ZMAC: Specification, Security Proof, and Instantiation Updates*

Tetsu Iwata ${ }^{\dagger}$

Nagoya University, Japan
Joint work with Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin

ASK 2017
Fenglin Hotel, Changsha, China
December 10, 2017

[^0]
Introduction: Message Authentication Code (MAC)

- Symmetric-key Crypto for tampering detection
- MAC : $\mathcal{K} \times\{0,1\}^{*} \rightarrow \mathcal{T}$
- Alice computes $\operatorname{Tag}=\operatorname{MAC}(K, M)=\operatorname{MAC}_{K}(M)$ and sends (M, Tag) to Bob
- Bob checks if (M, Tag) is authentic by computing tag locally
- If $\mathrm{MAC}_{K}(*)$ is a variable-input-length PRF, it is secure

Tweakable Block Cipher (TBC)

Extension of ordinal Block Cipher (BC), formalized by Liskov et al. [LRW02]

- $\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \mathcal{M} \rightarrow \mathcal{M}$, tweak $T \in \mathcal{T}$ is a public input
- $(K, T) \in \mathcal{K} \times \mathcal{T}$ specifies a permutation over \mathcal{M}
- Let $\mathcal{M}=\{0,1\}^{n}$ and $\mathcal{T}=\{0,1\}^{t}$

We implicitly assume additional small tweak $i=1,2, \ldots$, used for domain separation, and write as $\widetilde{E}_{K}^{i}(T, X)$ when necessary

Building TBC

Block cipher modes for TBC: LRW [LRW02] and XEX [Rog04]

- Efficient but security is up to the birthday bound $\left(O\left(2^{64}\right)\right.$ attack when AES is used)
- Beyond-the-birthday-bound (BBB) security is possible (e.g. [Min09][LST12][LS15]) but not really efficient
Dedicated designs:
- HPC [Sch98]
- Threefish in Skein hash function [FLS+10]
- Deoxys-BC, Joltik-BC, KIASU-BC [JNP14a], SCREAM [GLS+14],
- in the CAESAR submissions
- SKINNY [BJK+16], QARMA [Ava17], ...

Security notions of TBC [LRW02]

- Indistinguishable from the set of independent uniform random permutations indexed by tweak
- Tweakable uniform random permutation (TURP) denoted by \widetilde{P}
- Tweak is chosen by the adversary
- CCA-secure TBC = TSPRP

Security notions of TBC [LRW02]

- Indistinguishable from the set of independent uniform random permutations indexed by tweak
- Tweakable uniform random permutation (TURP) denoted by \widetilde{P}
- Tweak is chosen by the adversary
- CCA-secure TBC = TSPRP
- CPA-secure TBC = TPRP

Building MAC with TBC : PMAC1

PMAC1 by Rogaway [Rog04], introduced in the proof of PMAC

- Parallel
- Security is up to the birthday bound wrt the block size (n)
$-\operatorname{Adv}_{\mathrm{PMAC} 1}^{\operatorname{tprp}}(\sigma)=O\left(\sigma^{2} / 2^{n}\right)$ for σ queried blocks
- Thus $n / 2$-bit security

PMAC1

Building MAC with TBC: PMAC_TBC1k

 PMAC_TBC1k by Naito [Nai15]- 2n-bit chaining similar to PMAC_Plus [Yas11]
- Finalization by $2 n$-bit PRF built from TBC
- BBB-secure: improve security of PMAC1 to n bits
- Same computation cost as PMAC1 (except for the finalization)

PMAC_TBC1k (message hashing part)

Efficiency of MAC

These TBC-based MACs are not optimally efficient

- They process n-bit input per 1 TBC call
- t-bit tweak does not process message - reserved for block index

Efficiency of MAC

These TBC-based MACs are not optimally efficient

- They process n-bit input per 1 TBC call
- t-bit tweak does not process message - reserved for block index

Our proposal: ZMAC ("The MAC") [IMPS17]

