Error analysis of discontinuous Galerkin methods for time-dependent Maxwell equations

Ziqing Xie, Bo Wang, Zhimin Zhang
College of Mathematics and Computer Science
Hunan Normal University, Changsha, Hunan 410081, China
Key Laboratory of High Performance Computing and Stochastic Information Processing
Ministry of Education of China

Abstract. A semi-discrete DG method for the numerical approximation of time-dependent Maxwell equations in three different dispersive media is introduced. Both the L^2-stability and error estimates of the DG method are discussed in detail. We show that the proposed method has an accuracy of $O(h^{k+\frac{1}{2}})$ under the L^2-norm when polynomials of degree k in space are used. Further, we introduce and analyze a fully discrete discontinuous Galerkin method for solving time-dependent Maxwell equations. Distinguished from the RKDG and FETD methods, the discontinuous finite element method is used for the discretization of temporal domain. Both L^2-stability and an error estimate of order $O((\Delta t)^{k+1} + h^{k+1/2})$ are proved under the standard finite element framework. Compared with FETD method, we obtain a high order error estimate in temporal domain.

Keywords: Discontinuous Galerkin method; Maxwell equations; Dispersive media; Plasma; Debye medium; Lorentz medium