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Collision between a final input (q such) and other rq inputs

On the average 1/2n collision probability for a pair

Unfortunately this is not true for random function (collision
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Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge
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Collision Probabilities on f r

Rho collision:

q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N
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Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N
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Collision Probabilities on f r

A general attack strategy, covering all adversaries:

m trails from m distinct starting points x1, . . . , xm

Trail lengths q1, . . . , qm with
∑

i qi = q

Tries to find either a ρ collision or a two-trail λ collision

Collision probability cp[q]

cp[q] = O
(
q2r(log r)3

N

)
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A any prf adversary

AdvprfA [f r ] = O
(
q2r(log r)3

N

)
Proof uses Patarin’s Coefficient H Technique

(log r)3 can be further improved, almost to log r

Probably possible to show AdvprfA [f r ] = O
(
q2r
N

)
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Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ
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cp[q] is best known success probability
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(
q2r
N
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Security bound tight up to a factor of (log r)3
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Iterated Random Function

Lower Bound on Collision Probability

x := (x1, x2, . . . , xq), xi are distinct blocks from {0, 1}n.

Let collf (xi ; xj) denote the event f (`)(xi ) = f (`)(xj) and
collf (x) :=

⋃
xi ,xj∈x collf (xi ; xj).
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Lower Bound on Collision Probability

Pr
f

[
collf (x)

]
≥
∑
i<j

colli,j︷ ︸︸ ︷
Pr
f

[collf (xi ; xj)]

− 3
∑

i<j<k

colli,j,k︷ ︸︸ ︷
Pr
f

[collf (xi ; xj) ∩ collf (xj ; xk)]

− 1

2

∑
i<j ,k<m

{i ,j}∩{k,m}=∅

colli,j,k,m︷ ︸︸ ︷
Pr
f

[collf (xi ; xj) ∩ collf (xk ; xm)]
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Upper Bound on colli ,j ,k

Pr[Case 1] ≤ 2`2

N2 Pr[Case 2] ≤ 6`6

N3

colli ,j ,k ≤
2`2

N2
+

6`6

N3
.
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Upper Bound on colli ,j ,k ,m

Pr[Case 1] ≤ `2

N2 Pr[Case 2] ≤ 6`3

N3 Pr[Case 3] ≤ 2`5

N3



Iterated Random Function

Upper Bound on colli ,j ,k ,m

Pr[Case 4] ≤ 24`8

N4 Pr[Case 5] ≤ 4`8

N4 .

colli ,j ,k,m ≤
`2

N2
+

6`3 + 2`5

N3
+

28`8

N4
.
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Lower Bound on colli ,j

Let cycle be the event that at least one of the walks
(corresponding to xi and xj) has a cycle.

colli ,j |¬cycle = `
N Pr[cycle] ≤ 2`2

N .

colli ,j ≥
`

N

(
1− 2`2

N

)
.
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Main Result on Lower Bound

Lower Bound Theorem

Let x := (x1, . . . , xq) ∈
(
{0, 1}n

)q
be a q tuple of distinct inputs.

For `, q ≥ 3, q2`
N < 1 and ` < min( N

5184 ,
N

1
2

4
√

3
, N

1
3

3√36
), we have

Pr[collf (x)] ≥ q2`

12N
.

Example

Collision for N = 264. Hence taking q =
√

20 · 2
64
3 , ` = 0.1× 2

64
3 ,

we get δ = 0.499.
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Future Research and Conclusion

Removing log r factor.

The attack requires some lower bound on q. Can we prove
some lower bound for all attacks?

Almost tight bound (up to a log r factor).

THANK YOU
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Conclusion


