The Iterated Random Function Problem ASK 2016, Nagoya, Japan

Mridul Nandi

Indian Statistical Institute, Kolkata

28 September 2016 Joint work with Ritam Bhaumik, Nilanjan Datta, Avijit Dutta, Ashwin Jha, Avradip Mandal, Nicky Mouha.

• Iterated random function

- Iterated random function
- Known vs. Our Approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Iterated random function
- Known vs. Our Approach
- Types of Collision for (iterated) random function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Iterated random function
- Known vs. Our Approach
- Types of Collision for (iterated) random function

• Collision Probabilties and PRF analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Fix a positive integer r, and a random permutation f.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Fix a positive integer r, and a random permutation f.

 Minaud and Seurin in crypto 2015 studied PRP of f^r = f ◦ · · · ◦ f (r times)

• Fix a positive integer r, and a random permutation f.

- Minaud and Seurin in crypto 2015 studied PRP of f^r = f ◦ · · · ◦ f (r times)
- $O(rq/2^n)$ PRP advantage

- Fix a positive integer r, and a random permutation f.
- Minaud and Seurin in crypto 2015 studied PRP of f^r = f ◦ · · · ◦ f (r times)
- $O(rq/2^n)$ PRP advantage
- Lower bound of PRP advantage sometimes $\Theta(q/2^n)$

- Fix a positive integer r, and a random permutation f.
- Minaud and Seurin in crypto 2015 studied PRP of f^r = f ◦ · · · ◦ f (r times)
- $O(rq/2^n)$ PRP advantage
- Lower bound of PRP advantage sometimes $\Theta(q/2^n)$

Scope of improvement

• We ask same problem for random function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We ask same problem for random function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We show $\Theta(rq^2/2^n)$ PRF advantage

- We ask same problem for random function
- We show $\Theta(rq^2/2^n)$ PRF advantage
- We show an attack with advantage about $rq^2/2^n$ provided $q \geq 2^{n/3}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We ask same problem for random function
- We show $\Theta(rq^2/2^n)$ PRF advantage
- We show an attack with advantage about $rq^2/2^n$ provided $q \geq 2^{n/3}$

• We show upper bound using Coefficients H Technique

• Used for analyzing Improved bound of CBC by Bellare, Pietrzak and Rogaway in crypto 2005

• Used for analyzing Improved bound of CBC by Bellare, Pietrzak and Rogaway in crypto 2005

• $O(rq^2/2^n)$ PRF advantage for CBC of length r

- Used for analyzing Improved bound of CBC by Bellare, Pietrzak and Rogaway in crypto 2005
- $O(rq^2/2^n)$ PRF advantage for CBC of length r
- Collision between a final input (q such) and other rq inputs

- Used for analyzing Improved bound of CBC by Bellare, Pietrzak and Rogaway in crypto 2005
- $O(rq^2/2^n)$ PRF advantage for CBC of length r
- Collision between a final input (q such) and other rq inputs

• On the average $1/2^n$ collision probability for a pair

- Used for analyzing Improved bound of CBC by Bellare, Pietrzak and Rogaway in crypto 2005
- $O(rq^2/2^n)$ PRF advantage for CBC of length r
- Collision between a final input (q such) and other rq inputs
- On the average $1/2^n$ collision probability for a pair
- Unfortunately this is not true for random function (collision probability for a pair can be $O(rq/2^n)$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Allow all collisions on f that do not lead to collision on f^r

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Allow all collisions on f that do not lead to collision on f^r

• Look at possible function graphs of f and f^r

• Allow all collisions on f that do not lead to collision on f^r

- Look at possible function graphs of f and f^r
- Bound probabilities of different types of collisions

- Allow all collisions on f that do not lead to collision on f^r
- Look at possible function graphs of f and f^r
- Bound probabilities of different types of collisions
- Use Coefficient H Technique to upper bound advantage

• We show lower bound

- We show lower bound
- Vary first block and rest all blocks are same

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We show lower bound
- Vary first block and rest all blocks are same

• For a pair collision probability about $r/2^n$

- We show lower bound
- Vary first block and rest all blocks are same
- For a pair collision probability about $r/2^n$
- Use Inclusion Exclusion Principle to lower bound advantage

- We show lower bound
- Vary first block and rest all blocks are same
- For a pair collision probability about $r/2^n$
- Use Inclusion Exclusion Principle to lower bound advantage

