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Key Distribution Protocols Based on Extractors Under the Condition of Noisy Channels in the Presence of an Active Adversary

Victor Yakovlev, Valery Korzhik, Guillermo Morales-Luna, Mihail Bakaev
Abstract. We consider in this paper the information-theoretic secure key distribution problem over main and wire-tap noise channels with a public discussion in presence of an active adversary. In contrast to the solution proposed by ourselves for a similar problem using hashing for privacy amplification, in the current paper we use a technique of extractors.

We propose  modified key distribution protocols for which we prove explicit estimates of key rates without the use of estimates with uncertain coefficients in notations 
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 This leads in the new conclusion that the use of extractors is superior to the use of hash functions only with the very large key lengths (l)(of order l>105 bits) .
We suggest hybrid key distribution protocols consisting from two consecutively executed stages. At the fist stage it is generated a short authentication key based on hash function, whereas at the` second stage it is generated the final key with the use of extractors. We show that in fact the use of extraction procedure is effective only at the second stage. We get also constructive estimates of the key rates for such protocols.

Index Terms: Authentication, cryptography, extractors, information-theoretic security, key distribution, privacy amplification, wire-tap channel. 
I. Introduction
Advances in design and implementation of quantum computers [1] as well as design of super-fast multiprocessor conventional computers threat some conceptually secure cryptosystems. Hence perfect one-time pad ciphers proposed by Shannon [2] are necessary. But the use of perfect ciphers requires key lengths proportional to messages [3]. This inconvenience can be solved with the use of key distribution over communication channels protected from eavesdropping. There are several approaches in order to remove (or at least to control) an eavesdropping on the keys:
-
quantum channels [4],
· methods based on fluctuation of radio wave channels [5,6,7,8],
· Wyner’s concept of wire-tap channel,
· key generation by hashing of random string initially distributed over noisy channels [13-26].
In the current paper, we follow the last approach. The most advanced results in this setting, under the condition of an active adversary have been obtained by Maurer and Wolf. They proposed several key distribution protocols [15-23] and made a performance comparison of asymptotic and non-asymptotic key rates for a given level of key security.

We considered in [26] some modification of Maurer and Wolf MW-protocol consisting using a non-interactive authentication algorithm, called by ourselves the 
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-protocol, instead of the request-response algorithm presented in [21]. In the same paper [26], we proposed also the 
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-protocol that differs from the 
[image: image4.wmf]a

-protocol in absence of the hash function transmission over public discreet channel because the hash function can be formed from the string which users have got just after the execution of the initialization phase. Using the 
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-protocol entails an increasing of the key rate in several cases. We proposed also in [26] the so called 
[image: image6.wmf]a

¢

and 
[image: image7.wmf]b

¢

-protocols in which special initially distributed short keys are used in order to provide authentication procedures over public discussion channels (PDC).
Hybrid protocols comprising pairs of sequentially executed protocols (α, 
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) were investigated in [26]. The first protocol in each pair is used to generate authentication key, whereas the second one provides a generation of the main secret key for encryption/decryption given the authentication key. The relation among the key rates and a comparison of protocol performance evaluation were also introduced.

The main feature of the protocols considered in [26] is their strict constructiveness because the parameters determining their efficiency do not contain unknown coefficients typical for Ο, Ω ,Θ-estimations.
Our contribution and novel content in the current paper are the following:

1. We propose new (modified) key distribution protocols using extractors. We prove explicit estimates of key rates without the use of estimates of uncertain coefficients in Ο,Ω,Θ-estimations. (In [26] we solved the similar problem using hash functions instead of extractors).

In contrast to [21], we consider a scenario where legal users are able to receive raw bit strings over noisy channels and as a consequence they are pair wise distinct. This entails the need to send check symbols from user A to user B in order to agree the raw bit strings received by legal users. By the same reason, we have changed the authentication algorithm: instead of a request-response algorithm [21], we use a non-interactive one based on the authentication code.

A consideration of non-asymptotic case leads us in the new conclusion that the use of extractors is superior to the use of hash functions only with for very large key lengths (l) of the order of 105 bits.

2. We suggest hybrid key distribution protocols consisting of two consecutively executed stages. At the first stage, a short authentication key based on a hash function is generated, whereas at the second stage, the final key using extractors is generated. We show that in fact the use of an extraction procedure is effective only at the second stage. We get also explicit estimates of key rates for such protocols.
3. We prove also an asymptotic behavior of the key rates for all considered protocols that allows to compare the potential efficiency of them with the potential efficiency of protocols considered here and in [26]. 

The outline of this paper is the following: Section II contains the preliminaries and descriptions of the main procedures to be used in key distribution protocols. In Section II-A we describe the model of key distribution based on noisy wire-tap channels in the presence of an active adversary and we introduce the main criteria for key distribution protocol efficiency. We introduce main procedures as error correction, authentication and privacy amplification (based both on hashing and extraction).

