Enantioselective reactions catalyzed by metal complexes of chiral ligands is an important aspect of Organic Chemistry. Towards this end, a wide variety of metal complexes of non-racemic ligands have been discovered in order to access enantioenriched products in high optical purity. One of such discoveries is the use of non-racemic PYBOX as ligands in association with a variety of metals in asymmetric transformations. In 1996, we incorporated a gem-diphenyl groups at C5-position of oxazoline core (we termed as PYBOX-diPh) and, since then, we found it superior over PYBOX in many enantioselective transformations. In this talk, I will discuss our results in this direction.

Figure: PYBOX and PYBOX-diPh ligands.

CBC SEMINAR ANNOUNCEMENT

Dr Vinod Kumar Singh
Indian Institute of Science Education and Research Bhopal

Enantioselective Reactions Using PYBOX-diPh Ligands

Enantioselective reactions catalyzed by metal complexes of chiral ligands is an important aspect of Organic Chemistry. Towards this end, a wide variety of metal complexes of non-racemic ligands have been discovered in order to access enantioenriched products in high optical purity. One of such discoveries is the use of non-racemic PYBOX as ligands in association with a variety of metals in asymmetric transformations. In 1996, we incorporated a gem-diphenyl groups at C5-position of oxazoline core (we termed as PYBOX-diPh) and, since then, we found it superior over PYBOX in many enantioselective transformations. In this talk, I will discuss our results in this direction.

Figure: PYBOX and PYBOX-diPh ligands.

CBC SEMINAR ANNOUNCEMENT

Dr Vinod Kumar Singh
Indian Institute of Science Education and Research Bhopal

Enantioselective Reactions Using PYBOX-diPh Ligands

Enantioselective reactions catalyzed by metal complexes of chiral ligands is an important aspect of Organic Chemistry. Towards this end, a wide variety of metal complexes of non-racemic ligands have been discovered in order to access enantioenriched products in high optical purity. One of such discoveries is the use of non-racemic PYBOX as ligands in association with a variety of metals in asymmetric transformations. In 1996, we incorporated a gem-diphenyl groups at C5-position of oxazoline core (we termed as PYBOX-diPh) and, since then, we found it superior over PYBOX in many enantioselective transformations. In this talk, I will discuss our results in this direction.

Figure: PYBOX and PYBOX-diPh ligands.

CBC SEMINAR ANNOUNCEMENT

Dr Vinod Kumar Singh
Indian Institute of Science Education and Research Bhopal

Enantioselective Reactions Using PYBOX-diPh Ligands

Enantioselective reactions catalyzed by metal complexes of chiral ligands is an important aspect of Organic Chemistry. Towards this end, a wide variety of metal complexes of non-racemic ligands have been discovered in order to access enantioenriched products in high optical purity. One of such discoveries is the use of non-racemic PYBOX as ligands in association with a variety of metals in asymmetric transformations. In 1996, we incorporated a gem-diphenyl groups at C5-position of oxazoline core (we termed as PYBOX-diPh) and, since then, we found it superior over PYBOX in many enantioselective transformations. In this talk, I will discuss our results in this direction.

Figure: PYBOX and PYBOX-diPh ligands.

CBC SEMINAR ANNOUNCEMENT

Dr Vinod Kumar Singh
Indian Institute of Science Education and Research Bhopal

Enantioselective Reactions Using PYBOX-diPh Ligands

Enantioselective reactions catalyzed by metal complexes of chiral ligands is an important aspect of Organic Chemistry. Towards this end, a wide variety of metal complexes of non-racemic ligands have been discovered in order to access enantioenriched products in high optical purity. One of such discoveries is the use of non-racemic PYBOX as ligands in association with a variety of metals in asymmetric transformations. In 1996, we incorporated a gem-diphenyl groups at C5-position of oxazoline core (we termed as PYBOX-diPh) and, since then, we found it superior over PYBOX in many enantioselective transformations. In this talk, I will discuss our results in this direction.

Figure: PYBOX and PYBOX-diPh ligands.