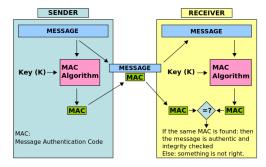
Wegman-Carter Style MACs from TBCs

Jooyoung Lee

School of Computing(GSIS), KAIST

Jooyoung Lee Wegman-Carter Style MACs from TBCs

Message Authentication Codes



http://en.wikipedia.org/wiki/File:MAC.svg

- Block cipher-based: CMAC, OMAC etc.
- Hash-based: HMAC

• $HMAC_{\kappa}(M) = H((K' \oplus \text{opad})||H(K' \oplus \text{ipad})||M)$

Universal hashing-based

MAC Queries

- If (N, M) queried, then $T = MAC_{\kappa}(N, M)$ is returned
 - Nonce-respecting: All the nonces are different in the MAC queries
 - Nonce-misuse: Nonces might be repreated

Verification Queries

If (N, M, T) is queried, then 1(accept) or 0(reject) is returned

• The adversarial goal is to find at least one successful forgery

The two phases might be separated.

Viewed as a Distinguishing Game

Real World

- A key K is chosen uniformly at random
- A mac query (N, M) is faithfully answered with $T = MAC_{K}(N, M)$
- A verification query (N, M, T) is faithfully answered by checking

$$MAC_{\mathbf{K}}(N,M) \stackrel{?}{=} T$$

• At the end of the interaction, the real key K is given for free

Ideal World

- A mac query (*N*, *M*) is answered with the evaluation of an ideal primitive at (*N*, *M*)
- A verification query (N, M, T) is always answered with 0(=reject)
- At the end of the interaction, an independent random key K is given to the distinguisher

Universal Hash Family

Definition

Let \mathcal{K} , \mathcal{X} , \mathcal{Y} be non-empty sets and let $\varepsilon > 0$. A keyed function

$$H:\mathcal{K}\times\mathcal{X}\longrightarrow\mathcal{Y}$$

is said to be ε -almost xor universal (AXU) if for any distinct $X, X' \in \mathcal{X}$ and $Y \in \mathcal{Y}$,

$$\Pr\left[K \leftarrow_{\$} \mathcal{K} : H_{\mathcal{K}}(X) \oplus H_{\mathcal{K}}(X') = Y\right] \leq \varepsilon.$$

Example

For $M = (M_1, \ldots, M_l) \in \mathbb{F}'_{2^n}$, and a key $K \in \mathbb{F}_{2^n}$,

$$H_{K}(M) = M_{l}K^{l} + M_{l-1}K^{l-1} + \cdots + M_{1}K.$$

Obtained by computing $H \leftarrow (H \oplus M_i)K$ for i = 1, ..., I, where H is initialized as 0.

Wegman-Carter MAC

 Given an ε-AXU hash family H and a pseudorandom function F, then the tag of a message M is defined as

$$T=H_{K_h}(M)\oplus F_K(N)$$

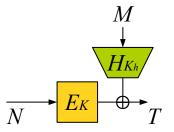
where N is a nonce.

- Forging probability is upper bounded by $(\frac{1}{2^n} + \varepsilon)q_v$ where
 - $\varepsilon \approx 1/2^n$ and q_v is the number of verification queries
 - F is assumed to be truly random
- Nonces should not be repeated.
 - If nonces are repeated, then one might obtain

$$T \oplus T' = H_{\mathcal{K}_h}(M) \oplus H_{\mathcal{K}_h}(M')$$

for T, T', M and M', revealing the secret key K_h

Wegman-Carter MACs based on Block Ciphers



- Typically, F is instantiated with a block cipher E
 - A random permutation is distinguished from a random function with 2^{n/2} queries
 - Forging probability is upper bounded by $(\frac{1}{2^n} + \varepsilon)q_v + \frac{(q_m + q_v)^2}{2^n}$
 - Birthday bound is tight?
- Vulnurable to nonce misuse(repetition)

Key Recovery Attack

$$T_i = MAC_{\mathcal{K},\mathcal{K}_h}(N_i,M) = H_{\mathcal{K}_h}(M) \oplus E_{\mathcal{K}}(N_i),$$

for a fixed message *M* and all different nonces N_i , $i = 1, ..., 2^{\frac{n}{2}}$.

2 For each candidate key K^* , compute

$$T_i \oplus H_{K^*}(M)$$

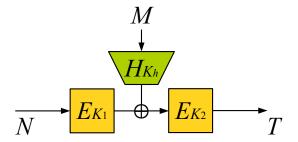
for
$$i = 1, ..., 2^{\frac{n}{2}}$$
.

If there exists a collision, then discard K*. Otherwise, check it using another set of 2^{n/2} tags.

Analysis

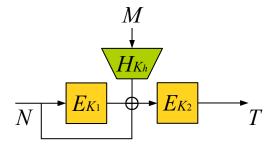
If $K^* = K_h$, then we would have $T_i \oplus H_{K^*}(M) = E_K(N_i)$, which are all different.

Nonce Misuse Resistance



- Resistant to nonce misuse(repetition) up to 2^{n/2} queries
- Secure only up to 2^{n/2} queries even in the nonce-respecting scenario

Recent Result: EWCDM (Crypto 2016)

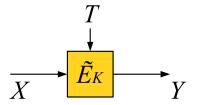


- Secure up to 2^{2n/3} queries in the nonce-respecting scenario
- Resistant to nonce misuse(repetition) up to 2^{n/2} queries

Open Problems

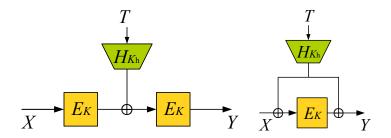
- What if $K_1 = K_2$?
- How truncation affects the security?