ZMAC is

- The first optimally efficient TBC-based MAC
- $(n+t)$-bit input per 1 TBC call
- Parellel, and BBB-secure
$-\min \{n,(n+t) / 2\}$-bit security, e.g. n-bit-secure when $t \geq n$ It uses TBC as a sole primitive, and secure if TBC is a TPRP

Structure of ZMAC

A simple composition of message hashing and finalization (Carter-Wegman MAC):

- ZMAC $=$ ZFIN \circ ZHASH
- ZHASH : $\mathcal{M} \rightarrow\{0,1\}^{n+t}$ is a computational universal hash function
- ZFIN : $\{0,1\}^{n+t} \rightarrow\{0,1\}^{2 n}$ is a PRF
- Output truncation if needed

Unified specs for any $t(t=n$ or $t<n$ or $t>n)$

Structure of ZMAC

A simple composition of message hashing and finalization (Carter-Wegman MAC):

- ZMAC $=$ ZFIN \circ ZHASH
- ZHASH : $\mathcal{M} \rightarrow\{0,1\}^{n+t}$ is a computational universal hash function
- ZFIN : $\{0,1\}^{n+t} \rightarrow\{0,1\}^{2 n}$ is a PRF
- Output truncation if needed

Unified specs for any $t(t=n$ or $t<n$ or $t>n)$

We focus on ZHASH

How ZHASH works: tweak extension

Optimal efficiency implies t-bit tweak of \widetilde{E} must be extended to incorporate block index
This can be done by XTX [MI15], an extension of LRW and XEX:

- Global tweak $G \in \mathcal{G},|\mathcal{G}|>2^{t}$
- Keyed function $H: \mathcal{L} \times \mathcal{G} \rightarrow\left(\{0,1\}^{n} \times\{0,1\}^{t}\right)$
- $\operatorname{XTX}[\widetilde{E}, H]_{K, L}(G, X)=\widetilde{E}_{K}\left(W_{t}, W_{n} \oplus X\right) \oplus W_{n}$ with $\left(W_{n}, W_{t}\right)=H_{L}(G)$

How ZHASH works: security of XTX/XT

XTX is secure if H is ϵ-partial AXU (pAXU) [MI15] :

$$
\max _{G \neq G^{\prime}, \delta \in\{0,1\}^{n}} \operatorname{Pr}\left[L \stackrel{\&}{\leftarrow} \mathcal{L}: H_{L}(G) \oplus H_{L}\left(G^{\prime}\right)=\left(\delta, 0^{t}\right)\right] \leq \epsilon
$$

that is, n-bit part is close to differentially uniform and t-bit part has a small collision probability

How ZHASH works: security of XTX/XT

In our case, $G \in \underbrace{\{0,1\}^{t}}_{\text {message part }} \times \underbrace{\mathbb{N}}_{\text {block index }}{ }^{\dagger}$, and block index is a counter
Then XTX can be instantiated and optimized by

- Using the "doubling" trick as XEX
- Omitting the outer mask to Y (as decryption is not needed)

How ZHASH works: security of XTX/XT

The resulting scheme is XT, using $H_{L}(G)$ defined as

$$
H_{\left(L_{\ell}, L_{r}\right)}(T, i)=\left(2^{i-1} L_{\ell}, 2^{i-1} L_{r} \oplus_{t} T\right), \text { using two } n \text {-bit keys }\left(L_{\ell}, L_{r}\right)
$$

Details:

- $2^{i} X$ is X multiplied by 2 over $\operatorname{GF}\left(2^{n}\right)$ for i times
- Computation is easy by caching $2^{i-1} X$ as done in XEX
- $X \oplus_{t} Y=\operatorname{msb}_{t}(X) \oplus Y$ if $t \leq n,\left(X \| 0^{t-n}\right) \oplus Y$ if $t>n$
- Chop-or-pad before sum

