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Introduction

Hash function H : ⌃⇤ ! ⌃n

Two popular design strategies:

• Compression-function-based: SHA-2

• Permutation-based: SHA-3

Construction: FIL primitive + domain extension
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Strengthened MD

HF
IV (M), where M = M1kM2k · · · kMm

Mm−1M1

F F FIV

Mm∥10*

F

0*∥|M|

Pros • Collision resistance is preserved.

Cons • Length-extension property
• The last message block may consist only of the padding
sequence.

Cons degrade e�ciency.

S. Hirose (Univ. Fukui) Hashing with Minimum Padding ASK 2016 (2016/09/30) 3 / 28



HMAC [BCK96]

K

M
ipad

∥

opad

∥

H

H

• Calls H twice to prevent length-extension attacks

• Not e�cient for short messages

S. Hirose (Univ. Fukui) Hashing with Minimum Padding ASK 2016 (2016/09/30) 4 / 28



Overview of the Results

Domain extension scheme for sequential hashing

• with minimum padding

• free from length-extension

Security analysis of the domain extension scheme

• Collision resistance

• Indi↵erentiability from a random oracle (IRO)

• pseudorandom function (PRF) of keyed-via-IV mode

Application to sponge construction

• Indi↵erentiability from a random oracle

S. Hirose (Univ. Fukui) Hashing with Minimum Padding ASK 2016 (2016/09/30) 5 / 28



Minimum and Non-Injective Padding

Minimum and non-injective padding is common for BC-based MAC

E.g.) CMAC

|Mm| = block length |Mm| 6= block length

EK EK

Mm−1

EK

Mm

T

M1

2L

. . . EK EK

Mm−1

EK

T

M1

22L

. . .

Mm∥10*

• L = EK(0)
•
2L and 2

2L are used for
• preventing the length-extension
• separating the domain (Padding is not injective)
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Minimum Padding for Sequential Hashing

For sequential iteration of F : ⌃n ⇥⌃w ! ⌃n with IV

pad(M) =

(
M if |M | > 0 and |M | ⌘ 0 (mod w)

Mk10⇤ if |M | = 0 or |M | 6⌘ 0 (mod w)

• Identical to the padding of CMAC, PMAC, etc.

• Minimum padding sequence

• Not injective
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Proposed Domain Extension Scheme

For message M = M1kM2k · · · kMm such that

1 |M | > 0 and |M | ⌘ 0 (mod w),

Mm−1 MmM1 M2 

F F F FIV π0

w

2 |M | = 0 or |M | 6⌘ 0 (mod w),

Mm−1M1 M2

F F F FIV π1

Mm∥10*

w

⇡0 and ⇡1 are not cryptographic operations

• Assumption: ⇡0(v) 6= v ^ ⇡1(v) 6= v ^ ⇡0(v) 6= ⇡1(v) for any v

• E.g.) XOR with distinct non-zero constants
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Related Work (CR-Preserving Domain Extension)

Merkle 1989

IV F F F F

M1 M2 Mm∥0*∥|M|Mm−1

• Padding-length  message-block-length+ s� 1 (if |M | is in s-bit)
• Admits M of bounded length, |M |  2

s � 1

Damg̊ard 1989

IV F F F F

0∥M1 1∥M2 1∥Mm∥0d 1∥d

• Padding length is O(|M |)
• Admits M of arbitrary length
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Related Work (CR-Preserving Domain Extension)

Nandi 2009

IV F F F F

M1 M2 Mm∥0*∥|M|Mm−1

• Admits M of arbitrary length by variable length encoding of |M |
• Padding-length = O(log |M |)
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Su�x-Free-Prefix-Free Hashing [BGKZ12]

Mm−1 MmM1 M2 

F1V F2 F2 F3

• IV is variable; without MD strengthening
• Needs three CFs

• F1 provides prefix-freeness; F3 provides su�x-freeness
• Satisfies IRO
• Assumes injective padding

Cf.)

