Computational Scenario Testing of Infectious Diseases

Siew Ann CHEONG
Acknowledgments

- **Competitive breeding between *Aedes* and *Culex***
 - Hui Rong Amanda TEO (NTU)
 - Choon Siang TANG (NEA)
- **Human-vector interaction**
 - Whei Yeap SUEN (NTU)
- **Viral integration into *Aedes* genome**
 - Michael Kia Liang THAN (NTU)
- **Evolutionary model of dengue epidemics**
 - Dr Khoa TD THAI (Amsterdam Medical Center)
 - David HALIM (NTU)
Competitive Breeding Between *Aedes* and *Culex*
Competitive Breeding Between Aedes and Culex
Competitive Breeding Between Aedes and Culex
Competitive Breeding Between *Aedes* and *Culex*

<table>
<thead>
<tr>
<th>Density</th>
<th>2%</th>
<th>3%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>0.0%</td>
<td>5.0%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Straight line</td>
<td>33.3%</td>
<td>47.5%</td>
<td>80.0%</td>
</tr>
<tr>
<td>Three branch</td>
<td>23.3%</td>
<td>43.3%</td>
<td>60.0%</td>
</tr>
<tr>
<td>Closed loop</td>
<td>23.3%</td>
<td>33.3%</td>
<td>43.3%</td>
</tr>
<tr>
<td>Four branch</td>
<td>13.3%</td>
<td>26.7%</td>
<td>36.7%</td>
</tr>
</tbody>
</table>
Competitive Breeding Between *Aedes* and *Culex*

<table>
<thead>
<tr>
<th>Density</th>
<th>2%</th>
<th>3%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>0.0%</td>
<td>5.0%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Straight line</td>
<td>33.3%</td>
<td>47.5%</td>
<td>80.0%</td>
</tr>
<tr>
<td>Three branch</td>
<td>23.3%</td>
<td>43.3%</td>
<td>60.0%</td>
</tr>
<tr>
<td>Closed loop</td>
<td>23.3%</td>
<td>33.3%</td>
<td>43.3%</td>
</tr>
<tr>
<td>Four branch</td>
<td>13.3%</td>
<td>26.7%</td>
<td>36.7%</td>
</tr>
</tbody>
</table>
Competitive Breeding Between *Aedes* and *Culex*

<table>
<thead>
<tr>
<th>Density</th>
<th>2%</th>
<th>3%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>0.0%</td>
<td>5.0%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Straight line</td>
<td>33.3%</td>
<td>47.5%</td>
<td>80.0%</td>
</tr>
<tr>
<td>Three branch</td>
<td>23.3%</td>
<td>43.3%</td>
<td>60.0%</td>
</tr>
<tr>
<td>Closed loop</td>
<td>23.3%</td>
<td>33.3%</td>
<td>43.3%</td>
</tr>
<tr>
<td>Four branch</td>
<td>13.3%</td>
<td>26.7%</td>
<td>36.7%</td>
</tr>
</tbody>
</table>
Human-Vector Interaction

- 10 × 10 km² town = 1024 × 1024 grid
- 100 humans + 5000 mosquitoes
- Slower mosquito, 0 < q < 1
- Same cross-infection probability \(ip \)
- Epidemiological models
 - Susceptible-Infected (SI)
 - Susceptible-Infected-Recovered (SIR)
 - Susceptible-Subclinical-Infected-Recovered (SsIR)
Human-Vector Interaction

SI Epidemic
Human-Vector Interaction

SIR/SsIR Epidemic
Human-Vector Interaction

- Partially completed
 - Structured human mobility
 - Infection rate increases 10–100 times

- To start soon
 - 80% subclinical, 20% clinical
 - Quarantine
 - Social distancing
Viral Integration into Mosquito Genome

- **Facts**
 - DENV
 - Endemic strain
 - DENV vectors
 - *Aedes aegypti* & *Aedes albopictus*
 - Habitat segregation
 - Low rate of vertical transmission

- **Puzzle**
 - Long inter-epidemic periods
 - Dengue should be extinct!
Viral Integration into Mosquito Genome

Facts
- Viral integration into host genome

Scenario
- DENV integrated into *Aedes albopictus* genome
- Temperature-driven release (*El Nino?*)
- *Aedes albopictus* seeds epidemic
- *Aedes aegypti* spreads epidemic
Viral Integration into Mosquito Genome

- Coupled SIR Model

![Diagram showing the coupled SIR model for A. aegypti, humans, and A. albopictus with nodes S2, I2, S1, I1, R1, I3, and arrows indicating the flow between compartments.]
Viral Integration into Mosquito Genome

Future plans

- Periodic driving
 - *Aedes albopictus* population
 - *Aedes albopictus* infectivity

- Spatial extension
 - Urban *Aedes aegypti*
 - Rural *Aedes albopictus*
DENV Evolution & Epidemiology

- Exciting interface between evolution and epidemiology
 - Advances in phylogenetic techniques
 - Growing interest in past decade
- DENV evolution
 - Accelerated during epidemic
 - Ecological competition between strains
DENV Evolution & Epidemiology

infectivity → infection probability

severity → virus copy number
DENV Evolution & Epidemiology

- Simulate $N = 10,000$ sequences
 - SIR dynamics for each sequence
 - Fitness driven substitution
 - Point mutations
- Each sequence consists of
 - E subsequence
 - Different infectivity
 - $NS1$ subsequence
 - Different reproductive rate
The Next Step…

- Complete present studies
 - Compare with empirical data
- Collaborations with regional partners
 - Modeling + simulation to understand clinical data
 - Test experimentally inaccessible scenarios
Thank You!

Contact Information

Siew Ann CHEONG
Assistant Professor
Division of Physics and Applied Physics
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link, Singapore 637371
Tel: +65-6513-8084
Fax: +65-6795-7981
Email: cheongsa@ntu.edu.sg
Competitive Breeding Between *Aedes* and *Culex*
Competitive Breeding Between *Aedes* and *Culex*