In section III we describe the αext -protocol, and the new key distribution βext-protocol without transmission of the extractor’s seed on the public discussion channel and we prove their main features.
 
In section IV we present a modification of the previous α΄ext- and β΄ext-protocols under the condition that initially the legal users share short authentication keys. 
In section V we describe the so called hybrid protocols as combinations of different pairs of single protocols and estimates their performance evaluation. 
In section VI we conclude the paper.

II.  Main notions and procedures involved in the key distribution protocol

A. Model for key distribution and the main criteria for protocol efficiency

Let us consider the model of key distribution between a legal user, Alice (A), and another user, Bob (B), in the presence of an active adversary, Eve (E), assuming that initially the legal users do not have shared secret keys. The key distribution protocol (KDP) consists of two phases: initialization and key generation.

In the KDP initialization phase, A, B, and E receive random i.i.d. sequences  
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 (fig 1.) . One of the methods to provide legal users A, B with the sequences X, Y is to generate the truly random sequence 
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 by some trusted party, say source S, and then to transmit it to the legal users A and B over noisy channels (source model [13], [16]). We will assume that A and B receive the sequences X, Y over binary symmetric channels (BSC) without memory with error probabilities 
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, while the adversary E receives the sequence Z over a BSC with error probability 
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. It is easy to see that if the original sequence S is truly random then the same property holds for the sequences X, Y and Z. (Examples of practical implementation of the initialization phase in real world can be found in [26]). In this phase it is natural to assume that the adversary is unable to intervene the transmission from S to A and B.  
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Fig.1. Model of key distribution protocol over noisy legal channels in presence of an active adversary
The key generation phase consists in an information exchange over a public discussion channel (PDC) with a goal to share eventually the final key. We note that the use of PDC is necessary in order to send check symbols to test the agreement of the strings X and Y and sometimes for the parameters of the hash function or extractor seed transmission (see details in  the following sections). The adversary E can receive all information transmitted over the PDC. We assume also that the PDC’s between legal users and E are binary noiseless channels (if E does not intervene in transmission). However E can change or replace this information as desired and therefore it is necessary to authenticate messages transmitted over a PDC in order to detect any intervention of E and to reject suspicious messages.

Let us define the following parameters of the key distribution protocol characterization:

l:  the key length (the number of bits which are contained in the keys К a and Kb).
I(Ka, U):   the amount of Shannon’s information in possession of the adversary E about the final key KA after receiving all acceptable information U, including the sequence Z and the other messages transmitted over the PDC.

Pe = Pr(Ка ≠ Kb):    the probability of legal users key disagreement.

Pf :   the probability of false rejection of the KDP protocol (when A or B falsely believe that E has intervened the PDC).

Pd: the probability of deception false information provided by E during information transmission over PDC (it can result in an opportunity to fix a key between any legal user and E although leaving the legal user on the belief that he (she) has shared a key with his (her) legal partner).

Rk:    the key distribution rate (the ratio of the key length l to the length of sequences X, Y),
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It is reasonable to impose the following conditions on KDP:
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where lreq denotes the required key length and the superscript adm stands for admissible parameter value. We will say that the above conditions are requirements of the KDP. The efficiency of the KDP will be estimated by the key rate Rk and then among all protocols satisfying (2)-(6), we will select the most efficient making Rk to attain its largest value. As we will show later, some inequalities (3)-(6), may randomly hold. Then an additional requirement can be stated as
                                        Prisk < 
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where
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 is the probability that at least one of the inequalities (3)-(6) does not hold. 

B. Known asymptotic results regarding key rates
Let us denote by R*, R** the maximum achievable key rates in a KDP between the legal users under the condition of a passive or active adversary, respectively. In papers [16], [18], [21], [23] the proofs of these values were presented. For the source model of the wire-tap channel with initialization phase in the KDP using BSC with probabilities πA, πB, πE  the following theorem holds:

Theorem 1 (see [23]): If πE > πA  and πE > πB  , then R* = R**. If either πE ≤  πA  or πE ≤ πB  then R** = 0.

We note that under the conditions πE > πA  and πE > πB, the users A and B either share the key or they may detect interception in the case of E’s intervention. This fact cannot be interpreted as a defect of KDP because E can use even a simple strategy: she tries to break off the PDC between legal users in order to impede the completion of the KDP. Let pm,
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 denote the probabilities of disagreements among the sequence pairs (X,Y), (X,Z), (Y,Z) respectively. Then
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It is easy to see that if πE > πA   then 
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. We will consider the worst case for legal users as 
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After the execution of the initialization phase the source model is reduced to channel model where user A sends the sequence 
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 to user B who receives it as 
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Theorem 2 [23]: In the channel model setup with probabilities 
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where
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is the entropy function.