• So it is tight up to a small power of log r

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Views function as directed graph

- Views function as directed graph
- y = f(x) represented by an edge from x to y

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Views function as directed graph
- y = f(x) represented by an edge from x to y

Loops allowed, no multiple edges

- Views function as directed graph
- y = f(x) represented by an edge from x to y

- Loops allowed, no multiple edges
- Trails move together once merged

- Views function as directed graph
- y = f(x) represented by an edge from x to y

- Loops allowed, no multiple edges
- Trails move together once merged
- All trails eventually lead to cycles

Two main approaches:

Two main approaches:

• Feedback Attack:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two main approaches:

• Feedback Attack:

• Based on Pollard's Rho Algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two main approaches:

• Feedback Attack:

- Based on Pollard's Rho Algorithm
- Keeps feeding back f's outputs to f

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Two main approaches:

- Feedback Attack:
 - Based on Pollard's Rho Algorithm
 - Keeps feeding back f's outputs to f

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

• Query 1:
$$x$$
, query *i*: $f^{i-1}(x)$

Two main approaches:

- Feedback Attack:
 - Based on Pollard's Rho Algorithm
 - Keeps feeding back f's outputs to f

- Query 1: x, query i: $f^{i-1}(x)$
- Tries to find cycle

Two main approaches:

- Feedback Attack:
 - Based on Pollard's Rho Algorithm
 - Keeps feeding back f's outputs to f

- Query 1: x, query *i*: $f^{i-1}(x)$
- Tries to find cycle

• Multiple Trails Attack:

Two main approaches:

- Feedback Attack:
 - Based on Pollard's Rho Algorithm
 - Keeps feeding back f's outputs to f
 - Query 1: x, query *i*: $f^{i-1}(x)$
 - Tries to find cycle

• Multiple Trails Attack:

• Based loosely on van Oorschot-Wiener's Parallel Search

Two main approaches:

Feedback Attack:

- Based on Pollard's Rho Algorithm
- Keeps feeding back f's outputs to f
- Query 1: x, query *i*: $f^{i-1}(x)$
- Tries to find cycle

• Multiple Trails Attack:

- Based loosely on van Oorschot-Wiener's Parallel Search
- Starts feedback queries simultaneously from many points

Two main approaches:

- Feedback Attack:
 - Based on Pollard's Rho Algorithm
 - Keeps feeding back f's outputs to f
 - Query 1: x, query i: $f^{i-1}(x)$
 - Tries to find cycle
- Multiple Trails Attack:
 - Based loosely on van Oorschot-Wiener's Parallel Search
 - Starts feedback queries simultaneously from many points
 - Query 1 on Trail *j*: $\overline{x_j}$, query *i* on Trail *j*: $f^{i-1}(x_j)$

Two main approaches:

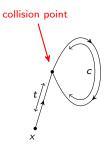
Feedback Attack:

- Based on Pollard's Rho Algorithm
- Keeps feeding back f's outputs to f
- Query 1: x, query *i*: $f^{i-1}(x)$
- Tries to find cycle

• Multiple Trails Attack:

- Based loosely on van Oorschot-Wiener's Parallel Search
- Starts feedback queries simultaneously from many points
- Query 1 on Trail *j*: $\overline{x_j}$, query *i* on Trail *j*: $f^{i-1}(x_j)$
- Tries to make two trails merge

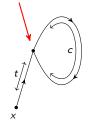
• Rho collision



Rho collision

• Tail length t

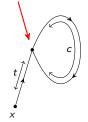
collision point



Rho collision

- Tail length t
- Cycle length c

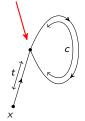
collision point



Rho collision

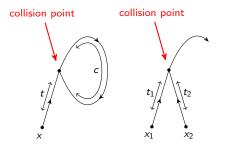
- Tail length t
- Cycle length c
- Denoted $\rho(t,c)$

collision point



Rho collision

- Tail length t
- Cycle length c
- Denoted $\rho(t,c)$
- Lambda collision

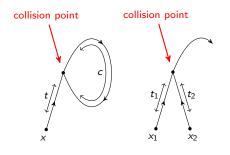


Rho collision

- Tail length t
- Cycle length c
- Denoted $\rho(t,c)$

Lambda collision

• Foot lengths t₁ and t₂

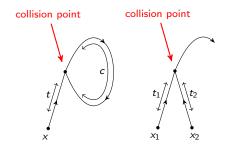


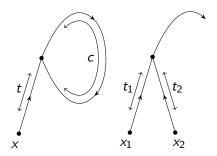
Rho collision

- Tail length t
- Cycle length c
- Denoted $\rho(t,c)$

Lambda collision

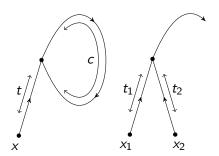
- Foot lengths t₁ and t₂
- Denoted $\lambda(t_1, t_2)$