11∥Mm−1 10∥Mm00∥M1 11∥M2

FV F F F

• Padding-length = O(|M |)
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Merkle-Damg̊ard with Permutation (MDP) [HPY07]

Mm−1 MmM1 M2

F F F FπIV

• ⇡ is not a cryptographic primitive

Cf.) Ferguson, Kelsey 2001 (Comment on Draft FIPS 180-2)

Mm−1 MmM1 M2

F F F FIV

C
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GCBC1 [Nandi 09]

|Mm| = block length |Mm| 6= block length

EK

Mm−1

EK

Mm

T

M1

. . . EK

M2

EK

≪1

EK

Mm−1

EK

T

M1

. . . EK

M2

EK

≪2

Mm∥10*

• XOR with constants does not work

• Requires at least two message blocks
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Collision Resistance in the Standard Model

Lemma

Any collision pair for HF,{⇡0,⇡1}
IV implies

• a collision pair,

• a {⇡0,⇡1}-pseudo-collision pair, or

• a preimage of IV , ⇡�1
0 (⇡1(IV )), or ⇡�1

1 (⇡0(IV ))

for F

Proof: Backward induction

{⇡0,⇡1}-pseudo-collision pair for F :

(V,X) and (V 0, X 0
) s.t. ⇡0(F (V,X)) = ⇡1(F (V 0, X 0

))

S. Hirose (Univ. Fukui) Hashing with Minimum Padding ASK 2016 (2016/09/30) 14 / 28



Collision Resistance in the Standard Model

Theorem

The collision resisntance of HF,{⇡0,⇡1}
IV is reduced to

• the collision resistance

• the {⇡0,⇡1}-pseudo-collision resistance, and

• the everywhere preimage resistance

of F .

Everywhere preimage resistance of h:

Adv

epre
h (A) = max

Y 2Y
{Pr[M  A(h) : h(M) = Y ]}
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Definition of Indi↵erentiability from a Random Oracle

[Maurer, Renner, Holenstein 04], [Coron, Dodis, Malinaud, Puniya 05]

C SHF

A A
or

• C is hashing mode of F
• F is FIL ideal primitive

• Random oracle
• Ideal block cipher

• H is VIL RO

• Simulator S tries to mimic F
with access to oracle H

CF is indi↵. from VIL RO (IRO) if no e�cient adver A can tell apart

(CF , F ) and (H,SH
)
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Indi↵erentiability from a Random Oracle (IRO)

Theorem

Suppose that CF F : ⌃n ⇥⌃w ! ⌃n is chosen uniformly at random.

Then, for HF HF,{⇡0,⇡1}
IV , there exists a simulator S of F s.t., for any

adversary A making

• at most q queries to its FIL oracle

• queries to its VIL oracle which cost at most � message blocks in total,

Adv

indi↵

H
F,{⇡0,⇡1}
IV ,S

(A)  5(� + q)2

2

n
+

3�q

2

n � 6q + 1

,

and S makes at most q queries.

Secure if � + q = o(2n/2)
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IRO in the Ideal Cipher Model

The CF F : ⌃n ⇥⌃w ! ⌃n is the Davies-Meyer mode of a BC E

• E is chosen uniformly at random

Theorem

For the hash function HF,{⇡0,⇡1}
IV , there exists a simulator S of E s.t., for

any adversary A making

• at most qe queries to its FIL encryption oracle

• at most qd queries to its FIL decryption oracle

• queries to its VIL oracle which cost at most � message blocks in total,

Adv

indi↵

H
F,{⇡0,⇡1}
IV ,S

(A)  12(� + qe + qd)2

2

n
+

3�(qe + qd)

2

n � 6(qe + qd)� 5

,

and S makes at most qe queries.

Secure if � + qe + qd = o(2n/2)
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Keyed via IV mode of HF,{⇡0,⇡1}
IV

For message M such that

1 |M | > 0 and |M | ⌘ 0 (mod w),

Mm−1 MmM1 M2 

F F F FK π0

w

2 |M | = 0 or |M | 6⌘ 0 (mod w),

Mm−1M1 M2

F F F FK π1

Mm∥10*

w
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PRF Security

Theorem

Let A be any adversary against KIV mode of HF,{⇡0,⇡1}
IV :

• A runs in time at most t and makes at most q queries

• The length of each query is at most `w

Then, there exists an adversary B against F such that

Adv

prf

H
F,{⇡0,⇡1}
IV

(A)  `qAdvprf-rka{id ,⇡1,⇡2},F (B) .