C. Error correcting codes
Let C  be a binary linear error correcting 
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 be a string consisting of r check symbols. It has been proved in [30] that if the information symbols are transmitted on the BSC with the error probability 
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where
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is Gallager’s function for BSC with the error probability 
[image: image57.wmf]m

p


	
[image: image58.wmf]r

k

k

R

c

+

=


	(14)


is the code rate. We note that in the frame of the above model, the code rate 
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where 
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We see from (16) that an arbitrary small value of the erroneous decoding probability is achieved for large block length if the number r of check symbols (but not block length) is proportional to the number of information symbols k with coefficient 
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D. Authentication based on the class of universal hash functions


In order to execute the authentication procedure, we use the universal hash function which are described below.

For any finite set A, let \A\ denote its cardinality. For any two finite sets A, B, let H be a set of hash-maps A 
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 be the number of hash functions in H that collide in x0 and x1. We recall that H is universal2, U2 in short, if for each x0, x1
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Let Pcol be the so called collision probability, namely the probability that there occurs a pair of elements in A colliding under an uniformly chosen map h 
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and besides for each distinct x0, x1
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For a given 
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. The class H is  ε -almost strongly universal, ε -ASU2, if (16a) holds and for all  x0, x1
[image: image82.wmf]Î

 A, and all y0, y1
[image: image83.wmf]Î

 B, 
[image: image84.wmf]{

}

B

H

y

)

h(x

&

y

)

x

(

h

H

h

1

e

£

=

=

Î

1

0

0

. Naturally, each class 
[image: image85.wmf]B

1

 -ASU   is also SU2.

Examples of hash functions classes: We assume that the sets A and В consist of all binary sequences of lengths a and b, respectively: A = {0,1}а, В = {0,1}b, hence |A| = 2a, |B| = 2b.

An U2 class. The set A can be identified with the Galois field GF(2a). For each s 
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 is U2. Such hash functions are described uniquely by binary strings of length a.
An SU2 class. For each s,t 
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[image: image92.wmf]®

 A, x 
[image: image93.wmf]®

 sx + t. The class 
[image: image94.wmf]{

}

A

t

,

s

h

s

Î

 is SU2 and clearly this class can be indexed by sequences of length 2a.
An ε-SU2 class. It has been shown in [31] that the hash functions chosen from an ε -SU2 class are connected with incomplete balanced schemes. The parameters of the ε-SU2 class can be

described as follows
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where q is a power of a prime and 
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Let us analyze the procedure of message authentication. Let x be the message to be authenticated during its transmission from user A to user B. User A forms the authenticator 
[image: image97.wmf])

(

x

h

y

=

 of his message x using the keyed hash function 
[image: image98.wmf]H

h

Î

known by him (but unknown for adversary E), then A appends y to x and sends the pair 
[image: image99.wmf])

,

(

y

x

to the legal user B. In order to check the authenticity of the message x, the user B receives a pair 
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It was shown in [31] that if the hash functions, chosen from the 
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 class, are used in the authentication procedure then for the best adversary’s strategy consisting in an impersonation or substitution of the messages, the following probability bounds hold
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where
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 is the probability of message impersonation, and
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 is the probability of message substitution.
Let us define the probability of undetected false message deception by the adversary as
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. The bounds (18), (19) will hold only if the active adversary ignores completely the used hash function h in the authentication procedure. But there may be situations when the keyed hash function is partly known by the adversary although authentication procedure is still possible. In order to clarify this situation let us recall  initially from [18] that for a discrete random variable 
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and the Renyi entropy of the random variable X is
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Theorem 3 [38]: Suppose legal users A and B have the random key h with length l0 within an authentication scheme based on ε -SU2 hash functions where ε = 
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the probability Pd of message undetected deception is upper bounded as
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E. Authentication based on noisy channels

The message authentication considered above and based on the use of hash functions from either the class 
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 requires a possession by legal users of the secret or partly secret keys. However such keys cannot be taken directly from the strings 
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In order to avoid this situation it is necessary firstly to design a keyless message authentication based on noisy channels. In [16] a special type of codes has been proposed in order to solve this problem: the so called  authentication codes (AC). Let us describe them briefly.
In an initialization phase the users share the strings 
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It is a very hard problem to find 
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 We have proved in [26] the following theorem with the use of the code above.
Theorem 5: Let V be a 
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This means that the length of the authenticator approaches zero as the block length tends to infinity. Other methods to design constant weight AC were investigated in [33]. 

F. Extractors
Let us recall the notion of extractor and  strong extractor [35]-[37]. 
Two probability distributions P, Q, defined on the same set X, are called ε-close if their statistical difference
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does not exceed  ε.