How ZHASH works: security of XTX/XT

Lemma

Let $\widetilde{\mathrm{P}}: \mathcal{T} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a TURP and H is ϵ-pAXU. Then,

$$
\operatorname{Adv}_{\mathrm{XT}[\tilde{\mathrm{P}}, H]}^{\operatorname{tprp}}(q) \leq \frac{q^{2} \epsilon}{2} .
$$

and our H is $1 / 2^{n+\min \{n, t\}}-\mathrm{pAXU}$. Thus,

$$
\operatorname{Adv}_{X T[\mathbb{P}, H]}^{\operatorname{tprp}}(q) \leq \frac{q^{2}}{2^{n+\min \{n, t\}+1}} .
$$

Therefore, XT has $\min \{n,(n+t) / 2\}$-bit, BBB-security

How ZHASH works: chaining scheme

Given XT, it's easy to apply it in the PMAC-like single-chaining hashing scheme

- Message is divided into $(n+t)$-bit blocks, $\left(X_{\ell}[i], X_{r}[i]\right)$ for $i=1,2, \ldots$
- This is optimally efficient, but security is up to the birthday bound

How ZHASH works: chaining scheme

Given XT, it's easy to apply it in the PMAC-like single-chaining hashing scheme

- Message is divided into $(n+t)$-bit blocks, $\left(X_{\ell}[i], X_{r}[i]\right)$ for $i=1,2, \ldots$
- This is optimally efficient, but security is up to the birthday bound
- Need a larger chaining value

How ZHASH works: chaining scheme

- Naive use of $2 n$-bit chaining scheme [Nai15][Yas11] doesn't work
- XT output collision still breaks the scheme

How ZHASH works: chaining scheme

- Key observation: to avoid these collision attacks, the process of (X_{ℓ}, X_{r}) (the dotted box) must be a permutation
- A Feistel-like 1-round permutation works (ZHIASH)

How ZHASH works: chaining scheme

- Key observation: to avoid these collision attacks, the process of $\left(X_{\ell}, X_{r}\right)$ (the dotted box) must be a permutation
- A Feistel-like 1-round permutation works (ZHHASH)

Lemma

$\mathbb{Z H A S H}$ (w/ XT using TURP) is ϵ-almost universal for $\epsilon=4 / 2^{n+\min \{n, t\}}$

Full ZHASH

Input: $X=(X[1], \ldots, X[m]),|X[i]|=n+t$
Output $(U, V),|U|=n,|V|=t$

Details:

- $X \oplus_{t} Y=\operatorname{msb}_{t}(X) \oplus Y$ if $t \leq n,\left(X \| 0^{t-n}\right) \oplus Y$ if $t>n$
- $2 \cdot X$: multiplication by 2
- L_{ℓ} and L_{r} : two n-bit masks from \widetilde{E}_{K} w/ domain separation

ZFIN

ZFIN simply encrypts U with tweak V twice (for each n-bit output) and takes a sum (with domain separation)

PRF security of ZFIN

- ZFIN is essentially "Sum of Permutations" [Luc00, BI99, Pat08a, Pat13, CLP14, MN17]
- From a recent result by Dai et al. [DHT17], ZFIN is n-bit secure

Lemma

$$
\operatorname{Adv}_{\mathrm{ZFIN}[\widetilde{\widetilde{P}}]}^{\mathrm{prf}}(q) \leq 2\left(\frac{q}{2^{n}}\right)^{3 / 2}
$$

Security of ZMAC

Combining all lemmas,

Theorem

For $q \leq 2^{n-4}$ queries of total $\sigma(n+t)$-bit blocks,

$$
\operatorname{Adv}_{\mathrm{ZMAC}[\widetilde{P}]}^{\operatorname{prf}}(q, \sigma) \leq \frac{2.5 \sigma^{2}}{2^{n+\min \{n, t\}}}+4\left(\frac{q}{2^{n}}\right)^{3 / 2}
$$