B runs in time at most t+O(`qTF ) and makes at most q queries.

HF,{⇡0,⇡1} is PRF (= F is PRF against {id ,⇡1,⇡2}-restricted RKAs
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Definition of PRF

A keyed function f : K ⇥D ! R is PRF

(= fK is indistinguishable from uniform random function ⇢ : D ! R
• Secret key K 2 K is chosen uniformly at random

• Adversary makes queries to fK or ⇢

Adversary
x

. .
 .

Oracle
R(x)

A R R is fK or ⇢

Adv

prf
f (A) =

���Pr[AfK
= 1]� Pr[A⇢

= 1]

���
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PRF against Related Key Attacks

f : K ⇥D ! R is PRF against  -restricted RKAs if

f is indistinguishable from uniform random keyed function ⇢ : K⇥D ! R
•  is a set of related-key deriving functions

• Secret key K 2 K is chosen uniformly at random

• Adversary makes queries to f (K) or ⇢ (K) for any  2  

Adversary
ψ, x

. .
 .

Oracle
Rψ(K)(x)

A R, K
R 2 {f, ⇢}
 2  

Adv

prf-rka
 ,f (A) =

���Pr[A(f (K)) 2 
= 1]� Pr[A(⇢ (K)) 2 

= 1]

���
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PRF Modes Based on Hash Function

Modes using a hash function

• HMAC [Bellare, Canetti, Krawczyk 1996]

• Sandwich MD [Yasuda 2007]

• HMAC without the second key [Yasuda 2009]

• AMAC (Augmented MAC) [Bellare, Bernstein, Tessaro 2016]

Modes using a compression function

• Plain Merkle-Damg̊ard (MD) with prefix-free encoding [BCK1996]

• EMD (Enveloped MD) [Bellare, Ristenpart 2006]

• MDP (MD with Permutation) [Hirose, Park, Yun 2007]

• Boosting MD [Yasuda 2007]

• OMD MAC function [CMNCRVV2014]

All of the above assume injective padding except for OMD MAC function.

• OMD MAC function uses keyed CF with tweaks.
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AMAC (Augmented MAC) [BBT16]

K

M

∥ OutH

• Used in the Ed25519 signature scheme

• Out is not a cryptographic primitive
E.g.) truncation or mod function

AMACH is PRF (= F is PRF under leakage of the key by Out
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BNMAC (Boosted NMAC) [Yas07]

Double-key version (Single-key version is also presented)

M2m−1M1
M2

F F F FK

M3
M4 M2m

K ′
∥

11...1

BNMACF is PRF (= F is PRF and �-2PRF
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Application to Sponge Construction

For message M such that

1 |M | > 0 and |M | ⌘ 0 (mod w),

π0
IV P

Mm−1M1 M2

P P P

Mm

2 |M | = 0 or |M | 6⌘ 0 (mod w),

π1
IV P

Mm−1M1 M2

P P P

Mm∥10*
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IRO in the Ideal Permutaton Model

The permutation P : ⌃b ! ⌃b is chosen uniformly at random

• b = r + c and c is capacity of sponge construction

Theorem

For the hash function GP,{⇡0,⇡1}
IV , there exists a simulator S of P s.t., for

any adversary A making

• at most qf queries to its FIL forward oracle

• at most qb queries to its FIL backward oracle

• queries to its VIL oracle which cost at most � message blocks in total,

Adv

indi↵

G
P,{⇡0,⇡1}
IV ,S

(A)  12(� + qf + qb)2

2

c
+

3�(qf + qb)

2

c � 6(qf + qb)� 5

,

and S makes at most qf queries.

Secure if � + qf + qb = o(2c/2)
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Conclusion

Domain extension scheme for sequential hashing

• with minimum padding

• free from length-extension

Security analysis of the domain extension scheme

• Collision resistance
• Indi↵erentiability from a random oracle

• in the random oracle model
• in the ideal cipher model with Davies-Meyer CF

• Pseudorandom function by keyed-via-IV

Application to sponge construction

• IRO in the ideal permutation model
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