  A map 
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In order words, the extractor maps a random sequence X of length k with symbols taken from ensemble of min entropy 
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 to random sequence of length l that is ε-close to uniformly distributed sequence with the help of truly random sequence 
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The extractor E(X, Г) has parameters (k, 
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 is called a strong extractor 
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This means that the strong extractor provides the closeness of probability distribution for the concatenation of the output extractor sequence and the seed sequence to an uniform distribution. In the current paper we will consider only extractors based on the construction proposed by Trevisan [38] and improved in [36], [37]. 
Theorem 6. (See theorem 22 in [36]). For every k, 
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or
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where 1+ μ= k/(l-1), μ < 1/2 and Δ=O(d).
The value Δ is the loss of extractor output sequence length.
The first extractor (28), with 
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We are not going to use the estimates based on the O-operator and therefore let us find a more accurate estimate for the length of the seed. For this reason we consider in greater detail the design of the Trevisan’s extractor modified by Raz, Reingold, Vadhan [36].
In order to design the Trevisan’s extractor it is necessary to realize three components:
1. The linear error code W: With parameters 
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2. Combinatorial block design scheme. (Balance incomplete block design, BIBD). This is a family of sets S = {S1, S2, … Sl} holding the following properties:
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This means that the family consists of l sets or blocks, each consisting of ν elements taken from the set of integer {1,2,…,u}, while the number of elements contained simultaneously in any pair of blocks is at most 
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The design of extractor based on three components given above is presented in fig.2. 
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                                             Fig 2. Design of Trevisan’s extractor 
The algorithm is executed in the following stages:
1. The input sequence 
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2. Random sequence γ of length u determines the samples γ|Si, consisting of ν symbols of γ with the use of blocks Si belonging to the (ν,c)-BIBD. This means   
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In the modified extractor version [36] it was proposed to use a (ν,c)-week scheme, in which the condition (32) is changed to the condition 
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where с is some constant (с>1).
The W-code length 
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Since w is the output of Boolean function with v arguments, 
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where 
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 is the “ceiling” of x (the least integer greater or equal than x).


The characterization of strong extractor is determined by the following statements.
Theorem 7 (Proposition 10 in [36]). If S ={S1,…,Sl } (with
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 then 
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Theorem 8 (Lemma 15 in [36]).  For every v,l
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Moreover, such a family can be found in polynomial time poly(l,u).

Theorem 9 (Lemma 17 in [36]).  For every v,l 
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Moreover, these families can be found in time poly(l,u).
The results of Theorem 6 will be avoided in our further investigation because a presentation of the output sequence length u in the form 
[image: image243.wmf]D

-

l

 is inconvenient in the optimization procedure.
We will get an estimate of u taken from the results of Theorems 7-9 directly. More specifically, using (35) and (37) one can write the relation for the necessary number of seed symbols for the first extractor (28) in Theorem 6.
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For the second extractor (29), it follows from the proof of lemma 17 in [36] that 
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G. Privacy amplification

The procedure of privacy amplification (PA) at the final stage of the key generation between users A and B has been investigated in detail in [14,21]. PA can be implemented either by hashing [14,21] or by extraction [31]. We will consider in the current paper the second approach. 
In order to compare our new results with the results obtained in [26] where hashing has been used as the privacy amplification procedure, let us specify an application of both methods.
The sequence 
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The most important parameter of the PA procedure is the residual Shannon’s information received by the adversary E, concerning the final key 
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The Renyi information t is connected with Renyi entropy 
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For the BSC used as wire-tap channel we have by (21)
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If the adversary receives some extra information about 
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(This theorem also gives the estimation of the amount of conditional minimal entropy 
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Theorem 12 [21]: Let X and C be two random variables and let 
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with the probability at least 
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with the probability at least 
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We can apply (44) in order to estimate 
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It follows from (42) and (46) that
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Substituting 
[image: image288.wmf]t

~

from (47) into (41) instead of t, we get the upper bound of Shannon’s information leaking to E
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that holds with the probability
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In order to compare the performance of privacy amplification based on hashing and on extraction, let us prove a new lemma establishing a connection between the Shannon’s information leaking to adversary regarding the key at the output of the extractor, and the statistical difference  among distribution of the final key and an uniform distribution.
Lemma 1. If the statistical distance between the output of the extractor generating the length 
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Proof. The following inequality holds by definition of strong extractor
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The meaning of this inequality is that the probability distribution of the extractor’s output and the “seed” 
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 concatenation is close enough to an uniform distribution.

