Significance: An efficient chiral phosphoric acid catalyzed α-aminoxylation of enecarbamates is described. Zhong and co-workers proposed a selective O-addition pathway in the presence of an electron-withdrawing carbamate group and the desired products were obtained in high enantioselectivities and good yields. The authors also showed the synthetic utility of this procedure; protected β-amino alcohols and cis-oxazolidinone were obtained successfully.

Comment: Enantioselective α-aminoxylation reactions have been used for the synthesis of α-hydroxy carbonyl compounds, which are important components in natural products and pharmaceuticals. However, the substrate scopes of this reaction can be narrow, and especially in the case of linear ketones, low reactivity and selectivity were observed (Y. Hayashi, J. Yamaguchi, T. Sumiya, K. Hibino, M. Shoji *J. Org. Chem.* 2004, 69, 5966). Herein, the authors developed a highly enantioselective α-aminoxylation of enecarbamates, representing an activated ketone nucleophile in the presence of a phosphoric acid catalyst.