Tweakable Block Ciphers



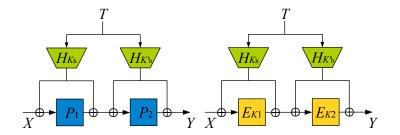
- Additional inputs called tweaks provide variability to the block cipher encryption
- Changing tweaks should be efficient without rekeying
- For a secret random key K, a tweakable block cipher Ẽ should behave like an ideal block cipher
 - A distinguisher adaptively makes forward and backward queries in order to distinguish the construction using a secret random key from the ideal cipher

LRW Constructions (Liskov, Rivest, Wagner: Crypto 2002)



- H is an almost xor universal hash family
- The CMT (left) is secure up to $2^{\frac{n}{2}}$ forward queries
- The LRW (right) is secure up to 2ⁿ/₂ forward and backward queries

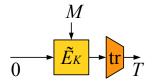
Tweakable Even-Mansour Ciphers (Cogliati, et al.: Crypto 2015)



- P_1 and P_2 are public random permutations
- Distinguishing advantages are upper bounded as follows:

$$egin{aligned} \mathsf{Adv}_{\mathit{TEM2}}(q_c,q_p) &\leq rac{29\sqrt{q_c}q_p}{2^n} + arepsilon\sqrt{q_c}q_p + 4arepsilon q_c^{3/2} + rac{30q_c^{3/2}}{2^n} \ \mathsf{Adv}_{\mathit{LRW2}}(q_c) &\leq 4arepsilon q_c^{3/2} + rac{30q_c^{3/2}}{2^n} \end{aligned}$$

WC-MACs from Weakly Secure TBCs



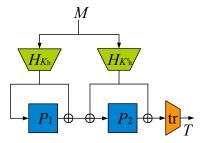
- Plaintext \rightarrow Constant
- Tweak \rightarrow Message (of a variable length)
- Ciphertext \rightarrow Tag

MAC-Security of a (Truncated) Ideal Block Cipher

The forging probability is upper bounded by $q_v/2^{\tau}$.

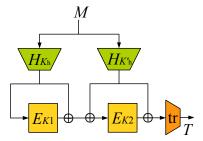
- **1** No matter how many MAC queries are made, $\tilde{E}_{\kappa}(M, 0)$ is truly random as long as *M* has not been queried before.
- 2 The success probability is $\frac{1}{2^{\tau}}$ for any verification query (M, T).
- **③** The tag length can be extended: $T = \tilde{E}_{\mathcal{K}}(M, 0) ||\tilde{E}_{\mathcal{K}}(M, 1)|$

WC-MAC from the Two-round TEM



- Deterministic (stateless)
- Secure up to 2²ⁿ/₃ queries (ignoring the truncation)
- Based on public primitives
- Security analyzed for truncated variants
- But two evaluations of H needed
 - Still faster than block cipher-based ones?

WC-MAC from the Two-round LRW



- Deterministic (stateless)
- Using four keys
- The adversarial forging probability is upper bounded by

$$(q_m+q_v)^{3/2}+rac{30(q_m+q_v)^{3/2}}{2^n}+rac{q_v}{2^ au}$$

• Wang et. al. found 32 constructions for TBCs that achieve 2ⁿ security and make two calls to the underlying block cipher

•
$$\widetilde{E4}_{K}^{T}(X) = E_{T \oplus Y}(X \oplus K) \oplus K$$
 for $Y = E_{K}(0)$

- Only *n*-bit tweaks accepted (if *E* is an *n*-bit key block cipher)
- Security proved in the ideal cipher model
- Minematsu and Iwata proposed a method of extending tweak lengths:

•
$$XTX_{K,L}^{T}(X) = \tilde{E}_{K}^{V}(X \oplus W) \oplus W$$
 where $H_{L}(T) = W || V$

• Let
$$H_L(T) = H_{K_h}(T) || H_{K'_h}(T)$$
 for $L = K_h || K'_h$

Combining the above two construction and viewing Y as an additional key (denoted K') results in...

Ongoing Research: Using Fully Secure Tweakable Block Ciphers

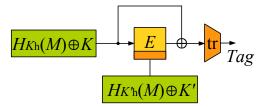
• A new TBC

$$TBC_{\mathbf{K}}^{\mathsf{T}}(X) = \mathsf{E}_{H_{K_{h}'}(\mathcal{T})\oplus \mathcal{K}'}(X\oplus \mathcal{K}\oplus H_{\mathcal{K}_{h}}(\mathcal{T}))\oplus \mathcal{K}\oplus H_{\mathcal{K}_{h}}(\mathcal{T}).$$

A new deterministic MAC

$$MAC_{\mathbf{K}}^{\mathsf{T}}(X) = E_{H_{K_{h}'}(M) \oplus K'}(K \oplus H_{K_{h}}(M)) \oplus K \oplus H_{K_{h}}(T).$$

- Using $\mathbf{K} = (K_h, K'_h, K, K')$ as a key
- Single call to the underlying block cipher
- Fully secure in the ideal cipher model
- Truncation allowed



Thank You!

Jooyoung Lee Wegman-Carter Style MACs from TBCs