We note initially  that for an uniform distribution on the space 
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where 
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 is a random sequence, Гu is the probability distribution of 
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In fact, the left side of (52) is expressed as: 
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Since the distributions
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proving (52).
By combining (51) and (52) it is obtained
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Using the well known Markov’s inequality, (54) implies
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where 
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An inequality has been proved in [21, lemma 6], which in our notation is 
	
[image: image314.wmf])

)

V

),

 

,

Z

(

E

(

dif

(

l

))

,

Z

(

E

(

H

l

l

u

k

u

k

-

-

-

³

2

1

g

g

.
	(56)


Taking into account that the output extractor sequence is just the key, we can write
	
[image: image315.wmf])

Г

/

K

(

H

))

,

Z

(

E

(

H

u

u

l

u

k

g

g

=

=

.
	(57)


Then by substituting (57) into (55) it is obtained 
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It follows from (58) a trivial estimate for the averaged value 
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After a simplification on the right side of (59) and by neglecting smaller values than 2-l,
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Then for the amount of information leaking of an adversary concerning the key 
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The right side of (61) is minimized under 
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providing thus the desired result.                                                                                    ■   
It follows from the above lemma that if the value of the statistical difference at the extractor output that forms the length l key does not exceed ε, then the amount of the residual information regarding the key obtained by the adversary does not exceed 
[image: image330.wmf]e

l

2

.
This means that a requirement, regarding the amount of Shannon’s information on the key leaking to an adversary, of the form 
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III. Key distribution protocols

Two key distribution protocols in presence of an active adversary have been proposed by Maurer and Wolf in [21]: the UH-protocol, in which privacy amplification procedure was executed using hash functions and the EX- protocol in which this procedure was based on extractions. It has been shown in [21] that the EX- protocol majors the UH-protocol with respect to several conditions.

We want to investigate a performance of these and other new protocols. We will show that our new protocols are superior than those considered in [21] for non-asymptotic cases (e.g. when lengths of the sequences are finite).

Initially we consider modified UH and EX- protocols and denote them as α- and αext -, respectively. A difference between the original and the modified protocols is determined by two factors.

1. We consider protocols under the condition
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. This requires to send the check symbols from A to B in order to conciliate Хk and Yk.

2. Instead of the authentication algorithm “request-response” presented in [21], we will use non-interactive the AC-based algorithm (see Section II) because this allows the users to provide authentication even when the sequences Хk and Yk do not coincide completely. By the same reason, the authentication algorithm and the number of substrings of the original strings Хk and Yk  are changed. 

Before the execution of the α-, αext-protocols, the users A and B divide their respective sequences Хk, Yk, into
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 of lengths k1, k2. (The first parts 
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 will be used for key generation in the execution of the PA procedure while the second parts 
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Since the α –protocol was already considered in [26], we move on to the αext –protocol.
1. The user А forms the string 
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using a (k1+r1, k1)–error correcting code С1. (This code should be agreed by users in advance.)

2. The user A generates a truly random binary sequence 
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 (which will be used as an extractor seed) of length u. 

3. The user А forms the authenticator w for the message 
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4. The user А sends to В the message 
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 over a PDC appended with the authenticator w.

5. The user В verifies the authenticity of the message 
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 through the known (n0, k0)-AC and his string 
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(see section II.E). If authenticity is confirmed, then B goes to the next step. Otherwise he rejects the KDP.

6. The user В corrects the error in string 
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7.
In order to get the keys 
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 both users A and B execute a privacy amplification procedure based on an extractor (see section II.F): 
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Recall that the α –protocol differs from the αext –protocol in that it generates a hash-function h in step 2.  This hash-function jointly with the check symbols of C1 and the authenticator w are transmitted to B (steps 3-5). In the seventh step this hash-function is needed for key generation:
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It has also been proposed in [26] a new β-protocol that differs from the α-protocol in the following:  After the execution of the initialization phase, both users A and B have got the strings that can in fact be used to form the hash functions. In this way, we do not require to send the hash functions over the PDC, hence the length 
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 used before for authentication of the hash function can be shortened. Therefore we may expect that the length of substring 
[image: image363.wmf]1

X

is increased (if the total length of the string X is fixed). But such conclusion is not so apparent because we have to extract the hash function as a segment from the string X.
A similar problem appears in the case in which an extractor is used instead of a hash-function for privacy amplification. In the αext –protocol A generates a truly random sequence 
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 and sends it to B jointly with the authenticator of 
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 can be gotten directly by both users A and B from the initially distributed strings X and Y. This results in the following βext -protocol.

It is worth to note that although 
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 is not uniformly distributed from the adversary’s point of view this has no relevance for strong extractors. 

In the above setup, users A and B divide the strings Хk, Yk into three disjoint parts 
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, with  k1 + k2 + k3 = k.  Then they execute the following steps:
1. The user A forms the length r1 string 
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2. The user A forms the length r2 check string 
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3. The user A forms the authenticator w of the message 
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 using an AC and his substring 
[image: image381.wmf]2

2

k

X

.

