Interaction between two laser-induced cavitation bubbles
in a quasi-two dimensional geometry

PEDRO A. QUINTO-SU AND CLAUS-DIETER OHL

School of Physical and Mathematical Sciences,
Division of Physics and Applied Physics,
Nanyang Technological University, 21 Nanyang Link, Singapore 637371

(Received 13 May 2009)

We report on experimental and numerical studies of pairs of cavitation bubbles growing and collapsing close to each other in a narrow gap. The bubbles are generated with a pulsed and focused laser in a liquid filled gap of 15µm height; their lifetime is shorter than 14 µs during which they expand to a maximum radius of up to $R_{\text{max}} = 38$ µm. Their motion is recorded with high-speed photography at up to 500,000 frames per second. The separation at which equally sized bubbles are created, d, is varied from $d = 46 - 140$ µm which results into a non-dimensional stand-off distance, $\gamma = d/(2R_{\text{max}})$, from 0.65 to 2. For large separation the bubbles shrink almost radially symmetric; for smaller separation the bubbles repulse each other during expansion and during collapse move towards each other. At closer distances we find a flattening of the proximal bubbles walls. Interestingly, due to the short lifetime of the bubbles (≤ 14 µs), the radial and centroidal motion can be modeled successfully with a 2-dimensional potential flow ansatz, i.e. neglecting viscosity. We derive the equations for arbitrary configurations of 2-dimensional bubbles. The good agreement between model and experiments supports that the fluid dynamics is essentially a potential flow for the experimental conditions of this study. The interaction
force (secondary Bjerknes force) is long ranged, dropping off only with $1/d$ as compared to previously studied 3-dimensional geometries where the force is proportional to $1/d^2$.

1. Introduction

The attraction and repulsion of oscillating objects in an inviscid fluid has been studied for more than a century (Basset 1887). In general, attraction between objects occurs when they oscillate in phase and repulsion for out-of-phase oscillations (Lamb 1932). Of particular interest is the case of a single bubble positioned at a distance $d/2$ away from the boundary. For a rigid boundary this is identical to two equally sized bubbles being d apart and oscillating in phase. The bubble is attracted towards the boundary. Vice versa for a pressure release boundary the bubble is repelled.

The mutual force generated between oscillating objects have been named secondary Bjerknes forces after C. A. Bjerknes and his son V. Bjerknes (Bjerknes 1906, 1915; Leighton 1994).† Numerous theoretical and experimental studies, for example Crum (1975); Luther et al. (2000); Harkin et al. (2001); Doinikov (2004); Illinskii et al. (2007), have confirmed this general picture and detailed the models to account for viscous and close range effects. On the experimental side bubbles can be brought into oscillatory motion with a resonant sound field or by transiently releasing energy. In most of the previous work, oscillating bubbles were studied using axisymmetry or three-dimensional geometry. Interestingly, only recently the two-dimensional potential flow has re-gained broader interest. Wang (2004) and Crowdy et al. (2007) used conformal mapping to solve the flow of two circular discs and planar stirrers, respectively, and Nair & Kanso (2007) used a

† In contrast the primary Bjerknes force is due to the direct interaction between an oscillating body and the sound field.
Interaction between two laser-induced bubbles in a quasi-two dimensional geometry

Lagrangian approach to describe the coupling of one oscillating and one rigid object. To our knowledge, very few experiments have been reported demonstrating the interaction of two-dimensional bubbles: Zwaan et al. (2007) demonstrated that a single bubble oscillating in a narrow gap can be described for short times with a two-dimensional potential flow and the classical work by Dear et al. (1988) on the collapse of two-dimensional cavities. Yet, the authors are unaware of previous work comparing two-dimensional oscillating and interacting objects with a two-dimensional model. However, two-dimensional models have been successfully used to describe the collapse of cylindrical voids in liquids and soft sand (Oguz & Prosperetti 1993; Lohse et al. 2004; Bergmann et al. 2006). The bubbles reported here are created with focused laser light shaped using a spatial light modulator (SLM). This newly developed technique (Quinto-Su et al. 2008) allows for arbitrary bubble configurations, in particular it allows to modify the geometry and size of the bubbles by changing the pattern of the computer controlled SLM. In this way it is easy to tune the interaction between the bubbles going from a weakly to a strongly interacting regime.

