209 \ \mu V \ K^{-1}$ at 300 K), while the resistivity ρ decreases as shown in Figure 5b (corresponding ρ at 300 K is 2.04, 1.82, and $1.71 \times 10^{-5} \ \Omega$ m, respectively), which can be ascribed to the increase of the μ (Figure 5i, corresponding μ is 231, 242, and $310 \ \text{cm}^2 \ \text{V}^{-1} \ \text{s}^{-1}$ at 300 K, respectively). The PF values show noticeable dependence on the SPS temperature and holding time, which reveals that higher sintering temperature and longer holding time are favorable for achieving high PF (Figure 5c).

Besides the μ, the κ_l, κ_h, and κ_{hi} also show significant dependence on the sintering temperature and holding time, as shown in Figure 5d–e, Figure 5g–h, and Figure 5i. The same as the μ, the κ_l, κ_h, and κ_{hi} increase as the holding time increases from 3 to 6 min (temperature set at 460 °C). Generally speaking, with longer sintering time, grain coarsening, rearrangement, and composition, relaxation will last much longer, which will reduce the densities of lattice and composition imperfections and the barrier width (ω) as well. The reduction of lattice and interfaces defects will decrease the scattering of phonons, which increases the κ_l. As shown in Figure 4a, the tunneling transport of minority carriers will increase as the barrier width shortens, which increases the κ_{hi}. On the other hand, although the μ increases with the temperature from 400 to 480 °C (holding time set at 3 min), the κ_l, κ_h, and κ_{hi} have an extraordinary minimum at 460 °C.

Based on the phase diagram Bi$_{x}$Sb$_{1.5}$Te$_{3}$--Te systems (Figure 4b), increasing the temperature can also increase the ratio of liquid phase to solid grains in the LPS process the same as the increase of excess Te amount as discussed in Figures 2 and 3. To achieve the optimized ratio of liquid phase versus solid grains, an optimized temperature is preferred for reducing the κ_l and κ_{hi} as much as possible. To achieve a higher ZT value, a higher μ/κ_l (quality factor) is desirable. Although the samples with the highest sintering temperature (sample-480 °C 3 min) and longest holding time (sample-460 °C 6 min) have much higher PF (Figure 5c) and μ (Figure 5i), their κ_l, κ_h, and κ_{hi} are also much higher, which limits their ZT value to be still around 1.0 like the commercial Bi$_{0.5}$Sb$_{1.5}$Te$_{3}$ ingot from 300 to 375 K (Figure 5f). The much higher κ_{hi} for sample-480 °C 3 min leads to the decrease of ZT at the high-temperature region (>325 K) with a ZT peak of 0.94 at 325 K. The sample-460 °C 3 min has the lowest κ_l, κ_h, and κ_{hi} and moderate μ, which makes the quality factor μ/κ_l quite high for enhanced ZT values.

Besides the excess amount of Te and sintering temperature as two thermodynamic parameters in the phase diagrams, the sizes of nanoplates in the starting powders as a kinetic parameter can influence the thermoelectric performance as well (Figure S7). Nanobulk samples using much smaller nanoplates show unsuppressed bipolar thermal conductivity in the high-temperature region, as shown in Figure S7, which is similar to those samples having more excess Te (50%) or higher sintering temperature (480 °C) discussed above, indicating the effect of nanoplate size on the solid–liquid ratio as well. In the LPS
process, smaller grains usually have higher diffusion rate which makes them much easier to be liquefied or dissolved in the liquid,\(^1\) increasing the liquid fraction. Thus, optimal thermodynamic and kinetic parameters are especially important to suppress the bipolar thermal conductivity for enhancing ZT values.