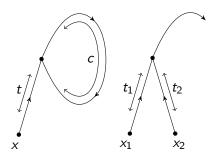




(日)、(四)、(E)、(E)、(E)

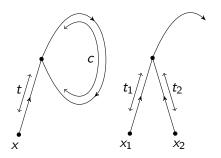
• Rho collision





• Rho collision

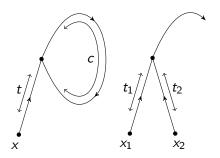
• Feedback attack from some *x*



• Rho collision

• Feedback attack from some *x*

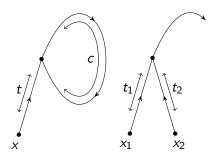
•
$$\Pr\left[\rho(t,c)\right] \leq \frac{1}{N}$$



Rho collision

- Feedback attack from some *x*
- $\Pr\left[\rho(t,c)\right] \leq \frac{1}{N}$
- $\Pr\left[\rho(t,c)\right] \leq \frac{e^{-\alpha}}{N}$ for $t = \Theta(\sqrt{\alpha N})$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

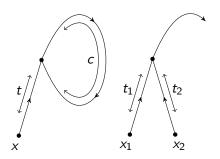


Rho collision

- Feedback attack from some *x*
- $\Pr\left[\rho(t,c)\right] \leq \frac{1}{N}$
- $\Pr\left[\rho(t,c)\right] \leq \frac{e^{-\alpha}}{N}$ for $t = \Theta(\sqrt{\alpha N})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lambda collision

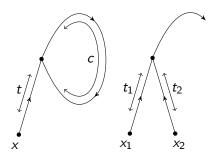


Rho collision

- Feedback attack from some *x*
- $\Pr\left[\rho(t,c)\right] \leq \frac{1}{N}$
- $\Pr\left[\rho(t,c)\right] \leq \frac{e^{-\alpha}}{N}$ for $t = \Theta(\sqrt{\alpha N})$

Lambda collision

• Two-trail attack from some x₁ and x₂



Rho collision

- Feedback attack from some *x*
- $\Pr\left[\rho(t,c)\right] \leq \frac{1}{N}$
- $\Pr\left[\rho(t,c)\right] \leq \frac{e^{-\alpha}}{N}$ for $t = \Theta(\sqrt{\alpha N})$
- Lambda collision
 - Two-trail attack from some x₁ and x₂

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\Pr\left[\lambda(t_1, t_2)\right] \leq \frac{1}{N}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Same two approaches:

Same two approaches:

• Feedback Attack:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Same two approaches:

- Feedback Attack:
 - Keeps feeding back f^r's outputs to f^r

Same two approaches:

- Feedback Attack:
 - Keeps feeding back fr's outputs to fr

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

• Query 1: x, query *i*: $(f^r)^{i-1}(x)$

Same two approaches:

- Feedback Attack:
 - Keeps feeding back fr's outputs to fr

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Query 1: x, query i: $(f^r)^{i-1}(x)$
- Tries to find cycle

Same two approaches:

- Feedback Attack:
 - Keeps feeding back fr's outputs to fr

- Query 1: x, query i: $(f^r)^{i-1}(x)$
- Tries to find cycle
- Multiple Trails Attack:

Same two approaches:

- Feedback Attack:
 - Keeps feeding back fr's outputs to fr
 - Query 1: x, query $i: (f^r)^{i-1}(x)$
 - Tries to find cycle
- Multiple Trails Attack:
 - Starts feedback queries simultaneously from many points

Same two approaches:

- Feedback Attack:
 - Keeps feeding back fr's outputs to fr
 - Query 1: x, query $i: (f^r)^{i-1}(x)$
 - Tries to find cycle
- Multiple Trails Attack:
 - Starts feedback queries simultaneously from many points
 - Query 1 on Trail *j*: $\overline{x_j}$, query *i* on Trail *j*: $|(f^r)^{i-1}(x_j)|$