This work is organized as follows: First we describe the experimental setup used to create the bubbles using a digital hologram. Then we present experimental results for bubble expanding and collapsing at different separations in a narrow gap. In Section 4 we show the applicability of the two dimensional model for the experimental configurations, in particular we first derive the equations of motion for the radial and the translational motion and compare them with the experimental data.

2. Experimental Setup

In this section we describe the experimental setup used to create the bubble pairs using a single laser pulse to create a pair of foci at the focal plane of a microscope objective.
The bubbles are the result of the explosive vaporization of the liquid following stress confinement (see references in Quinto-Su et al. (2008)). The experimental setup (Quinto-Su et al. 2008) is shown in figure 1a and consists of a laser, optics for beam shaping, a microscope, and a high-speed camera. The laser to generate the bubbles is a frequency doubled Nd:YAG (Orion, New Wave Research, Fremont, CA) with a 6ns pulse duration. The beam shaping is done with a half-wave plate to rotate the plane of polarization and a telescope consisting of lenses L_1 and L_2 to expand it. Then the beam is reflected from a spatial light modulator (SLM) that changes its phase. A digital hologram is projected onto the SLM, so that the spatial profile of the reflected laser pulse after being focused is related to the hologram through a Fourier transformation. To remove the undiffracted zeroth order a lens phase is added to the hologram. A third lens (L_3) images the SLM onto the back aperture of the microscope objective (20x, NA=0.75) of the inverted microscope (Olympus IX-71, Singapore). With the appropriate hologram a pair of foci are created at the focal plane of the microscope objective. The sample is illuminated with the microscope lamp from the top and the bubble dynamics is recorded with a high-speed camera (Photron SA1.1, Bucks, U.K.) at 450,000 to 500,000 frames per second (fps). Motion blurring is mostly avoided by limiting the exposure time for each frame to 300ns. The two dimensional narrow gap is made with two spacers with a height of 15μm which are sandwiched between a couple of microscope coverslips (#1, 130-170 μm thickness). The gap is filled with magenta ink (MAXTEC universal ink refill, Kowloon, HongKong) to obtain stress confinement and still transmit sufficient light to record the events at the short exposure times. We measured the density and the viscosity of the water based ink. The density is $\rho = 1046 \pm 1$ kg/m3 and the kinematic viscosity at 25$^\circ$C is $\nu = (1.98 \pm 0.4) \times 10^{-6}$ m2/s. In the experiment the intense illumination will considerably heat up the light absorbing ink, still below the boiling point. Thus we expect a decrease
Interaction between two laser-induced bubbles in a quasi-two dimensional geometry

(a) Experimental setup; the phase of the laser pulse is altered by the SLM, which is imaged onto the back aperture of the microscope objective. A pair of foci is created in the focal plane of the microscope objective which is located inside the liquid gap (15 \(\mu\)m in height). (b) Bubble geometry. The positions of the bubbles (radii \(R_1\) and \(R_2\)) have their centers at \(r_{01}\) and \(r_{02}\) and translate with velocities \(U_1\) and \(U_2\).

Geometry of the bubble pair

Figure 1b shows the configuration of the bubble pair with radii \(R_1\) and \(R_2\). The vectors to the center of each bubble are \(r_{01}\) and \(r_{02}\) and their translational velocities are \(U_1 = \dot{r}_{01}\) and \(U_2\). The distance between them is \(d = r_{12}\). Further we make use of the unit vectors \(n_{12} = (r_2 - r_1)/|r_2 - r_1|\) and \(n_{21} = -n_{12}\). Also, we can describe the positions relative to the center of each bubble using the vectors \(r_1\) and \(r_2\) respectively.

3. Experimental Results

In this section we show first the dynamics of equally sized bubble pairs created at three different distances spanning the range from weak to strong interactions. To specify the interaction we make use of the non-dimensional standoff distance \(\gamma = d/(2R_{max})\) which
for the experiments shown varies from $\gamma = 0.65$ to $\gamma = 2$. In addition, we also present one case showing two bubbles of unequal sizes. The next four figures (figure 2 to 5) are arranged in the following way: The left panel shows the high-speed recordings and the right panels from top to bottom the bubble radii and distances as a function of time, respectively. For the left panel, the circles (o) depict the position of the laser foci where the bubbles are created and the asterisks (*) their center of mass. Time zero is defined when the bubble is created, i.e. the laser pulse arrives at the liquid. Each data point in the right panels corresponds to one experimental frame from the left panel. The solid lines on each plot are a fit to a two-dimensional potential flow model, see Section 4.

