Due to its subwavelength field confinement and low propagation loss, designer surface plasmon holds considerable promise in microwave- to infrared- frequencies device applications. Here, we propose and experimentally demonstrate various novel wave manipulations of designer surface plasmon in microwave frequency range. First, we propose a surface-wave band-gap crystal implemented on a single metal surface which exhibits a complete band gap for surface waves. Surface waves can be tightly guided along the line defect and near-perfect transmission around multiple sharp corners can be achieved over a broad frequency band. Second, we realize the forward/backward switching of plasmonic waves propagation using sign-reversal coupling. By directly measuring the tight-binding Bloch waves on a periodic array of coupled designer surface plasmon resonators in the microwave regime, we demonstrate multi-band forward/backward switching of plasmonic wave propagation. Finally, a mechanically flexible photonic topological insulator that supports robust topological photonic states on a curved surface is experimentally demonstrated. Spatial topologies achieved by folding the flexible photonic topological insulator serve as a new freedom to manipulate the propagation of topological photonic states. This work bridges the gap between the emerging field of topological photonics and the technologically promising field of flexible photonics.

Date: 30 October 2017
Time: 10.00 AM
Venue: Conference Room, SPMS Level 2
Supervisor: Assoc Prof Zhang Baile