Thus ZMAC is $\min \{n,(n+t) / 2\}$-bit secure

Security Proof

- $\mathbb{Z H} A$ ASH is ϵ-almost universal for $\epsilon=4 / 2^{n+\min \{n, t\}}$

$$
\max _{\substack{X \in\left(\{0,1\}^{n+t}\right)^{m} \\ X^{\prime} \in\left(\{0,1\}^{n+1}\right)^{m^{\prime}} \\ X \neq X^{\prime}}} \underset{\mathrm{X} \top}{\operatorname{Pr}}\left[\mathbb{Z} \mathbb{H} \mathbb{A} \mathbb{H}_{\mathrm{XT}}(X)=\mathbb{Z} \mathbb{H} \mathbb{A} \mathbb{S H}_{\mathrm{XT}}\left(X^{\prime}\right)\right] \leq \epsilon
$$

A Feistel-like Network Is a Permutation

- red lines are t bits
- $X \oplus_{t} Y=\operatorname{msb}_{t}(X) \oplus Y$ if $t \leq n,\left(X \| 0^{t-n}\right) \oplus Y$ if $t>n$

Breaking into Cases

- $\mathbb{Z H} A \mathbb{A S H}$ is ϵ-almost universal for $\epsilon=4 / 2^{n+\min \{n, t\}}$
- For any distinct $X \in\left(\{0,1\}^{n+t}\right)^{m}$ and $X^{\prime} \in\left(\{0,1\}^{n+1}\right)^{m^{\prime}}$,

$$
\underset{\mathrm{X} T}{\mathrm{Pr}}\left[\mathbb{Z} \mathbb{H} \mathbb{A S H}_{\mathrm{XT}}(X)=\mathbb{Z} \mathbb{H} \mathbb{A} \mathbb{S H}_{\mathrm{XT}}\left(X^{\prime}\right)\right] \leq \epsilon
$$

Cases:
(1) $m=m^{\prime}, \exists h, X[h] \neq X^{\prime}[h]$, and $\forall i \neq h, X[i]=X^{\prime}[i]$
(same number of blocks, difference in exactly one block)
(2) $m=m^{\prime}, \exists h, s, X[h] \neq X^{\prime}[h]$ and $X[s] \neq X^{\prime}[s]$
(same number of blocks, difference in two (or more) blocks)
(3) $m^{\prime}=m+1$
(4) $m^{\prime} \geq m+2$

- focus on the case $t \leq n$

Case 1

- $m=m^{\prime}, \exists h, X[h] \neq X^{\prime}[h]$, and $\forall i \neq h, X[i]=X^{\prime}[i]$
- same number of blocks, difference in exactly one block

- $\left(\Delta C_{\ell}[h], \Delta C_{r}[h]\right) \neq\left(0^{n}, 0^{t}\right)$, so $(\Delta U, \Delta V) \neq\left(0^{n}, 0^{t}\right)$
- $\operatorname{Pr}_{\mathbf{X T}}\left[\mathbb{Z H} \mathbb{H S H}_{\mathrm{XT}}(X)=\mathbb{Z} \mathbb{H} \mathbb{A} \mathbb{S H}_{\mathrm{XT}}\left(X^{\prime}\right)\right]=0$

Case 2

- $m=m^{\prime}, \exists h, s, X[h] \neq X^{\prime}[h]$ and $X[s] \neq X^{\prime}[s]$
- same number of blocks, difference in two (or more) blocks

- $\left(\Delta C_{\ell}[h], \Delta C_{r}[h]\right) \neq\left(0^{n}, 0^{t}\right)$ and $\left(\Delta C_{\ell}[s], \Delta C_{r}[s]\right) \neq\left(0^{n}, 0^{t}\right)$
- approach: use $\Delta C_{\ell}[h]$ and $\Delta C_{\ell}[s]$ as randomness