Weak interaction, $\gamma = 2$

Figure 2 shows two bubbles created at a distance of 140 μm (circles in first frame). Their maximum radii R_{max} are about 35 μm. The bubble centers have moved 5 μm away from each other during the time of bubble generation and the first recorded frame. During the shrinkage or collapse of the bubbles attraction is found. They move approximately 20 μm towards each other. In all but the last frame the bubbles remain cylindrical. In the last frame the outward edges of the bubbles appear blurred, this is due to the formation of fast counter-propagating jets (Naudé & Ellis 1961).

Intermediate interaction, $\gamma = 1.3$

In figure 3 the bubbles are created 93 μm apart. Here, we see again an initial displacement of the bubbles centers during the expansion which is slightly larger than for the previous case. During collapse the total change in distance between the bubbles d is now 35 μm, thus 75% higher than before. Also, we observe a slight deformation of the proximal bubble walls. Again, in the last frame the distal bubble walls of the shrinking
bubbles are blurred due to the jet flows.

Strong interaction, \(\gamma = 0.65 \)

Figure 4 shows a bubble pair created at a distance of 46 \(\mu m \). The bubbles repel during the first 4 \(\mu s \). Although the distal bubble walls remain cylindrical the proximal walls flatten severely forming a straight channel in between. The thickness of this channel decreases, yet coalescence does not occur for this initial separation. Equivalent radii of these deformed bubbles are obtained by measuring the area; the center of each bubble is taken as their center of mass. The total reduction in the distance between the bubbles is more than 40 \(\mu m \), almost covering the entire initial separation between the bubbles. In the last frame the two counter-propagating jets become vaguely visible.

Bubbles with unequal sizes

Figure 5 shows two bubbles of different size; the digital hologram is adjusted so that one of the spots created at the focus of the microscope objective receives less laser energy, thus leading to a smaller bubble. The initial distance between them is 70 \(\mu m \). Only four data points are given for the distance because of the early collapse of the smaller bubble. During the lifetime of the smaller bubble the larger bubble moves considerably less than the smaller one. The smaller bubble collapses first and jets towards the larger bubble which is starting to collapse in the 4th frame of figure 5. It is worth mentioning the pointed shape of the large bubble towards the left in the last frame.

4. Two dimensional potential flow model

We now model the flow in the *center* of the channel to derive equations for the radial and translational dynamics of arbitrary bubble configurations. The time needed for
Figure 2. a) Two equally sized bubbles created at a distance of 137.5 µm. The framing speed is 450,000 fps and the frame width is 256 µm. b) Symbols showing the measured radii as a function of time for each bubble. c) Distance between the bubbles centers as a function of time. The solid lines in (b) and (c) are solutions of the two-dimensional potential model.

Figure 3. a) Two equally sized bubbles created at a distance of 93 µm. The framing speed is 450,000 fps and the frame width is 256 µm. for (b) and (c) see figure 2.
vorticity to diffuse from the boundaries to the center of the channel is approximated by the time for the displacement thickness to reach to the channel’s center \(\tau = \frac{y^2}{1.72^2 \nu} \), where \(\nu \) is the viscosity and \(y \) is half the height of the liquid gap (Batchelor 1967). Thus, for these very brief times, \(t < \tau \), the flow in the channels center is not affected by the no-slip boundary conditions as it is decoupled from the boundary layers; this allows to decompose the flow in a flow at the channel’s center and a flow at the boundaries. The latter is a viscosity dominated boundary layer flow whereas the central flow is basically irrotational. Thus the flow in the center of the channel can be modeled for sufficiently short times with a velocity potential \(\phi = \phi(r, t < \tau) \) which satisfies the Laplace equation \(\nabla^2 \phi = 0 \). Inserting the estimated viscosity of the liquid \(\nu \approx 1 \times 10^{-6} \text{m}^2/\text{s} \) (see Section2)
Figure 5. a) Two bubbles created at a distance of 70 µm. The framing speed is 500,000 fps and the frame width is 128 µm. The last frame depicts on the left the remains from smaller bubble after its first collapse. This data is excluded from the graphs. For (b) and (c) see figure 2.

and the channel height of $y = 7.5$ µm we obtain $\tau < 19$ µs. The online supplementary material presents the dynamics for bubbles of different sizes, there we see that for larger bubbles with a lifetime τ of more than 18 µs, it is not possible to ignore the boundary layer. The consequence is as expected, large bubbles will be affected by viscosity and can’t be modeled with the potential model derived below.