Collision Attack on f^r

Same two approaches:

- Feedback Attack:
 - Keeps feeding back fr's outputs to fr
 - Query 1: x, query $i: (f^r)^{i-1}(x)$
 - Tries to find cycle
- Multiple Trails Attack:
 - Starts feedback queries simultaneously from many points

- Query 1 on Trail *j*: $\overline{x_j}$, query *i* on Trail *j*: $|(f^r)^{i-1}(x_j)|$
- Tries to make two trails merge

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

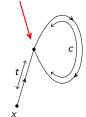
• Can be reduced to collisions on f

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Can be reduced to collisions on f

• Rho collision:

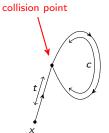
collision point



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Can be reduced to collisions on f

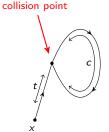
- Rho collision:
 - Direct ρ collision:



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• Can be reduced to collisions on f

- Rho collision:
 - Direct ρ collision:
 - *f*-collision in phase with *r*

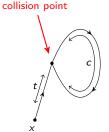


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Can be reduced to collisions on f

• Rho collision:

- Direct ρ collision:
 - f-collision in phase with r
 - $t = t + c \mod r$

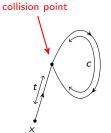


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Can be reduced to collisions on f

• Rho collision:

- Direct ρ collision:
 - f-collision in phase with r
 - $t = t + c \mod r$
- Delayed ρ collision:

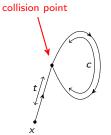


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Can be reduced to collisions on f

Rho collision:

- Direct ρ collision:
 - f-collision in phase with r
 - $t = t + c \mod r$
- Delayed ρ collision:
 - *f*-collision out of phase

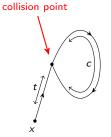


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Can be reduced to collisions on f

Rho collision:

- Direct ρ collision:
 - f-collision in phase with r
 - $t = t + c \mod r$
- Delayed ρ collision:
 - *f*-collision out of phase
 - move around cycle η times in all to adjust phase



• Can be reduced to collisions on f

Rho collision:

- Direct ρ collision:
 - f-collision in phase with r
 - $t = t + c \mod r$
- Delayed ρ collision:
 - *f*-collision out of phase
 - move around cycle η times in all to adjust phase
 - $\eta = r/\gcd(c, r)$

collision point

• Can be reduced to collisions on f

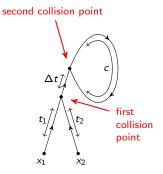
Rho collision:

- Direct ρ collision:
 - f-collision in phase with r
 - $t = t + c \mod r$
- Delayed ρ collision:
 - *f*-collision out of phase
 - move around cycle η times in all to adjust phase

collision point

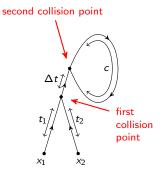
x

- Can be reduced to collisions on f
- Lambda collision:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Can be reduced to collisions on f
- Lambda collision:
 - Direct λ collision:

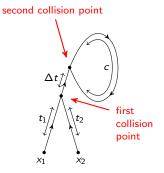


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Can be reduced to collisions on f

• Lambda collision:

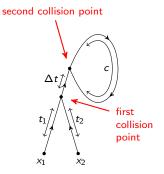
- Direct λ collision:
 - *f*-collision in phase with *r*



• Can be reduced to collisions on f

• Lambda collision:

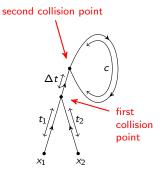
- Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$



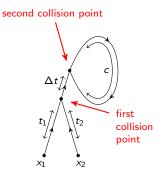
• Can be reduced to collisions on f

• Lambda collision:

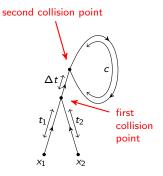
- Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$
- Delayed λ collision:



- Can be reduced to collisions on f
- Lambda collision:
 - Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$
 - Delayed λ collision:
 - *f*-collision out of phase



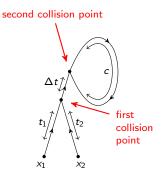
- Can be reduced to collisions on f
- Lambda collision:
 - Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$
 - Delayed λ collision:
 - *f*-collision out of phase
 - find ρ collision on merged walk



• Can be reduced to collisions on f

Lambda collision:

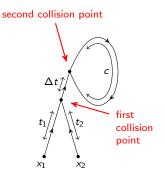
- Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$
- Delayed λ collision:
 - *f*-collision out of phase
 - find ρ collision on merged walk
 - move around cycle η times in all to adjust phase



• Can be reduced to collisions on f

Lambda collision:

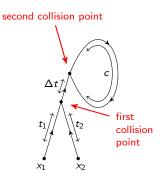
- Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$
- Delayed λ collision:
 - *f*-collision out of phase
 - find ρ collision on merged walk
 - move around cycle η times in all to adjust phase
 - $t_1 = t_2 + c\eta \mod r$



• Can be reduced to collisions on f

Lambda collision:

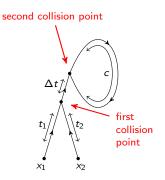
- Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$
- Delayed λ collision:
 - *f*-collision out of phase
 - find ρ collision on merged walk
 - move around cycle η times in all to adjust phase
 - $t_1 = t_2 + c\eta \mod r$
 - also called $\lambda \rho$ collision or ρ' collision



• Can be reduced to collisions on f

Lambda collision:

- Direct λ collision:
 - f-collision in phase with r
 - $t_1 = t_2 \mod r$
- Delayed λ collision:
 - *f*-collision out of phase
 - find ρ collision on merged walk
 - move around cycle η times in all to adjust phase
 - $t_1 = t_2 + c\eta \mod r$
 - also called $\lambda\rho$ collision or ρ' collision
 - Needs 2 f-collisions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Rho collision:

- Rho collision:
 - q-query feedback attack from some point x

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Rho collision:

• q-query feedback attack from some point x

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• collision probability $cp_{\rho}[q]$

• Rho collision:

• q-query feedback attack from some point x

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• collision probability $cp_{\rho}[q]$

•
$$\operatorname{cp}_{\rho}[q] = O\left(\frac{q^2r}{N}\right)$$

• Rho collision:

• q-query feedback attack from some point x

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• collision probability $cp_{\rho}[q]$

•
$$\operatorname{cp}_{\rho}[q] = O\left(\frac{q^2r}{N}\right)$$

• Lambda collision:

• Rho collision:

- q-query feedback attack from some point x
- collision probability $cp_{\rho}[q]$

•
$$\operatorname{cp}_{\rho}[q] = O\left(\frac{q^2r}{N}\right)$$

- Lambda collision:
 - (q_1, q_2) -query two-trail attack from some points x_1, x_2

• Rho collision:

- q-query feedback attack from some point x
- collision probability cp_ρ[q]

•
$$\operatorname{cp}_{\rho}[q] = O\left(\frac{q^2r}{N}\right)$$

- Lambda collision:
 - (q_1, q_2) -query two-trail attack from some points x_1, x_2

• collision probability $cp_{\lambda}[q_1, q_2]$

• Rho collision:

- q-query feedback attack from some point x
- collision probability cp_ρ[q]

•
$$\operatorname{cp}_{\rho}[q] = O\left(\frac{q^2r}{N}\right)$$

- Lambda collision:
 - (q_1, q_2) -query two-trail attack from some points x_1, x_2

• collision probability
$$cp_{\lambda}[q_1, q_2]$$

•
$$\operatorname{cp}_{\lambda}[q_1, q_2] = O\left(\frac{q_1q_2r(\log r)^3}{N}\right)$$

A general attack strategy, covering all adversaries:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A general attack strategy, covering all adversaries:

• *m* trails from *m* distinct starting points x_1, \ldots, x_m

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A general attack strategy, covering all adversaries:

• *m* trails from *m* distinct starting points x_1, \ldots, x_m

• Trail lengths q_1, \ldots, q_m with $\sum_i q_i = q$

A general attack strategy, covering all adversaries:

- *m* trails from *m* distinct starting points x_1, \ldots, x_m
- Trail lengths q_1, \ldots, q_m with $\sum_i q_i = q$
- \bullet Tries to find either a ρ collision or a two-trail λ collision

A general attack strategy, covering all adversaries:

- *m* trails from *m* distinct starting points x_1, \ldots, x_m
- Trail lengths q_1, \ldots, q_m with $\sum_i q_i = q$
- \bullet Tries to find either a ρ collision or a two-trail λ collision

• Collision probability cp[q]

Collision Probabilities on f^r

A general attack strategy, covering all adversaries:

- *m* trails from *m* distinct starting points x_1, \ldots, x_m
- Trail lengths q_1, \ldots, q_m with $\sum_i q_i = q$
- \bullet Tries to find either a ρ collision or a two-trail λ collision

• Collision probability cp[q]

•
$$\operatorname{cp}[q] = O\left(\frac{q^2 r (\log r)^3}{N}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• \mathcal{A} any prf adversary

 $\bullet \ \mathcal{A}$ any prf adversary

•
$$\operatorname{\mathsf{Adv}}_{\mathcal{A}}^{prf}[f^r] = O\left(\frac{q^2 r(\log r)^3}{N}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\bullet \ \mathcal{A}$ any prf adversary

•
$$\operatorname{\mathsf{Adv}}_{\mathcal{A}}^{prf}[f^r] = O\left(\frac{q^2r(\log r)^3}{N}\right)$$

• Proof uses Patarin's Coefficient H Technique

 $\bullet \ \mathcal{A}$ any prf adversary

•
$$\operatorname{\mathsf{Adv}}_{\mathcal{A}}^{prf}[f^r] = O\left(\frac{q^2r(\log r)^3}{N}\right)$$

- Proof uses Patarin's Coefficient H Technique
- $(\log r)^3$ can be further improved, almost to $\log r$

(日)、(四)、(E)、(E)、(E)

 $\bullet \ \mathcal{A}$ any prf adversary

•
$$\operatorname{\mathsf{Adv}}_{\mathcal{A}}^{prf}[f^r] = O\left(\frac{q^2r(\log r)^3}{N}\right)$$

- Proof uses Patarin's Coefficient H Technique
- $(\log r)^3$ can be further improved, almost to $\log r$
- Probably possible to show $\mathbf{Adv}_{\mathcal{A}}^{prf}[f^r] = O\left(\frac{q^2r}{N}\right)$

• Parallel Graph: union of non-intersecting paths

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Parallel Graph: union of non-intersecting paths

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Query transcript au has multiple trails

• Parallel Graph: union of non-intersecting paths

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Query transcript τ has multiple trails
- Call τ BAD if not parallel graph

- Parallel Graph: union of non-intersecting paths
- Query transcript au has multiple trails
- Call τ BAD if not parallel graph
- BAD is equivalent to collision in general *m* trail attack (after reordering queries)

- Parallel Graph: union of non-intersecting paths
- Query transcript au has multiple trails
- Call au BAD if not parallel graph
- BAD is equivalent to collision in general *m* trail attack (after reordering queries)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$\Pr[BAD] = O\left(\frac{q^2 r(\log r)^3}{N}\right)$$

- Parallel Graph: union of non-intersecting paths
- Query transcript au has multiple trails
- Call au BAD if not parallel graph
- BAD is equivalent to collision in general *m* trail attack (after reordering queries)

•
$$\Pr[BAD] = O\left(\frac{q^2 r (\log r)^3}{N}\right)$$

• Internal states equally probable for isomorphic good transcripts

- Parallel Graph: union of non-intersecting paths
- Query transcript au has multiple trails
- Call au BAD if not parallel graph
- BAD is equivalent to collision in general *m* trail attack (after reordering queries)

•
$$\Pr[BAD] = O\left(\frac{q^2 r (\log r)^3}{N}\right)$$

- Internal states equally probable for isomorphic good transcripts
- $\bullet\,$ Plug internal blocks into the good transcript τ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• General *m* trail attack is the best known attack

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• General *m* trail attack is the best known attack

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• cp[q] is best known success probability

- General *m* trail attack is the best known attack
- cp[q] is best known success probability
- Inclusion-Exclusion Principle gives lower bound

- General *m* trail attack is the best known attack
- cp[q] is best known success probability
- Inclusion-Exclusion Principle gives lower bound

•
$$\operatorname{cp}[q] = \Omega\left(\frac{q^2r}{N}\right)$$

- General *m* trail attack is the best known attack
- cp[q] is best known success probability
- Inclusion-Exclusion Principle gives lower bound

•
$$\operatorname{cp}[q] = \Omega\left(\frac{q^2r}{N}\right)$$

• Security bound tight up to a factor of $(\log r)^3$

 $x := (x_1, x_2, \dots, x_q)$, x_i are distinct blocks from $\{0, 1\}^n$.