Case 2

- $\Delta U=0^{t} \Leftrightarrow 2^{m-h-1} \Delta C_{\ell}[h] \oplus 2^{m-s-1} \Delta C_{\ell}[s]=\Delta_{1}$
- $\Delta V=0^{n} \Leftrightarrow \Delta C_{r}[h] \oplus \Delta C_{r}[s]=\Delta_{2}$

$$
\begin{aligned}
& \Leftrightarrow \operatorname{msb}_{t}\left(\Delta C_{\ell}[h] \oplus \Delta C_{\ell}[s]\right)=\Delta_{2}^{\prime} \\
& \Leftrightarrow \Delta C_{\ell}[h] \oplus \Delta C_{\ell}[s]=\Delta_{2}^{\prime} \| *
\end{aligned}
$$

Case 2

- $\left\{\begin{array}{l}\Delta U=0^{t} \\ \Delta V=0^{n}\end{array} \Leftrightarrow\left\{\begin{array}{l}2^{m-h-1} \Delta C_{\ell}[h] \oplus 2^{m-s-1} \Delta C_{\ell}[s]=\Delta_{1} \\ \Delta C_{\ell}[h] \oplus \Delta C_{\ell}[s]=\Delta_{2}^{\prime} \| *\end{array}\right.\right.$
- For each $\left(\Delta_{2}, \Delta_{2}^{\prime} \| *\right)$, one possibility for $\left(\Delta C_{r}[h], \Delta C_{r}[s]\right)$
- at most 2^{n-t} possible values of ($\left.\Delta C_{r}[h], \Delta C_{r}[s]\right)$

$$
\text { s.t. }(\Delta U, \Delta V)=\left(0^{n}, 0^{t}\right)
$$

- at least $\left(2^{n}-1\right)^{2}$ possible choices for $\left(\Delta C_{r}[h], \Delta C_{r}[s]\right)$
- $\operatorname{Pr}\left[(\Delta U, \Delta V)=\left(0^{n}, 0^{t}\right)\right] \leq \frac{2^{n-t}}{\left(2^{n}-1\right)^{2}} \leq \frac{4}{2^{n+t}}$

Case 3

- $m^{\prime}=m+1$

- $\Delta U=2\left(C_{\ell}[m] \oplus 2 C_{\ell}^{\prime}[m] \oplus C_{\ell}^{\prime}[m+1] \oplus \Delta_{1}\right)$
- $\Delta V=\operatorname{msb}_{t}\left(C_{\ell}[m] \oplus C_{\ell}^{\prime}[m] \oplus C_{\ell}^{\prime}[m+1]\right) \oplus \Delta_{2}$

Case 3

- $\Delta U=2\left(C_{\ell}[m] \oplus 2 C_{\ell}^{\prime}[m] \oplus C_{\ell}^{\prime}[m+1] \oplus \Delta_{1}\right)$
- $\Delta V=\operatorname{msb}_{t}\left(C_{\ell}[m] \oplus C_{\ell}^{\prime}[m] \oplus C_{\ell}^{\prime}[m+1]\right) \oplus \Delta_{2}$
- $\left\{\begin{array}{l}\Delta U=0^{t} \\ \Delta V=0^{n}\end{array} \Leftrightarrow\left\{\begin{array}{l}C_{\ell}[m] \oplus 2 C_{\ell}^{\prime}[m] \oplus C_{\ell}^{\prime}[m+1]=\Delta_{1}^{\prime} \\ C_{\ell}[m] \oplus C_{\ell}^{\prime}[m] \oplus C_{\ell}^{\prime}[m+1]=\Delta_{2} \| *\end{array}\right.\right.$
- Letting $Y=C_{\ell}[m] \oplus C_{\ell}^{\prime}[m+1]$ and $Z=C_{\ell}^{\prime}[m]$ yields

$$
\left\{\begin{array}{l}
Y \oplus 2 Z=\Delta_{1}^{\prime} \\
Y \oplus Z=\Delta_{2} \| *
\end{array}\right.
$$

which has a unique solution

- they are uniform over $\{0,1\}^{n}$
- $\operatorname{Pr}\left[(\Delta U, \Delta V)=\left(0^{n}, 0^{t}\right)\right] \leq \frac{2^{n-t}}{2^{2 n}} \leq \frac{1}{2^{n+t}}$