Viscous effects can be introduced through the viscous stresses at the bubble interface. This however, can be safely ignored for low viscosity liquids used in this experiment for most of the bubble dynamics, in particular for the inertia dominated expansion and collapse phase studied here (Hilgenfeldt et al. 1998). Further we want to mention that due to the high Reynolds numbers the advection terms in the Navier-Stokes equation can’t be ignored, thus a Hele-Shaw modeling approach is ruled out (Batchelor 1967).
Interaction between two laser-induced bubbles in a quasi-two dimensional geometry

4.1. Velocity potential

The derivation of a solution of the Laplace equation is analogous to Lagrangian formalism presented by Illinskii et al. (2007). There, it has been applied to derive equations of motion for arbitrary configurations of N oscillating spherical bubbles. Following their method now in two dimensions we obtain $2N$ coupled ordinary differential equations for the bubble radius and its position.

First considering a single bubble labeled i: at the surface of this bubble the fluid velocity is equal to the radial velocity added to the bubble’s translational velocity; thus the boundary condition (BC) for the single bubble potential ϕ_0 is

$$\left. \frac{\partial \phi_0}{\partial r_i} \right|_{r_i = R_i} = \dot{R}_i + \mathbf{U}_i \cdot \mathbf{n}_i,$$

where \dot{R}_i is the radial velocity, \mathbf{U}_i the translational velocity and \mathbf{n}_i is the surface normal.

Following the ansatz (Luther et al. 2000; Illinskii et al. 2007) the potential can be split into a monopole and dipole term $\phi(\mathbf{r}_i)_0 = a \log(r_i/R_\infty)+\frac{b}{r_i}$. Here, R_∞ is a normalization constant for the argument of the logarithmic term and is later identified as the distance at which the velocity drops to zero, i.e. to limit the kinetic energy of the system (Lohse et al. 2004; Zwaan et al. 2007). We obtain the functions a and b by implementing the BC (4.1), thus the single bubble potential reads:

$$\phi_0(\mathbf{r}_i) = R_i \dot{R}_i \log \left(\frac{r_i}{R_\infty} \right) - \frac{R_i^2 \mathbf{U}_i \cdot \mathbf{n}_i}{r_i}.$$

(4.2)

To construct the potential for N interacting bubbles we sum over all potentials (Illinskii et al. 2007) $\phi(\mathbf{r}_i) = \sum_i \phi_0(\mathbf{r}_i) = \phi_0(\mathbf{r}_i) + \sum_{i \neq k} \phi_0(\mathbf{r}_k)$ and write it as a Taylor series to first order:

$$\phi(\mathbf{r}_i) = \phi_0(\mathbf{r}_i) + \sum_{k \neq i} \phi_0(\mathbf{r}_k + \mathbf{r}_i) = \phi_0(\mathbf{r}_i) + \sum_{k \neq i} [\phi_0(\mathbf{r}_k) + \mathbf{c}_k \cdot \mathbf{r}_i \ldots].$$

(4.3)
where \(r_{ki} = r_{0i} - r_{0k} \), and
\[
c_{ki} = \left. \frac{\partial \phi_{0k}(r_k)}{\partial r_k} \right|_{r_k=r_{ki}} = \frac{R_k R_k}{r_{ki}} n_{ki} - \frac{R_k^2}{r_{ki}} [U_k - 2(U_k \cdot n_{ki}) n_{ki}] \quad (4.4)
\]

To satisfy the BC (4.1) corrections are needed to cancel the terms \(c_{ki} \cdot n_i \) in (4.3). This can be achieved by adding \(\phi_1(r_i) = \frac{\partial^2}{\partial r_i} c_{ki} \cdot n_i \) to the right side of equation (4.3). The potential now reads \(\phi(r_i) = \phi_{0i}(r_i) + \phi_1(r_i) + \sum_{k \neq i} [\phi_{0k}(r_{ki}) + c_{ki} \cdot r_i + \phi_{1k}(r_{ki})] \).

