The Super-Sbox Cryptanalysis

Thomas Peyrin

CCRG seminar - Nanyang Technological University

Singapore - October 26, 2010
Outline

Introduction

The Super-Sbox attack

A case study: Grøstl (Gauravaram et al.)

Results and future works
Introduction

The Super-Sbox attack

A case study: Grøstl (Gauravaram et al.)

Results and future works
What is a Hash Function?

- H maps an **arbitrary length input** (the message M) to a **fixed length output** (typically $n = 128$, $n = 160$ or $n = 256$).
- no secret parameter.
- H must be easy to compute.
The security goals

- **pre-image resistance**: given an output challenge y, the attacker cannot find a message x such that $H(x) = y$, in less than $\theta(2^n)$ operations.

- **2nd pre-image resistance**: given a challenge (x, y) so that $H(x) = y$, the attacker cannot find a message $x' \neq x$ such that $H(x') = y$, in less than $\theta(2^n)$ operations.

- **collision resistance**: the attacker cannot find two messages (x, x') such that $H(x) = H(x')$, in less than $\theta(2^{n/2})$ operations (a generic attack with the birthday paradox exists [Yuval-79]).
The SHA-3 hash function competition:

- started in October 2008, 64 submissions
- 51 candidates accepted for the first round
- 14 semi-finalists selected in 2009
- 4/5/6 finalists to be selected end 2010
- winner to be announced in 2012

Among the 14 semi-finalists, one can identify 4 AES-based candidates. For example ECHO and Grøstl.
What is an AES-like permutation?

- **AddConstant**: in known-key model, just add a round-dependent constant (breaks natural symmetry of the three other functions)
- **SubBytes**: application of a c-bit Sbox (only non-linear part)
- **ShiftRows**: rotate column position of all cells in a row, according to its row position
- **MixColumns**: linear diffusion layer.

MixColumns \circ ShiftRows \circ SubBytes \circ AddConstant(C)
Hash function collision attacks

In general, there are two basic tools in order to find a collision: the differential path building technique and the freedom degree utilization method.

The differential path building techniques (for SHA-1):

- local collisions
- linear perturbation mask
- non-linear parts

The freedom degree utilization methods (for SHA-1):

- neutral bits
- message modifications
- boomerang trails
Hash function collision attacks

In general, there are two basic tools in order to find a collision: the differential path building technique and the freedom degree utilization method.

The differential path building techniques (for AES-based):
- truncated differential paths

The freedom degree utilization methods (for AES-based):
- rebound attacks
- multiple-inbound attacks
- start-from-the-middle attacks
- super-Sbox attacks
Outline

Introduction

The Super-Sbox attack

A case study: Grøstl (Gauravaram et al.)

Results and future works
Truncated differences

- Originally introduced by Knudsen for block ciphers [Knudsen FSE 1994]
- Later applied to hash functions (collision attack on Grindahl) [Peyrin ASIACRYPT 2007]
- **Idea:** consider byte-differences, without considering their actual value (active or inactive).
- Only the truncated differences propagation through MixColumns behave probabilistically. Per column:
 \[
 \text{nb active input cells} + \text{nb active output cells} \geq r + 1.
 \]
 \[
 P \approx 2^{-xc} \quad \text{for } x \neq r \text{ inactive output cells}.
 \]
Controlled and uncontrolled rounds

- **Idea:** use the freedom degrees in the middle of the differential path.

- The path is divided into two different kind of steps:

 - **The controlled rounds:** the part where the freedom degrees are used (usually in the middle of the path). On average, finding a solution for the controlled rounds should cost only a few operations.

 - **The uncontrolled rounds:** the part where all the events are verified probabilistically (left and right part of the path) because no more freedom degree is available. Determine the complexity of the overall attack.
Rebound Attack and Start-from-the-middle

- **Rebound attack:** allows to get 2 controlled rounds [Mendel et al. FSE 2009]. Requires 2^{rc} memory. It broke compression functions of many SHA-3 candidates.

- **Start-from-the-middle:** use more complicated techniques to get up to 3 controlled rounds in the case of low weight differential paths [Mendel et al. SAC 2009]. Requires 2^{rc} memory.
The Super-Sbox view

- Introduced by Daemen and Rijmen (e.g. [Daemen Rijmen SCN 2006]) to simplify the analysis of AES differential properties and not for cryptanalysis purposes.

- **Idea:** one can view two rounds of an AES-like permutation as a layer of big 2^{rc}-bit Sboxes preceded and followed by simple affine transformations. We call those **Super-Sboxes**
The controlled rounds in the Super-Sbox view

- **One can get 3 controlled rounds**, even for high weight differential paths.

- **Forward**: start with a random (not truncated) difference δ_start' at the beginning of round 2 (such that we obtain a compatible truncated difference Δ_start when inverting SB and AC). Then, pass ShR, MC, AC and ShR to obtain the aimed input difference Δ_in on the r Super-Sboxes.