Case 4

- $m^{\prime} \geq m+2$

- use $C_{\ell}^{\prime}\left[m^{\prime}-1\right]$ and $C_{\ell}^{\prime}\left[m^{\prime}\right]$ as randomness
- $\Delta U=2\left(2 C_{\ell}^{\prime}\left[m^{\prime}-1\right] \oplus C_{\ell}^{\prime}\left[m^{\prime}\right] \oplus \Delta_{1}\right)$
- $\Delta V=\operatorname{msb}_{t}\left(C_{\ell}^{\prime}\left[m^{\prime}-1\right] \oplus C_{\ell}^{\prime}\left[m^{\prime}\right]\right) \oplus \Delta_{2}$
- the same analysis as Case 3 can be used
- $\operatorname{Pr}\left[(\Delta U, \Delta V)=\left(0^{n}, 0^{t}\right)\right] \leq \frac{1}{2^{n+t}}$
- $\operatorname{Pr}\left[(\Delta U, \Delta V)=\left(0^{n}, 0^{t}\right)\right] \leq \frac{4}{2^{n+t}}$ for all cases

Instantiation Updates*

- In [IMPS17], we used Deoxys-BC and SKINNY to instantiate ZMAC
- standard TPRP security assumption
- "XOR some extra tweak material to the key input of the TBC"
- originally proposed by [LRW02] for BCs
- Given $\widetilde{E}^{i}:\{0,1\}^{k} \times\{0,1\}^{t} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, regard it as

$$
\bar{E}^{i}:\{0,1\}^{k} \times\{0,1\}^{t+k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

* Thanks to Christof Beierle for the suggestion.

Instantiation Updates

- Input: $X=(X[1], \ldots, X[m])$,

$$
|X[i]|=n+(t+k), X[i]=\left(X_{\ell}[i], X_{r}[i]\right): X_{r}[i] \text { is } t+k \text { bits }
$$

- Output $(U, V),|U|=n,|V|=t+k$

- can process $(n+t+k)$ bits per 1 TBC call

Remarks

- related-key security of \widetilde{E} is needed (strong assumption)
- limited to the birthday security w.r.t. k
- due to a generic birthday attack against $E_{K \oplus T}(\cdot)$ by [BK03]
- $E_{K_{i}}(X)$ for $1 \leq i \leq 2^{k / 2}$ and $E_{K \oplus T_{j}}(X)$ for $1 \leq j \leq 2^{k / 2}$
- with Deoxys-BC-256, $k=128, t=124, n=128$ (4 bits for domain separation)
- 64-bit security, expected to be 50% faster
- related-key security will not be an issue (also for SKINNY)

Instantiation with AES-128

- Can use ZMAC with AES-128
- 64-bit security
- estimated speed: 0.45 cpb (taking into account the 1.4 slowdown for recomputation of the key schedule at every block
- AES-256 is not suitable because of the related-key attack [BKN09] schedule)

Concluding remarks

- Reviewed ZMAC, a highly secure and fast MAC based on TBC
- Security Proof
- Instantiation updates

The power of XEX-like masking:

- We already see it in many blockcipher modes (e.g. PMAC, OCB)
- ZMAC shows it is also powerful for TBC modes
- As dedicated TBCs are becoming popular, this direction looks worth to be further explored

Concluding remarks

- Reviewed ZMAC, a highly secure and fast MAC based on TBC
- Security Proof
- Instantiation updates

The power of XEX-like masking:

- We already see it in many blockcipher modes (e.g. PMAC, OCB)
- ZMAC shows it is also powerful for TBC modes
- As dedicated TBCs are becoming popular, this direction looks worth to be further explored

Thank you!

[^0]: * Based on: Iwata, Minematsu, Peyrin, and Seurin. ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication. CRYPTO 2017
 ${ }^{\dagger}$ Supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 26280045