4. The user A sends to B the message 
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 over a PDC appended with w.

5. The user B verifies the authenticity of the message 
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 using a AC and his substring 
[image: image384.wmf]2

2

k

Y

. If it is confirmed then he goes to the next step. Otherwise he rejects the KDP.

6. The user B corrects errors on strings 
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7. The users A and B take their substrings 
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, where k3=u, as the second arguments 
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8. Both users A and B form the keys as 
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Performance evaluation of protocols

A theorem has been proved in [26] determining the optimal parameters for both the  α-, and β-protocols depending on the posed requirements. Let us prove a generalization of that theorem for the α-, β-, αext -, and βext-protocols. We will assume that for the  α-, and β-protocols a hashing is used as privacy amplification procedure, whereas for αext -, and βext-protocols an extraction is used. Moreover we assume that the first extraction scheme considered in section II.F is used, where the number of random bits u is determined by equation (39).
Theorem 10: Let us assume that the users A, B and the adversary E have binary strings Xk, Yk and Zk, respectively after execution of the initialization phase over the wire-tape channel, 
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. Then A and B are able to form a common key of length l satisfying the requirements (3)-(7) after the execution of any of the α-, β-, αext -, and βext-protocols if the parts of lengths 
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	where
	

	
[image: image414.wmf]11

1

0

1

12

for the 

for the 

2

for the 

-for the 

ext

ext

protocol

kr

protocol

r

k

protocol

ur

protocol

rr

a

b

a

b

--

+

ì

ï

--

ï

=

í

--

+

ï

ï

-

+

î

,
	(70)

 


and r2 being the number of check symbols of the error correcting 
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found similarly as in eq's (63), 
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The key rate is then determined as follows:  
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Proof.

For the α- and β-protocols the theorem has been proved in [26]. Let us prove it only for the αext- and βext -protocols.

Let the bounds of the KDP parameters meet exactly all requirements (3)-(7), e.g. the following equation hold:
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which does not comply with the probability 
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The value u in (76) is the number of the extractor random symbols. In order to find it, we can use (39) substituting ε by [image: image434.emf]2
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where 
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Solving the equation system (77)-(79), equivalent to the equation system (67)-(69), we find the parameters k2, d.  The value r2 is calculated by (11)-(13), in which it is necessary to let, 
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In line with the above protocols, we have that for the αext-protocol, 
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Then relation (73)  is apparent from the protocols description.
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Remark 1. If the solution of system (63)-(71) is not unique then it is reasonable to select any of them maximizing the key rate. 

Remark 2. It is worth to note that the values 
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Remark 3. (Choice of the coefficient c in (65), (66)). In Fig’s. 2, 3 the dependence of the key rate for the αext -protocol and the  βext-protocol is plotted versus the parameter c, given fixed values l for different error probabilities  in the main channels.
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Fig.2 Dependence of key rate versus the parameter extractor c for αext -protocol
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Fig. 3. Dependence of key rate versus the parameter extractor c for βext -protocol
We assume that pw = 0.2, 
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 in a plotting of these curves. From these curves it is patent that the key rate depends essentially on the choice of the parameter c.
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According to the scheme of the AC-code design we can write 
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With the purpose of comparing the protocols performance with hashing and with extraction, let us find the relation of key rate for sufficiently large l.
Theorem 12. As the key length 
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Proof. 

The proofs of (80) and  (81) were presented in [26]. In order to prove (82), let us write the relations of the key rates at the
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where u is the length of the extractor seed, r1 is the length of the check string for the (
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A substitution of 
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or
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It is not hard to show that 
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Also theorem 5 establishes that 
[image: image507.wmf]0

0

0

=

+

¥

®

)

r

k

r

(

lim

0

l

, but since 
[image: image508.wmf]¥

®

0

k

 as long as 
[image: image509.wmf]¥

®

l

 according to (65) and (70) we get  
[image: image510.wmf]0

0

=

¥

®

)

l

r

(

lim

l

.

Because we can write (82) as


[image: image511.wmf]12

ext

wm

m

H(p)g(p)

R

c(g(p))

a

¥

-

=

+

,  which approach  maximum as
[image: image512.wmf]1

®

с

. 

And this implies proving (82) for the 
[image: image513.wmf]ext

a

-protocol.
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Taking into account the used arguments in the proof of (82) for the 
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The following trivial corollary results from the above theorem.

Corollary 1. If the channel parameters 
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and   
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Since 
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Let us exemplify the above results and illustrate that the 
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In Fig. 4 we plot the key rates 
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The optimization of  с has been performed for every value of l. For comparison purposes the dependences 
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Fig. 4. The key rates versus their lengths for different requirements imposed to KDPs.
The following conclusions are drawn after an examination of the obtained dependence.

