How to Build Fully Secure Tweakable Blockciphers from Classical Blockciphers

Lei Wang

(joint work with Jian Guo, Guoyan Zhang, Jingyuan Zhao, Dawu Gu)

Shanghai Jiao Tong University

ASK 2016 — Nagoya University, Japan

September 29, 2016

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2 Target Construction

æ

- 2 Target Construction
- Search among Instances

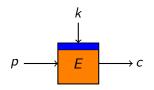
< 一型

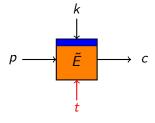
- 2 Target Construction
- Search among Instances
- Provable Security

- 一司

Motivation

- 2 Target Construction
- Search among Instances

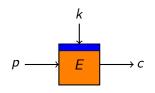

Provable Security

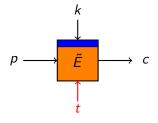

5 Conclusion

- 一司

Tweakable Blockcipher (TBC)

- additional parameter: public tweak t
- more natural primitive for modes of operation
 - $\diamond\,$ disk encryption, authenticated encryption, etc
- all wires have a size of *n* bits




classical blockcipher

tweakable blockcipher

Tweakable Blockcipher (TBC)

- additional parameter: public tweak t
- more natural primitive for modes of operation
 - \diamond disk encryption, authenticated encryption, etc
- all wires have a size of *n* bits

classical blockcipher

tweakable blockcipher

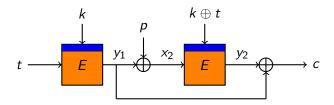
from the scratch

- Hasty pudding cipher [S98], Mercy [C00], Threefish [FLS+08]
- a drawback: no security proof

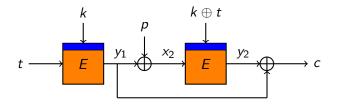
from the scratch

- Hasty pudding cipher [S98], Mercy [C00], Threefish [FLS+08]
- a drawback: no security proof

from blockcipher constructions


- tweak luby-rackoff [GHL+07], generalized feistel [MI08], key-alternating [JNP14,CLS15], etc
- provable security bound: (at most) $2^{2n/3}$ [CLS15]
- still far from full 2ⁿ provable security

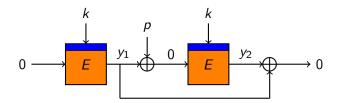
Three Approaches to Build TBCs


from blockcipher as a black-box

- tweak-dependent key (tdk): changing tweak values leads to rekeying blockciphers
- \bullet without using tdk
 - ◊ LRW1/2 [LRW02], XEX [R04], CLRW2 [LST12], etc
 - ◊ asymptotically approach full security [LS13]: 2^{sn/(s+2)} security with s blockcipher calls (low efficiency)
 - $\diamond\,$ in the standard model: blockcipher as PRP
- with using tdk
 - ◊ Minematsu's design [M09], Mennink's design [M15]
 - ◊ full 2ⁿ provable security [M15]: the only TBC claiming full 2ⁿ provable security
 - \diamond in the ideal blockcipher model [M15]

- tweak-dependent key
- two blockcipher calls
- full 2ⁿ provable security claimed

- tweak-dependent key
- two blockcipher calls
- full 2ⁿ provable security claimed

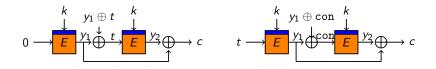


A key-recovery attack can be lanunched with a birthday-bound complexity

Key-recovery Attack on Mennink's Design $\widetilde{F2}$

an observation

When (t, c) = (0, 0), it has $y_1 = y_2$, and in turn $x_2 = 0$. Hence, by querying (t = 0, c = 0) to decryption $\widetilde{F2}^{-1}$, the received $p = y_1 = E_k(0)$.


Key-recovery Attack on Mennink's Design $\widetilde{F2}$

an observation

When (t, c) = (0, 0), it has $y_1 = y_2$, and in turn $x_2 = 0$. Hence, by querying (t = 0, c = 0) to decryption $\widetilde{F2}^{-1}$, the received $p = y_1 = E_k(0)$.

recover $E(k \oplus t, \text{const})$ for any t

- 1. query $(0, E(k, 0) \oplus t)$ to $\widetilde{F2}$, get c, and compute $E(k, t) = c \oplus E(k, 0)$;
- 2. query $(t, E(k, t) \oplus \text{const})$ to $\widetilde{F2}$, get c and compute $E(k \oplus t, \text{const}) = c \oplus E(k, t)$.