The kinetic energy of the liquid \(K \) can be expressed as
\[
K = \frac{\rho}{2} \int_S |\nabla \phi|^2 dS = -\frac{\rho}{2} \sum_i \int_{l_i} \phi \frac{\partial \phi}{\partial r_i} dl_i,
\]
where \(S \) is the surface over whole liquid domain, and \(l_i \) are the contours of the cylindrical bubbles. Implementing the BC (4.1) the kinetic energy becomes \(K = -\frac{\rho}{2} \sum_i \int_{l_i} (\dot{R}_i + U_i \cdot n_i) \phi dl_i \). To calculate the kinetic energy, the potential on the surface of the \(i \)th bubble has to be evaluated. For the Lagrangian we need additionally the potential energy \(V \) in two dimensions, thus \(V = \int p dS \). Here, we neglect the gas and vapor pressure inside the bubble and also surface tension. Then, the potential energy simplifies to \(V = \sum_i \pi R_i^2 p_0 \), where \(p_0 \) is the ambient pressure.

4.2. Lagrangian Equation

Combining the kinetic energy \(K \) and the potential energy \(V \) we obtain the Lagrangian
\[
L = \sum_i \frac{1}{2} \frac{1}{2} \rho U_i^2 - \sum_{i,k,i \neq k} R_i R_k \dot{R}_i \dot{R}_k \pi \rho \log \left(\frac{R_i r_{ik}}{R_{\infty}} \right) \\
+ \sum_{i,k,i \neq k} \frac{R_i R_k}{r_{ik}} \left[R_i R_k (U_i \cdot n_k) + R_k R_i (U_k \cdot n_i) \right] - \sum_i \pi R_i^2 p_0. \quad (4.5)
\]

The equations of motion for the system are derived from the Lagrangian Equations; thus for the radial dynamics \(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{R}_i} \right) = \frac{\partial L}{\partial R_i} \) and \(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{R}_i} \right) = \frac{\partial L}{\partial \dot{R}_i} \) for the translational dynamics.
Interaction between two laser-induced bubbles in a quasi-two dimensional geometry

4.3. Equations of motion for bubble radii

From the Lagrangian we obtain the following equation:

\[
(\ddot{R}_i R_i + \dot{R}_i^2) \log \left(\frac{R_i}{R_\infty} \right) + \frac{\dot{R}_i^2}{2} = \frac{p}{\rho} - \frac{U_i^2}{2} - \sum_{k \neq i} (\dddot{R}_k R_k + \ddot{R}_k^2) \log \left(\frac{r_{ik}}{R_\infty} \right) \tag{4.6}
\]

This is a two dimensional Rayleigh equation (Rayleigh 1917) for a single bubble in two dimensions with additional pressure terms on the right side. The second term on the R.H.S. of (4.6) \(U_i^2\) is a dynamic pressure reduction of the moving bubble and the last on the R.H.S. of (4.6) is the imposed pressure from neighboring bubbles. This term couples the radial with the translational motion. Please note that for the derivation of (4.6) terms of the order \(O(r_{ik}^{-1})\) are neglected as those are much smaller than the dominant \(\log(r_{ik}/R_\infty)\).

4.4. Equations of motion for bubble position

The equation of motion for the bubble position is

\[
\ddot{r}_{0i} = -\frac{2\dot{R}_i U_i}{R_i} + \sum_{k \neq i} \frac{n_{ki}(R_k \dddot{R}_k + \ddot{R}_k^2)}{r_{ki}}. \tag{4.7}
\]

The second term of (4.7) is due to the interaction with all other bubbles \(k \neq i\), thus it is related to the secondary Bjerknes force. It scales as \(1/r_{ik}\) which is in contrast to the three dimensional case where it depends on the inverse square of the distance.