The protocols using extractors have greater key rate than the α- and β-protocols under sufficiently large l and small pm. It is worth to note that if for the α- and β-protocols the asymptotically possible value key rate calculated by (80), (81) can be achieved even in the considered key length range, it is not true for the αext- and βext-protocols, demonstrating a noticeable increasing proliferation of the key rate outside this range.

We can see that the αext- is superior than the α- protocol when 
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 with pm=0.01 and the βext- protocol is superior than the β - protocol when 
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and pm=0.001 (under the stated requirements in our investigations). The key length for which the αext- and βext-protocols are superior than the α- and β-protocols essentially depends on the error probabilities in the communication channels.

The βext- protocol is superior than the  αext -protocol, although these protocols have the same asymptotic key rate. Hence, protocols with extractors are superior than the protocols with hashing, when 
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IV. Key distribution protocols under the condition that legal users shared short authentication key before starting the KDP
The α'- and β'-protocols have been introduced in [26], which differ from the α- and β-protocols in that legal users A and B have got short key
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of length l0 before starting the KDP. This key can be used for authentication of messages transmitted over public discussion channels in order to get finally the key of length l>>l0.

In this section we consider some modification of the α'- and β'-protocols in which instead of hash functions, extractors are used in order to generate the final key. We call these protocols the α΄ext- and β΄ext-protocols, respectively.
α΄ext – protocol

Let us suppose that the users A and B have binary strings Xk, Yk respectively.
1. The user A calculates the check string 
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of length r for the string 
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 using an error correcting (k+r, k)-code C that should be agreed between the legal users in advance.

2. The user A generates a random binary string γu of length u.

3. The user A computes the authenticator w for the message 
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4. The user А sends to user B the message 
[image: image552.wmf])

,

C

(

u

r

g

 appending to it the authenticator w over a PDC.

5. The user B verifies the authenticity of 
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 is confirmed, then B goes to the next step, otherwise he rejects it.

6. The user B corrects errors in the string 
[image: image555.wmf]k

Y
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7. Both users A and B compute their keys as 
[image: image558.wmf])

 

,

Y

~

(

E

K

  

),

 

,

X

(

E

K

u

k

ext

B

u

k

ext

A

g

g

=

=


β΄ext – protocol 
In a similar manner there is a modified 
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-protocol where the random string 
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is not transmitted over the PDC but it is formed from the random sequences Хk, Yk. 

The users A and B divide each of the strings Xk, Yk obtained after execution of the initialization phase into two disjoint substrings 
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respectively. Then they perform the following steps:

1. The user A calculates the check string 
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2. The user A calculates the check string 
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3. The user A forms the authenticator w for the message 
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, using a keyed hash function from the class ε-ASU2 and the key SA with length l0.

4. The user A sends to B the message 
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 appended with the authenticator w.

5. The user B verifies the authenticity of the message 
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 using the authentication algorithm (see section II) and the key SB. If authenticity is confirmed, then user B goes to the next step, otherwise he rejects the KDP. 

6. The user B corrects errors in the strings
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7. The user A takes the string 
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8.  Both users A and B compute their keys as 
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Let us estimate the key rate of these protocols.

Theorem 13: Let us suppose that the users A, B and the adversary E have binary strings Xk, Yk and Zk, respectively after execution of the initialization phase over the wire-tape channel, 
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. We assume that the users A and B share initially a short key S of length l0 in order to authenticate messages transmitted over the PDC. 

Then A and B are able to form a common key of length l satisfying the requirements (3)-(7) after execution of the α΄ext- and β΄ext-protocols if the lengths 
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is the number of the extractor random symbols and c is the parameter under optimization,
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 and r2 being the number of check symbols of the error correcting 
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Proof.


The relations (94), (95) and (97) can be proved similarly as (63), (64) and (65) in theorem 10. The relation (96) is apparent from the protocols description. In order to prove (98), (99) we assume that for authentication of messages of length a (see relation (100)) an
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Let us assume that the probability of false message deception is equal to 
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From (103), (104), we have 
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Let us compare the key rates of the α΄ext- and β΄ext-protocols and  the α’- and β’-protocols. In [26] the following relations have been proved: 
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In order to illustrate the above assertions we plot in Fig. 5 the dependence of the key rate versus its length for the α'-, β'-, α΄ext - and  β΄ext-protocols, given pw = 0.2, 
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Fig.5. Key rates versus its length for different KDP provided initially with short authentication keys 

V. Two-stage (hybrid) protocols with extractors

We remember that the hybrid protocols [26,38] are combinations of protocol pairs 
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 where the first protocol in the pair is used in order to generate relatively short key S of length l0 required for hash function and check bits authentication, whereas the second protocol is used in order to form the final key K.

The keys S and K can be obtained by execution of the privacy amplification procedure based either on the use of hash functions or extractors. This means that for every above mentioned hybrid protocols, there are four variants of hashing or extracting applications. In total, there can be formed 16 protocols, which in turn can be split into four groups as shown in Table 1.