Key-recovery Attack on Mennink's Design $\widetilde{F2}$

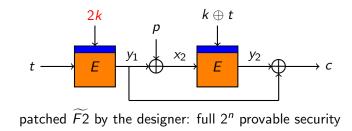
an observation

When (t, c) = (0, 0), it has $y_1 = y_2$, and in turn $x_2 = 0$. Hence, by querying (t = 0, c = 0) to decryption $\widetilde{F2}^{-1}$, the received $p = y_1 = E_k(0)$.

recover $E(k \oplus t, \text{const})$ for any t

- 1. query $(0, E(k, 0) \oplus t)$ to $\widetilde{F2}$, get c, and compute $E(k, t) = c \oplus E(k, 0)$;
- 2. query $(t, E(k, t) \oplus \text{const})$ to $\widetilde{F2}$, get c and compute $E(k \oplus t, \text{const}) = c \oplus E(k, t)$.

recover the key by a meet-in-the-middle procedure


Online. recover $E(k \oplus t, \text{const})$ for $2^{n/2}$ tweaks t; **Offline.** compute E(I, const) for $2^{n/2}$ values I; **MitM.** recover $k = I \oplus t$ from $E(k \oplus t, \text{const}) = E(I, \text{const})$.

Motivation of this work

Are there tweakable blockciphers that can achieve full 2^n provable security (even in the ideal blockcipher model)?

a small flaw in the original proof

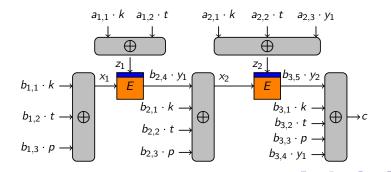
In the proof, under the condition that the attacker cannot guess the key correctly (that is, (12a) defined in [M15] is not set), it claimed that the distribution of y_1 is independent from y_2 . However, when the tweak t = 0, both the two blockcipher calls share the same key, and therefore the distribution of their outputs are highly related.

Motivation

2 Target Construction

3 Search among Instances

Provable Security


5 Conclusion

12 / 33

- 一司

The Target Construction

- $a_{i,j}, b_{i,j} \in \{0,1\}$
- simple XORs as linear mixing
- this talk focuses on the case of two blockcipher calls
 - ◊ one blockcipher call with linear mixings can reach at most birthday-bound security [M15]

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of $\{b_{3,1}, b_{3,2}, b_{3,3}\}$ is 1, and the other two are 0.

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of $\{b_{3,1}, b_{3,2}, b_{3,3}\}$ is 1, and the other two are 0.

Constraint 2

if y_1 is computed depending on plaintext p, it must not be used to compute z_2 . Thus, if $b_{1,3} = 1$, $a_{2,3}$ must be 0.

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of $\{b_{3,1}, b_{3,2}, b_{3,3}\}$ is 1, and the other two are 0.

Constraint 2

if y_1 is computed depending on plaintext p, it must not be used to compute z_2 . Thus, if $b_{1,3} = 1$, $a_{2,3}$ must be 0.

Constraint 3

if both y_1 and y_2 are computed depending on plaintext p, they must not be used both as inputs to the final linear mixing. Thus, if $b_{1,3}$ and $b_{2,4}$ are 1, $b_{3,4}$ must be 0.

イロト 不得下 イヨト イヨト

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of $\{b_{3,1}, b_{3,2}, b_{3,3}\}$ is 1, and the other two are 0.

Constraint 2

if y_1 is computed depending on plaintext p, it must not be used to compute z_2 . Thus, if $b_{1,3} = 1$, $a_{2,3}$ must be 0.

Constraint 3

if both y_1 and y_2 are computed depending on plaintext p, they must not be used both as inputs to the final linear mixing. Thus, if $b_{1,3}$ and $b_{2,4}$ are 1, $b_{3,4}$ must be 0.

Others

we always assume both blockciphers are indeed involved in the encrytion/decryption process.