- **Backward**: start with a random (not truncated) difference Δ_end at the end of round 4, and invert MC and ShR in order to obtain the aimed output difference Δ_out on the r Super-Sboxes.

- **Problem**: need the ability to find for each of the r columns, a value that maps Δ_in to Δ_out. ... seems hard.
The controlled rounds

- **Idea:** pay a big price (2^{rc} operations and memory), but get many solutions (2^{rc}) once you paid.

- **1st step:** Fix a random Δ_{start}' difference value, which gives a fixed random Δ_{in}. For each of the r Super-Sboxes, exhaust all 2^{rc} possible actual values, then sort the results in r tables according to the output difference obtained.

- **2nd step:** try 2^{rc} distinct Δ_{end} differences. Then, for each Δ_{out} obtained by computing backward, check if for all the r columns the appropriate 2^{rc}-bit difference is present in the corresponding table. On average, one solution is found per Δ_{end} try.

- **The average complexity for finding one internal state pair verifying the controlled rounds is 1.**
The uncontrolled rounds

8-round path:

- On the left side, one has one $4 \leftrightarrow 1$ MixColumns transition to control (round 1): $P \approx 2^{-(r-1)c}$

- On the right side, one has one $4 \leftrightarrow 1$ MixColumns transition to control (round 5): $P \approx 2^{-(r-1)c}$

- Total complexity for finding a solution for the whole path: $2^{2(r-1)c}$ operations.

One has also to check that we have enough freedom degrees, such that a valid pair can be found.
Limited-birthday distinguishers

What is the generic complexity for mapping i fixed-difference bits to j fixed-difference bits through a random permutation E?

Wlog, assume that $i \geq j$ and let $n := r^2c$. Due to the birthday paradox, each structure of 2^{n-i} input values obtained by fixing the value of the i fixed-difference bits allows to get fixed-difference on $2(n-i)$ output bits:

- if $j \leq 2(n-i)$, then one can select $2^{j/2}$ input values from one single structure and this suffices to achieve a collision on the j target positions. The attack complexity is about $2^{j/2}$.
- if $j > 2(n-i)$, then about $2^{j-2(n-i)}$ structures have to be used to obtain a collision on the j prescribed positions. Overall, the complexity of the attack is about $2^{n-i} \times 2^{j-2(n-i)} = 2^{i+j-n}$.

Same reasoning for the $n-j$ free difference bits on the output and attacking E^{-1}:

- if $i \leq 2(n-j)$, then the attack complexity is about $2^{i/2}$.
- if $i > 2(n-j)$, then the attack complexity is about 2^{i+j-n}.

Final complexity: $\max\{2^{j/2}, 2^{i+j-n}\}$.
Results on AES and Grøstl

Table: Results on the underlying permutation

<table>
<thead>
<tr>
<th>target</th>
<th>rounds</th>
<th>computational complexity</th>
<th>memory requirements</th>
<th>type</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>7</td>
<td>2^{24}</td>
<td>2^{16}</td>
<td>known-key-dist.</td>
<td>[Mendel et al. SAC 2009]</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2^{48}</td>
<td>2^{32}</td>
<td>known-key-dist.</td>
<td>[Gilbert Peyrin FSE 2010]</td>
</tr>
<tr>
<td>Grøstl-256 permutation</td>
<td>7</td>
<td>2^{56}</td>
<td>2^{64}</td>
<td>distinguisher</td>
<td>[Mendel et al. SAC 2009]</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2^{112}</td>
<td></td>
<td>distinguisher</td>
<td>[Gilbert Peyrin FSE 2010]</td>
</tr>
</tbody>
</table>

Table: Results on the compression function

<table>
<thead>
<tr>
<th>target</th>
<th>rounds</th>
<th>computational complexity</th>
<th>memory requirements</th>
<th>type</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grøstl-256 compression function</td>
<td>6</td>
<td>2^{120}</td>
<td>2^{64}</td>
<td>semi-free-start coll.</td>
<td>[Mendel et al. FSE 2009]</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2^{64}</td>
<td></td>
<td>semi-free-start coll.</td>
<td>[Mendel et al. SAC 2009]</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2^{120}</td>
<td></td>
<td>semi-free-start coll.</td>
<td>[Gilbert Peyrin FSE 2010]</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2^{56}</td>
<td>2^{64}</td>
<td>distinguisher</td>
<td>[Mendel et al. SAC 2009]</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2^{112}</td>
<td></td>
<td>distinguisher</td>
<td>[Gilbert Peyrin FSE 2010]</td>
</tr>
</tbody>
</table>

* Results also independently obtained by Lamberger et al.
Outline

Introduction

The Super-Sbox attack

A case study: Grøstl (Gauravaram et al.)