Table 1.  Groups of hybrid protocols                                                                         
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The first group of protocols was investigated in [26], and there it has been proved that every such protocol can be the most efficient depending on the additional key requirements imposed to it. It is worth to note that even for large length 
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),   then l0 = 678. But since, as shown in section III, extractors are superior than hash functions only with large key lengths, their application is useless in the first stage of the hybrid protocols, where a short key is required.

Therefore, the protocols from groups 3 and 4 have not been considered. It is sufficient to investigate protocols from the second group, where the authentication key is generated by hashing and the generation of the final keys is performed by extraction. Thus we consider the following hybrid protocols: (α, 
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Let us give a short description of the (α, α΄ext)-protocol. It is based on the (α, 
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where 
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Let us prove the following lemma.

Lemma 3. The convergence 
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Proof. Let us consider the (α, α΄ext)-protocol. According to (100) the input block length of the ε-ASU2 hash-function used in the α΄ext-protocol is equal to 
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Thus in order to prove that 
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Fig 6. Different types of hybrid protocol with extractors
From the above relation, it follows that 
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Using (107), (106) can be expressed as
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Taking into account that 
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In the (β, α΄ext)-protocol (see Fig. 6b) the sequences Xk, Yk are divided into four parts 
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where 
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By comparing this protocol with the previous one, we can conclude that for the same length 
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as 
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Next let us consider the (α, β΄ext)-protocol (see Fig. 6c) in which each sequence Xk, Yk is divided into four parts 
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The parameter l0 is smaller in this protocol than in the (α, 
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In the (β, β΄ext)-protocol, each sequence Xk, Yk of users A and B is divided into five parts 
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In this relation by the same reason mentioned during the analysis of the (α, 
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Hence, the (β, 
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It is worth to compare this protocol with the (β, 
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By comparing (112) with (117) and taking into account that 
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From this inequality, it follows that an implementation of extractors for large key length in hybrid protocols  are inefficient.

In Fig. 7 there are plotted the key rates versus its length for hybrid protocols under the conditions pm = 0.01 , pw = 0.2, Iadm = 
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Fig. 7. The key rates for hybrid protocols

The curves 
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were plotted with the use of the technique proposed in [26]. They clearly demonstrate a behavior of the key rate depending on the key length for different protocols. We can see that 
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VI. Conclusion

In the current paper, an investigation of key distribution protocols based on noisy channels started in [26] has been continued with such a difference that extractors are used instead of hash-functions in the privacy amplification procedure. The main goal was to prove extractor-based protocols efficiency by the criterion of key rate maximization. The relations are non-asymptotic and constructive because they do not include some uncertain coefficients in notations, in contrast with other papers.

We use the modified Trevisan’s extractor [36, 38] in our paper. It has been proposed new βext- and β΄ext-protocols which differ from those known before [21] because the extractor’s seed is not transmitted over the PDC but, instead, it is generated from random sequences obtained by legal user after the execution of the initialization phase. We proved that the use of extractors in the αext - and βext-protocols increases the rate, in comparison with hashing-based protocols only for very large key length l (typically 
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It was investigated a performance evaluation of the so called extractor-based hybrid protocols, consisting of two protocols executed in a serial manner where the first protocol in a pair is used for the generation of a relatively short key S of length l0. This key is necessary for authentication of check bits, and a random number (seed) of extractor. The second protocol is used for the final key generation. We prove that extractor based protocols should be used only in the second protocol of the pair.

We selected four hybrid protocols for further investigation (α, 
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[image: image822.wmf]a

¢

)-protocol considered in [26], which has the greatest key rate among all hybrid hashing-based protocols. The investigations showed that hybrid protocols with the use of extractor-based second stage protocols are less efficient than hashing-based protocol.

We investigated also (but not in a deeper detail) other variants of extractors from [36]. Even with some improvement of their characteristics (in the sense of the seed length), the general conclusion is kept the same: the use of extractors is justified only with very large key length.

 We get also asymptotic estimates for the key rates of all proposed protocols that allows to compare the potential efficiency of all considered early protocols. These relations are presented in Table 2.. We can see that asymptotically all hybrid protocols have the same key rates equal to  
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 These relations are similar “on structure” to relations for key capacity 
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If the main channel is noiseless then all protocols using extractors have the same asymptotic key rates equal to 
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.It is worth to noting that asymptotically all hybrid extractor-based protocols are inferior to hash-based protocols. But this conclusion may be considered as a consequence of crude estimate of information leaking to eavesdropper based on the use of min entropy.

Finally we will present a summary table of key rates for different KDP. It can be seen from Table 2 how closer or farther are the key rates to the secret key capacity given by (9).

                                                                                                                                 Table2
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