Let $\operatorname{coll}_f(x_i; x_j)$ denote the event $f^{(\ell)}(x_i) = f^{(\ell)}(x_j)$ and $\operatorname{coll}_f(x) := \bigcup_{x_i, x_i \in x} \operatorname{coll}_f(x_i; x_j)$.

- ロ ト - 4 回 ト - 4 □ - 4

$$\Pr_{f} \left[\operatorname{coll}_{f}(x) \right] \geq \sum_{i < j} \underbrace{\Pr_{f} \left[\operatorname{coll}_{f}(x_{i}; x_{j}) \right]}_{f_{f} \left[\operatorname{coll}_{f}(x_{i}; x_{j}) \cap \operatorname{coll}_{f}(x_{j}; x_{k}) \right]} \\ - 3 \sum_{i < j < k} \underbrace{\Pr_{f} \left[\operatorname{coll}_{f}(x_{i}; x_{j}) \cap \operatorname{coll}_{f}(x_{j}; x_{k}) \right]}_{f_{f} \left[\operatorname{coll}_{f}(x_{i}; x_{j}) \cap \operatorname{coll}_{f}(x_{k}; x_{m}) \right]} \\ - \frac{1}{2} \sum_{\substack{i < j, k < m \\ \{i, j\} \cap \{k, m\} = \emptyset}} \underbrace{\Pr_{f} \left[\operatorname{coll}_{f}(x_{i}; x_{j}) \cap \operatorname{coll}_{f}(x_{k}; x_{m}) \right]}_{f_{f} \left[\operatorname{coll}_{f}(x_{i}; x_{j}) \cap \operatorname{coll}_{f}(x_{k}; x_{m}) \right]}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Upper Bound on $coll_{i,j,k}$

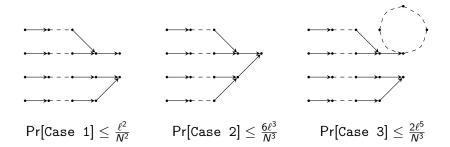
 $\Pr[\text{Case 1}] \leq \frac{2\ell^2}{N^2}$

 $\Pr[Case 2] \leq rac{6\ell^6}{N^3}$

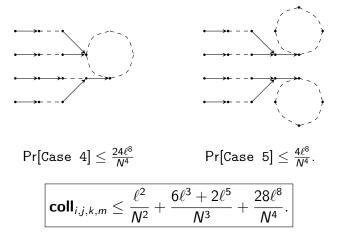
$$\operatorname{coll}_{i,j,k} \leq \frac{2\ell^2}{N^2} + \frac{6\ell^6}{N^3}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Upper Bound on $coll_{i,j,k,m}$



Upper Bound on $coll_{i,j,k,m}$



Lower Bound on $coll_{i,j}$

Let cycle be the event that at least one of the walks (corresponding to x_i and x_j) has a cycle.

$$\mathsf{coll}_{i,j|\neg \mathtt{cycle}} = rac{\ell}{N} \qquad \qquad \mathsf{Pr}[\mathtt{cycle}] \le rac{2\ell^2}{N}$$

$$\operatorname{coll}_{i,j} \geq rac{\ell}{N} \Big(1 - rac{2\ell^2}{N} \Big).$$

Main Result on Lower Bound

Lower Bound Theorem

Let
$$x := (x_1, \dots, x_q) \in (\{0, 1\}^n)^q$$
 be a q tuple of distinct inputs.
For $\ell, q \ge 3$, $\frac{q^2\ell}{N} < 1$ and $\ell < \min(\frac{N}{5184}, \frac{N^{\frac{1}{2}}}{4\sqrt{3}}, \frac{N^{\frac{1}{3}}}{\sqrt[3]{36}})$, we have
 $\Pr[\mathbf{coll}_f(x)] \ge \frac{q^2\ell}{12N}.$

Example

Collision for $N = 2^{64}$. Hence taking $q = \sqrt{20} \cdot 2^{\frac{64}{3}}$, $\ell = 0.1 \times 2^{\frac{64}{3}}$, we get $\delta = 0.499$.

• Removing log r factor.

- Removing log r factor.
- The attack requires some lower bound on *q*. Can we prove some lower bound for all attacks?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Removing log r factor.
- The attack requires some lower bound on *q*. Can we prove some lower bound for all attacks?

• Almost tight bound (up to a log r factor).

- Removing log r factor.
- The attack requires some lower bound on *q*. Can we prove some lower bound for all attacks?

Almost tight bound (up to a log r factor).
THANK YOU

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