Equal Graph Partitioning of an Estimated Infection Network

CHEONG Siew Ann
cheongsa@ntu.edu.sg
http://www1.spms.ntu.edu.sg/~cheongsa/
Motivation

• Social impact of severe respiratory diseases
 – Spanish Flu (1918)
 • 50-100 million deaths
 • 8273 cases worldwide
 • 775 deaths
 – H5N1 (2005)
 • Pandemic warned
 – H1N1 (2009)
 • 1.6 million cases worldwide
 • 14,378 deaths
Motivation

• Economic impact of severe respiratory diseases
 • Singapore Airlines
 – S$4.13B revenue in 2002
 – S$2.87B revenue in 2003
 • Singapore economy
 – −3% GDP in 2003
 – H1N1 (2009)
 • Economic cost being estimated
Epidemiology

• Biology (10%?)
 – Viral pathogen
 – Target cells lining respiratory tract
 – Viral particles re-emitted in bodily fluid droplets
 – Latent phase (~3 days)
 • Already contagious
 – Infected phase (~7 days)
 • Symptomatic vs asymptomatic
 – Self-limiting through immunological response
 • Immunity period (~1 year) determined by evolution rate of virus
Epidemiology

- Sociology (90%?)
 - Social proximity necessary
 - Inhalation of viral particles
 - High population density
 - Low mixing rates of subpopulations
 - SIR framework does not apply
 - Complex social interactions
 - Co-workers, classmates, social activities
 - Buses, trains, planes, ships
 - Shopping, dining, leisure gatherings
Network Approach

• Contact tracing
 – H1N1 (2009)

• Infection network estimation
 – Surveys (Xiao, NTU)
 • Manual, partial
 • No anonymous social interactions
 – Cellular phone collocation (Marathe, Virginia Tech)
 • Automatic, total?
 • Inadequate spatial resolution
 • Biological barriers to infection
Our Idea

• Common cold vs rare severe respiratory diseases
 – Biologically very similar
 – Sociologically nearly identical
 – Identical or very similar infection network

• Use common cold incidences to estimate network
 – No-intervention benchmark
 – One epidemic every 2-3 months
Proof of Principle

• **Database of incidences**
 – Does not exist for common cold
 – Generate from artificial social network
 – Censor data

• **Network estimation**
 – Tentative links weaken with time
 – Real links reinforced periodically

• **Network intervention**
 – Equal graph partitioning
Artificial Social Network

• Jin, Girvan & Newman, 2001
 – Saturation
 • \(k(i) \leq k_{\text{max}} \) for all nodes \(i \)
 – Link formation
 • Randomly select \(i \) and \(j \)
 • If \(k(i), k(j) < k_{\text{max}} \), form link with probability \(P_0 \), if \(i \) and \(j \) have no mutual neighbors
 • Else form link with probability \(P_1 > P_0 \)
 – Link deletion
 • Randomly select \(i \)
 • Delete one random neighbor of \(i \) with probability \(Q \)
$N = 1000$
$<k> = 3$
$P_0 = 0.10$
$P_1 = 0.40$
$Q = 0.552$
SIR Epidemics

• Epidemic
 – At $t = 0$, all nodes susceptible (S)
 – At $t = 1$, one random node infected (I)
 – At each $t > 1$, susceptible neighbors of infected nodes infected with probability p
 – Each infected node recovers (R) after $t_R = 1$ time step

• Censorship
 – List of infected nodes at each t
 – Only fraction $f < 1$ used for estimation
 • Simulate low level of reporting
\[N = 1000 \]
\[\langle k \rangle = 3 \]
\[p = 0.8 \]
Network Estimation

• **Link Formation**
 – Tentative link
 • between *ALL* reported nodes at time step t and *ALL* reported nodes at time step $t - 1$
 • Weight $w = 1$

• **Link Reinforcement**
 – Over S epidemics
 • False links formed once or twice
 • Real links formed $O(S)$ times

• **Link Elimination**
 – Weights of *ALL* links decay at constant rate
 • Help keep background of false links low
$S = 100$
$f = 0.3$

- Not estimated
- Correct
- Wrong

backbone of infection network
Network Intervention

• Nested Dissection (Lipton, 1979)
 – Efficient solution of sparse linear systems

• Equal Graph Partitioning (Chen, 2008)
 – Efficient immunization of completely mapped complex network

• Our question
 – Will EGP be effective:
 • Partially mapped network?
 • Errors in mapped network?
 • Epidemic in progress?
Equal Graph Partitioning
quarantine healthy individuals!
Systematic Study

- **Estimation accuracy vs**
 - Number of estimated links
 - \(N = 10k; \langle k \rangle = 10; c = 0.05 \)
 - Censor rate \((1 - f)\)
 - \(N = 10k; \langle k \rangle = 10; c = 0.05 \)
 - Number of epidemics \(S \)
 - \(N = 10k; \langle k \rangle = 10; c = 0.05 \)
 - Network sizes
 - \(N = 1k, 10k, 100k; \langle k \rangle = 10; c = 0.05 \)
 - Average degree \(\langle k \rangle \)
 - \(N = 10k; \langle k \rangle = 10, 20; c = 0.05 \)
Number of Estimated Links

\[N = 10k \]
\[<k> = 10 \]
\[c = 0.05 \]
\[S = 100 \]
Visit to GP cheap in Singapore = low censor rate

Visit to GP expensive in US = high censor rate

\[N = 10k \]
\[\langle k \rangle = 10 \]
\[c = 0.05 \]
\[S = 100 \]

> 90\%, all false links?
Number of Epidemics

\[N = 10k \]
\[<k> = 10 \]
\[c = 0.05 \]
Network Sizes

- 100 Estimated Links
- 1000 Estimated Links

Accuracy (%) vs. Network Size
Average Degree

\[N = 10k \]
\[\langle k \rangle = 10, 20 \]
\[c = 0.05 \]
\[S = 100 \]

Comparison of Estimation Accuracy
(10k Network, 100 SIR, 100 Estimated Links)
Depressing?

• Low accuracy for high censor rate
• Every order of magnitude increase in N
 – Accuracy halves
• Doubling of $<k>$
 – Accuracy quarters
• How to reliably estimate $N = 10^6$ network?
 – Encourage self reporting through online portal
 – $<k>$ finite even in large cities
 – Combine information from cellular phone collocation
Pre-Epidemic EGP Intervention

surprisingly effective!

16.6% of 10,000 estimated links correct

estimated links concentrated along backbones of infection network
In-Progress EGP Intervention
Conclusions

• Estimation of infection network through censored incidence data alone
 – SIR epidemics on artificial social network
 – Decay-reinforcement link estimation
• Infection network partially estimated
 – Asymptotic perfect accuracy possible
 – Accuracy decreases with increasing N and $<k>$
• EGP intervention surprisingly effective
 – Concentration of estimated links along infection backbone
 – Effective even when applied late into epidemic
Acknowledgments

• Jeremy HADIDJOJO
• Undergraduate Research Experience on Campus (URECA) Programme
Thank You!