Results and future works
Grøstl compression function

Round i of permutations P and Q:

AddConstant \oplus SubtractBytes \circ ShiftRows \circ MixColumns

$\text{MixColumns} \circ \text{ShiftRows} \circ \text{SubBytes} \circ \text{AddConstant}(C)$
The internal differential attack

Problem: all previous attacks build classical differential paths for the permutation P and Q (allows to reach 8/10 rounds)

Idea: look at the difference between the two parallel branches
It works well on Grøstl because P and Q are almost identical (only the constant addition differs)

Let A and B be s.t. $A \oplus B = \Delta_{IN}$ and $Q(A) \oplus P(B) = \Delta_{OUT}$
We have $h(H, M) = \Delta_{IN} \oplus \Delta_{OUT}$
What can we do with such a pair A and B?

Distinguishing attack:
- assume Δ_{IN} is maintained in a set of x elements
- assume Δ_{OUT} is maintained in a set of y elements
- thus $h(H, M)$ is maintained in a set of $k = x \cdot y$ elements
- we can distinguish the Grøstl compression function from an ideal one: such pair (H, M) can be generically obtained with $2^n/k$ computations
- one can also distinguish the permutations P and Q from ideal permutations (with “limited birthday distinguishers”)

Collision attack:
- because of a lack of freedom degrees, no improvement for the compression function attacks
- but we can attack 5/10 rounds of the hash function
An example with 9 rounds:

- we have
 - $x = 2^{56}$
 - $y = 2^{128}$
 - $k = 2^{184}$

- thus the generic complexity is $2^{512-184} = 2^{328}$ operations

- we can find a valid candidate with only 2^{80} computations and 2^{64} memory

- the amount of freedom degrees only allows us to compute one such candidate, but generalization of the internal differential attack gives additional freedom degrees
Results for Grøstl

<table>
<thead>
<tr>
<th>target</th>
<th>rounds</th>
<th>computational complexity</th>
<th>memory requirements</th>
<th>type</th>
<th>section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grøstl-256</td>
<td>7/10</td>
<td>2^{56}</td>
<td>2^{64}</td>
<td>distinguisher</td>
<td>[Mendel et al. SAC 2009]</td>
</tr>
<tr>
<td></td>
<td>8/10</td>
<td>2^{112}</td>
<td></td>
<td>distinguisher</td>
<td>[Gilbert Peyrin FSE 2010]</td>
</tr>
<tr>
<td></td>
<td>9/10</td>
<td>2^{80}</td>
<td>2^{64}</td>
<td>distinguisher*</td>
<td>[Peyrin CRYPTO 2010]</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>2^{192}</td>
<td></td>
<td>distinguisher*</td>
<td>[Peyrin CRYPTO 2010]</td>
</tr>
<tr>
<td>Grøstl-512</td>
<td>11/14</td>
<td>2^{640}</td>
<td>2^{64}</td>
<td>distinguisher*</td>
<td>[Peyrin CRYPTO 2010]</td>
</tr>
<tr>
<td>Grøstl-256</td>
<td>4/10</td>
<td>2^{64}</td>
<td>2^{64}</td>
<td>collision</td>
<td>[Mendel et al. SAC 2010]</td>
</tr>
<tr>
<td>hash function</td>
<td>5/10</td>
<td>2^{79}</td>
<td>2^{64}</td>
<td>collision</td>
<td>[Peyrin CRYPTO 2010]</td>
</tr>
<tr>
<td>Grøstl-512</td>
<td>5/14</td>
<td>2^{176}</td>
<td>2^{64}</td>
<td>collision</td>
<td>[Mendel et al. SAC 2010]</td>
</tr>
<tr>
<td>hash function</td>
<td>6/14</td>
<td>2^{177}</td>
<td>2^{64}</td>
<td>collision</td>
<td>[Peyrin CRYPTO 2010]</td>
</tr>
</tbody>
</table>

* for these distinguishers, the amount of available freedom degrees allows us to generate only one valid candidate with good probability

Be careful when designing a scheme:

also check the differential paths **between** the internal branches
Introduction

The Super-Sbox attack

A case study: Grøstl (Gauravaram et al.)

Results and future works
Results and future works

The Super-Sbox method:

- a very easy-to-use yet powerful cryptanalysis tool
- provides the best attack against 128-bit AES in the known key model
- also very efficient against AES-based hash functions: ECHO, Grøstl, ... In particular, first distinguishing attack against full Grøstl-256 compression function or internal permutations

Future works:

- find better differential paths for ECHO ([Sasaki et al. - ASIACRYPT 2010] [Schläffer - SAC 2010])
- derive collision attacks for the Grøstl hash function with internal differential paths ([Ideguchi et al. - eprint 2010])
- try to apply Super-Sbox attack to other schemes (work on SHA\textit{v}ite-3 to be published soon)
- switching attack: switch completely the type of differential path considered between the left and the right controlled rounds and use the Super-Sbox setting in order to link them