L. Wang, SJTU

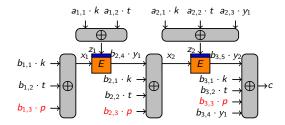
How to Build Fully Secure TBCs

ASK 2016 — Nagoya 14 / 33

- first and top-priority goal: full 2ⁿ provable security
- second goal: the minimum number of blockcipher calls
- third goal: (comparably) high efficiency of changing a tweak
 start with (at most) one tweak-dependent key

1 Motivation

- 2 Target Construction
- Search among Instances
 - Provable Security


5 Conclusion

- 一司

Three Types of Instances

According to the position of plaintext p (Constraint 1)

- Type I: $b_{1,3} = 1$, $b_{2,3} = 0$, $b_{3,3} = 0$
- Type II: $b_{1,3} = 0$, $b_{2,3} = 1$, $b_{3,3} = 0$
- Type III: $b_{1,3} = 0$, $b_{2,3} = 0$, $b_{3,3} = 1$

Constraint 1

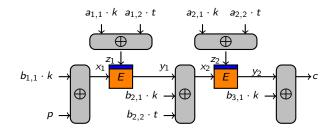
plaintext p must be used in exactly one linear mixing. Thus, one of $\{b_{3,1}, b_{3,2}, b_{3,3}\}$ is 1, and the other two are 0.

L. Wang, SJTU

How to Build Fully Secure TBCs

ASK 2016 — Nagoya

17 / 33


Type I

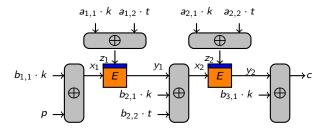
divided into two cases

Case (1). z_1 is a tweak-dependent key

Case (2). z₂ is a tweak-dependent key

* each case is divided into 4 subcases depending on $(a_{1,1}, b_{1,1})$.

18 / 33


Type I

divided into two cases

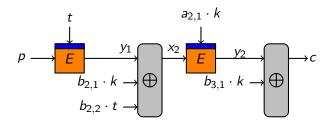
Case (1). z_1 is a tweak-dependent key

Case (2). z₂ is a tweak-dependent key

* each case is divided into 4 subcases depending on $(a_{1,1}, b_{1,1})$.

search result

Type I instances with one tweak-dependent key have at most birthday-bound security.

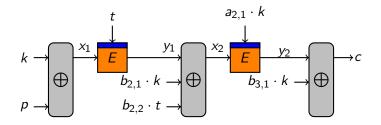

L. Wang, SJTU

How to Build Fully Secure TBCs

ASK 2016 - Nagoya 18 / 33

Subcase (1.1) as an example

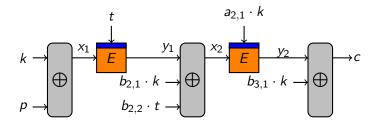
- $(a_{1,1}, b_{1,1}) = (0, 0);$
- the first blockcipher call is independent from k;
- y₁ can be obtained by querying E(·, ·), and hence essentially one blockcipher call in attackers' view;
- at most birthday-bound security [M15]

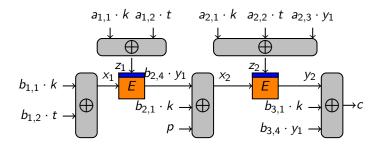

19 / 33

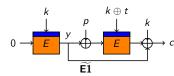
Subcase (1.2) as an example

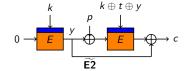
•
$$(a_{1,1}, b_{1,1}) = (0,1)$$

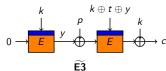
an observation

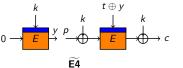

for any pair (t, p, c) and (t', p', c'), it has that c = c' implies $y_1 \oplus y'_1 = b_{2,2} \cdot (t \oplus t')$.

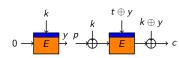

recover k by a meet-in-the-middle procedure

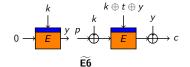

fix two distinct tweaks t and t';

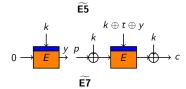

Online. collect $E(t, p \oplus k) \oplus E(t', p \oplus k)$ for $2^{n/2}$ distinct paintexts p; **Offline.** collect $E(t, I) \oplus E(t', I)$ for $2^{n/2}$ distinct values I; **MitM.** compute $k = p \oplus I$ from an online/offline collision

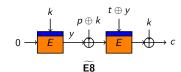


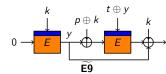

- two cases depending on z_1 or z_2 as a tweak-dependent key;
- each case is further divided into several subcases;
- 32 instances that no attack can be found