The model assumes zero pressure inside the bubble; it ignores thermodynamics or mass transfer inside the bubble. This assumption does surely not hold during the early bubble expansion which is driven by superheated liquid explosively expanding into a vaporous cavity. Also during this stage the bubble cannot be described with as two-dimensional cavity. We limit our model to the later stages of expansion where the bubble has cooled and is sufficiently flat to be considered two-dimensional. Thus, we model the bubble expansion with an already cylindrical bubble and an initial radial velocity \(\dot{R}\).
Figure 6. Comparing the radial dynamics of a single bubble (black diamonds) with those of similar interacting bubbles. For clarity, we removed the error bars which have a size of ±2 µm. The lines joining the points are placed to guide the eye.

5. Discussion

5.1. Bubble life-time

The experiments in Section 3 reveal that the radial and translational dynamics are greatly altered by the mutual interaction. To unravel this further we directly compare the single bubble dynamics with bubble pairs of similar radius. This is experimentally achieved by using the same hologram and by blocking one of the foci, thus keeping the laser energy per bubble unchanged.

This comparison is shown in figure 6 for different separations. All bubbles reach a maximum radius of about 35 µm, the single bubble collapses first (filled diamonds), about 11 µs after creation which is significantly shorter than all bubble pairs. The lifetime of the pairs increases with decreasing stand-off distance.

5.2. Comparison with experiments

After presenting the experimental results for bubble pairs in figures 2, 3, 4, and 5 we now want to compare them with the model derived in Section 4. The initial conditions for the
Interaction between two laser-induced bubbles in a quasi-two dimensional geometry

Translational and radial dynamics are needed to integrate the equations of motion because we ignore the early stage of the bubble formation. The initial values for bubble radius and bubble position are obtained from the experimental data. The initial conditions for the bubble wall and the translational velocities, \dot{R}_1 and $\dot{d} = 2\dot{r}_{01}$, are obtained by least-square fitting of equations (4.6) and (4.7) to the experimental data. Also a unique value for R_∞ for our experimental configuration has to be obtained. Therefore, we fitted the measured radius time curves from single bubbles, e.g. the one presented in figure 6, to a two-dimensional Rayleigh equation $(R\ddot{R} + \dot{R}^2) \log \left(\frac{R}{R_\infty} \right) = \frac{p_0}{\rho}$. The best fit is $R_\infty = 546$ µm and is used for all curves presented in this work.

The model describes the observed dynamics for all bubble pairs studied. In particular, even the dynamics of the strongly deformed bubbles (strong interaction with $\gamma = 0.65$, see figure 4) is nicely captured within the measurement errors. Here, instead of the bubble radius, an equivalent radius is used still giving good agreement with the cylindrical model. It is interesting to note, see figures 2, 3, 4, that the reduction of the distance d during the collapse increases as the bubbles are created closer which is consistent with the secondary Bjerknes force.

Bremond et al. (2006b) used hydrophobic microcavities etched in silicon wafers to study arbitrary bubble configurations and compare the dynamics with with three-dimensional coupled Rayleigh equations. They obtained very good agreement with this simple ansatz, although for close range interaction a boundary integral method was applied (Bremond et al. 2006a). In a two-dimensional geometry bubble interaction has longer range ($1/d$) as compared to the three dimensional Bjerknes force ($1/d^2$).
6. Conclusions

We recorded the dynamics of two bubbles created at different distances in an essentially two dimensional geometry. By varying the distance at which the bubbles were created we were able to “tune” the interaction between the bubbles from a weakly to a strongly interacting regime. A two dimensional flow potential model is derived from the Lagrangian of the coupled bubble system. The model accounts for radial and translational dynamics for arbitrary configurations of cylindrical bubbles. The radial dynamics is a Rayleigh equation with additional terms due to the mutual interactions. The model is in very good agreement with the experimental results. Future studies will involve specific bubble configurations of interest in microfluidics, in particular for object manipulation, micro-rheology, and mixing applications.

We appreciate the discussions on the experimental realizations with Vasan Venugopalan (University of California, Irvine), and thank Roberto Gonzalez for the viscosity measurement. The authors gratefully acknowledge funding through the Ministry of Education, Singapore (T208A1238) and Nanyang Technological University through grant RG39/07.

REFERENCES

Interaction between two laser-induced bubbles in a quasi-two dimensional geometry

Naudé, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by non hemispher-

Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. *Phil. Mag.* 34.