3.5. Composition Tuning in Bi\(_x\)Sb\(_{2−x}\)Te\(_3\)

As revealed in Figure 4a, the potential barrier (\(\Delta E\)) for minority carrier blocking can be reduced when the Fermi level is lifted up, relating to the reduction of carrier density. The carrier density can be adjusted by tuning the composition in Bi\(_{x}\)Sb\(_{2−x}\)Te\(_3\) samples. Although the composition tuning of Bi\(_{x}\)Sb\(_{2−x}\)Te\(_3\) has been widely investigated in solid-solution-derived ingots,\(^7\) the composition dependence of thermoelectric properties (\(S, \rho, PF, \kappa, \kappa_t\) and ZT) of solution-processed nanobulk Bi\(_{x}\)Sb\(_{2−x}\)Te\(_3\) samples is important to understand the LPS process for minority carrier blocking (the amount of excess Te is set to 25\%), and sintering condition is 460 °C 3 min), as shown in Figure 6. The \(S\) increases as the composition Bi \((x)\) increases from 0 to 0.6 through all the temperature regions from 10 to 375 K (Figure 6a), which is mostly attributed to the decrease of carrier density (Figure 6g). The maximum value of Bi\(_{0.7}\)Sb\(_{1.3}\)Te\(_3\) can reach 254 \(\mu V\) K\(^−1\) at 350 K. As shown in Figure 6b, the \(\rho\) also increases as the composition Bi \((x)\) increases, which is ascribed to the decrease of carrier density (Figure 6g) and \(\mu\) (Figure 6i, though the \(\mu\) of Bi\(_{0.5}\)Sb\(_{1.5}\)Te\(_3\) is exceptionally a bit lower than that of Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\)). The PF of Bi\(_{x}\)Sb\(_{2−x}\)Te\(_3\) shows similar temperature dependence except that the PF peak of Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\) shifts to lower temperature (Figure 6c). As the composition Bi \((x)\) increases, the reduction of the \(\kappa\) and \(\kappa_t\) is quite clear, especially in the low-temperature region (Figure 6d,e). The peak of \(\kappa\) is reduced from 6.30 W m\(^−1\) K\(^−1\) in Sb\(_2\)Te\(_3\) at 30 K to 1.45 W m\(^−1\) K\(^−1\) in Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\) at 50 K (Figure 6d), while the corresponding peak of \(\kappa_t\) is reduced from 4.72 W m\(^−1\) K\(^−1\) in Sb\(_2\)Te\(_3\) at 20 K to 1.19 W m\(^−1\) K\(^−1\) in Bi\(_{0.5}\)Sb\(_{1.5}\)Te\(_3\) at 30 K (Figure 6f). All the \(\kappa_t\) of the Bi\(_{x}\)Sb\(_{2−x}\)Te\(_3\) samples with Bi \((x)\) ≤ 0.5 still decrease with temperature in the high-temperature region (>300 K), indicating the great suppression of \(\kappa_t\) as revealed in Figure 6f and Figure S8. As the Bi \((x)\) increases to 0.6, the great reduction of hole-carrier density lifts the Fermi level and decreases the block barrier for minority electron transport. Therefore, \(\kappa_t\) starts to contribute to the increase of \(\kappa\) from 350 K in Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\), which leads to the decrease of ZT in Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\) having a peak \(\sim 1.16\) at 350 K (Figure 6f). In the lower-temperature region \(T < 300\) K, the Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\) has the best thermoelectric performance (Figure 6f), making it more attractive for low-temperature thermoelectric cooling. For other Bi\(_{x}\)Sb\(_{2−x}\)Te\(_3\) samples with Bi \((x)\) ≤ 0.5, the ZT increases with temperature, and the magnitude of ZT at each temperature increases with Bi \((x)\), as shown in Figure 6f. It can be seen in Figure 6i that the \(\mu\) and \(\kappa_t\) show similar composition dependence behavior (first decrease with Bi \((x)\) and then increase with Bi \((x)\), having a lowest value at Bi \((x) = 0.5\)), which can be ascribed to scattering of hole carriers and phonons by the variation of lattice in the lattice.

4. CONCLUSION

In conclusion, the experimental parameters such as the amount of excess Te, sintering temperature, holding time, nanoplate sizes, and composition Bi \((x)\) are systematically tuned to reveal the underlying mechanism of liquid-phase-sintering (LPS) process for enhancing the thermoelectric performance of solution-processed p-type bismuth antimony telluride based nanocomposites. The carrier mobility is enhanced by introducing the LPS process, which can be ascribed to the reduction of carrier scattering between grains by the grain coalescing and rearrangement. The composition-segregated region as the trace left after LPS provides an energy barrier between different grains, which blocks the transport of minority carrier but without affecting much of the transport of majority hole carrier. Besides the suppression of bipolar thermal conductivity, the trace left after LPS also provides a large number of lattice defects and boundary interfaces for the wide-range scattering of phonons, which greatly reduces the lattice thermal conductivity. However, to make full use of the LPS process for improving the ZT as much as possible, an optimized amount of excess Te and sintering temperature and holding time are required to maximize the interfaces densities between solid grains and liquid-phase trace-left region, which will reduce the lattice and bipolar thermal conductivity as low as possible. Moreover, the bipolar thermal conductivity can also be greatly suppressed by increasing the carrier densities, which increases the potential barrier for blocking the transport of minority carriers. In the optimized LPS condition (25\% excess Te, 460 °C 3 min), the Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\) nanobulk sample has an extremely low lattice thermal conductivity \(\sim 0.23\) W m\(^−1\) K\(^−1\) and enhanced ZT value \(\sim 1.48\) at 375 K, making our solution-chemistry derived Bi\(_{0.6}\)Sb\(_{1.4}\)Te\(_3\) samples very attractive for low-temperature power generation. By tuning the composition, the Bi\(_{0.5}\)Sb\(_{1.5}\)Te\(_3\) sample is found to have better performance in the low-temperature region (<300 K) because of lower carrier density, which is attractive for thermoelectric cooling. Further understanding and designing the band-bending interfaces between grains holds great promise for developing high thermoelectric solution-processed nanobulk samples for both the thermoelectric power generation and cooling.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b01473.

Thermoelectric transport measurements, data and error analysis, and microstructural analysis of the composite (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: qihua@ntu.edu.sg.

ORCID

Qihua Xiong: 0000-0002-2555-4363

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Q.X. gratefully thanks Singapore National Research Foundation via a Fellowship grant (NRF-RF2009-06) and an Investigatorship award (NRF-NRFI2015-03), Ministry of Education via an AcRF Tier2 grant (MOE2012-T2-2-086), and Nanyang Technological University via a start-up grant support (MS8110061).

REFERENCES