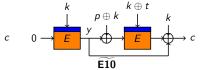


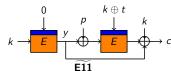


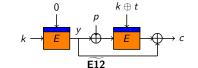


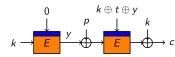


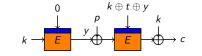


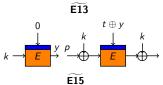


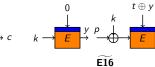



< □ > < ---->

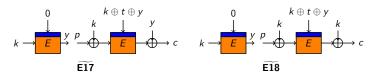

э

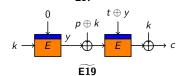


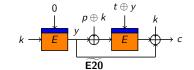


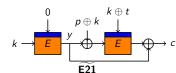


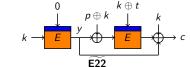
E14

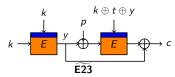

L. Wang, SJTU

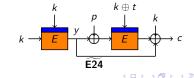

С

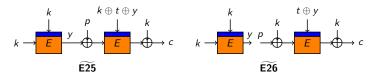

 $k \oplus y$

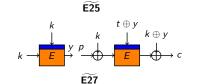

< □ > < ---->

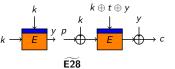

э

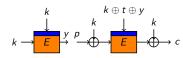


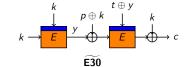


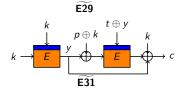


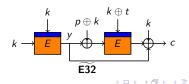


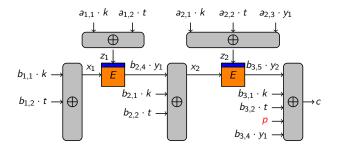





25 / 33







• plaintext *p* and ciphertext *c* are *linearly* related. Hence Type III instances are not secure.

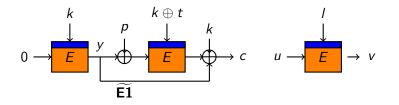
1 Motivation

- 2 Target Construction
- 3 Search among Instances
- Provable Security

5 Conclusion

- 一司

Theorem


Let \widetilde{E} be any tweakable blockcipher construction from the set of $\widetilde{E1}, \ldots, \widetilde{E32}$. Let q be an integer such that $q < 2^{n-1}$. Then the following bound holds.

$$\operatorname{\mathsf{Adv}}_{\widetilde{E}}^{\widetilde{\operatorname{sprp}}}(q) \leq rac{10q}{2^n}.$$

Proof Sketch for $\widetilde{E1}$

- the h-coefficient technique [P08, CS14]
- release k and y = E(k, 0) to the distinguisher after the interaction and before the final decision
- distinguisher gets all the input-output tuples of *E* during the interaction, including

• if there is no (z, x, y) = (I, u, v), the distinguisher fails.

1 Motivation

- 2 Target Construction
- 3 Search among Instances
- 4 Provable Security

- 一司

Conclusion

We find 32 TBCs with full 2^n provable security

- each TBC uses two blockcipher calls
- save one blockcipher call by precomputing and storing the subkey

•	in	the	ideal	blockcipher	model
---	----	-----	-------	-------------	-------

tweakable	key	security	cost		tdk	reference
blockciphers	size	(log_2)	E	\otimes/h	LUK	reference
LRW1	п	n/2	1	0	Ν	[LRW02]
LRW2	2 <i>n</i>	n/2	1	2	Ν	[LRW02]
XEX	п	n/2	1	0	Ν	[R04]
LRW2[2]	4 <i>n</i>	2n/3	2	2	Ν	[LST12]
LRW2[s]	2sn	sn/(s+2)	5	5	Ν	[LS13]
Min	п	$\max\{n/2, n - t \}$	2	0	Y	[M09]
$\widetilde{F}[1]$	п	2n/3	1	1	Υ	[M15]
$\tilde{F}[2]$	п	n/2	2	0	Υ	[M15]
patched $\tilde{F}[2]$	п	п	2	0	Υ	[M15]
$\widetilde{E1}, \ldots, \widetilde{E32}$	п	п	2 (1)	0	Υ	Ours

 $\otimes/h \text{ stands for multiplications or universal hashes;} \\ tdk \text{ stands for the tweak-dependent key. 'N' refers to not using tdk, and 'Y' refers to using tdk;} \\$

|t| stands for the bit length of the tweak;

- ∢ ⊢⊒ →

ASK 2016 — Nagoya

32 / 33

thank you for your attention