
Iterated Random Function

The Iterated Random Function Problem
ASK 2016, Nagoya, Japan

Mridul Nandi

Indian Statistical Institute, Kolkata

28 September 2016
Joint work with Ritam Bhaumik, Nilanjan Datta, Avijit Dutta,

Ashwin Jha, Avradip Mandal, Nicky Mouha.

Iterated Random Function

Outline of the Talk

Iterated random function

Known vs. Our Approach

Types of Collision for (iterated) random function

Collision Probabilties and PRF analysis

Iterated Random Function

Outline of the Talk

Iterated random function

Known vs. Our Approach

Types of Collision for (iterated) random function

Collision Probabilties and PRF analysis

Iterated Random Function

Outline of the Talk

Iterated random function

Known vs. Our Approach

Types of Collision for (iterated) random function

Collision Probabilties and PRF analysis

Iterated Random Function

Outline of the Talk

Iterated random function

Known vs. Our Approach

Types of Collision for (iterated) random function

Collision Probabilties and PRF analysis

Iterated Random Function

The Iterated Random Permutations Problem

Fix a positive integer r , and a random permutation f .

Minaud and Seurin in crypto 2015 studied PRP of
f r = f ◦ · · · ◦ f (r times)

O(rq/2n) PRP advantage

Lower bound of PRP advantage sometimes Θ(q/2n)

Scope of improvement

Iterated Random Function

The Iterated Random Permutations Problem

Fix a positive integer r , and a random permutation f .

Minaud and Seurin in crypto 2015 studied PRP of
f r = f ◦ · · · ◦ f (r times)

O(rq/2n) PRP advantage

Lower bound of PRP advantage sometimes Θ(q/2n)

Scope of improvement

Iterated Random Function

The Iterated Random Permutations Problem

Fix a positive integer r , and a random permutation f .

Minaud and Seurin in crypto 2015 studied PRP of
f r = f ◦ · · · ◦ f (r times)

O(rq/2n) PRP advantage

Lower bound of PRP advantage sometimes Θ(q/2n)

Scope of improvement

Iterated Random Function

The Iterated Random Permutations Problem

Fix a positive integer r , and a random permutation f .

Minaud and Seurin in crypto 2015 studied PRP of
f r = f ◦ · · · ◦ f (r times)

O(rq/2n) PRP advantage

Lower bound of PRP advantage sometimes Θ(q/2n)

Scope of improvement

Iterated Random Function

The Iterated Random Permutations Problem

Fix a positive integer r , and a random permutation f .

Minaud and Seurin in crypto 2015 studied PRP of
f r = f ◦ · · · ◦ f (r times)

O(rq/2n) PRP advantage

Lower bound of PRP advantage sometimes Θ(q/2n)

Scope of improvement

Iterated Random Function

The Iterated Random Permutations Problem

Fix a positive integer r , and a random permutation f .

Minaud and Seurin in crypto 2015 studied PRP of
f r = f ◦ · · · ◦ f (r times)

O(rq/2n) PRP advantage

Lower bound of PRP advantage sometimes Θ(q/2n)

Scope of improvement

Iterated Random Function

The Iterated Random Function Problem

We ask same problem for random function

We show Θ(rq2/2n) PRF advantage

We show an attack with advantage about rq2/2n provided
q ≥ 2n/3

We show upper bound using Coefficients H Technique

Iterated Random Function

The Iterated Random Function Problem

We ask same problem for random function

We show Θ(rq2/2n) PRF advantage

We show an attack with advantage about rq2/2n provided
q ≥ 2n/3

We show upper bound using Coefficients H Technique

Iterated Random Function

The Iterated Random Function Problem

We ask same problem for random function

We show Θ(rq2/2n) PRF advantage

We show an attack with advantage about rq2/2n provided
q ≥ 2n/3

We show upper bound using Coefficients H Technique

Iterated Random Function

The Iterated Random Function Problem

We ask same problem for random function

We show Θ(rq2/2n) PRF advantage

We show an attack with advantage about rq2/2n provided
q ≥ 2n/3

We show upper bound using Coefficients H Technique

Iterated Random Function

Known Approach: Full Collision Probability

Used for analyzing Improved bound of CBC by Bellare,
Pietrzak and Rogaway in crypto 2005

O(rq2/2n) PRF advantage for CBC of length r

Collision between a final input (q such) and other rq inputs

On the average 1/2n collision probability for a pair

Unfortunately this is not true for random function (collision
probability for a pair can be O(rq/2n))

Iterated Random Function

Known Approach: Full Collision Probability

Used for analyzing Improved bound of CBC by Bellare,
Pietrzak and Rogaway in crypto 2005

O(rq2/2n) PRF advantage for CBC of length r

Collision between a final input (q such) and other rq inputs

On the average 1/2n collision probability for a pair

Unfortunately this is not true for random function (collision
probability for a pair can be O(rq/2n))

Iterated Random Function

Known Approach: Full Collision Probability

Used for analyzing Improved bound of CBC by Bellare,
Pietrzak and Rogaway in crypto 2005

O(rq2/2n) PRF advantage for CBC of length r

Collision between a final input (q such) and other rq inputs

On the average 1/2n collision probability for a pair

Unfortunately this is not true for random function (collision
probability for a pair can be O(rq/2n))

Iterated Random Function

Known Approach: Full Collision Probability

Used for analyzing Improved bound of CBC by Bellare,
Pietrzak and Rogaway in crypto 2005

O(rq2/2n) PRF advantage for CBC of length r

Collision between a final input (q such) and other rq inputs

On the average 1/2n collision probability for a pair

Unfortunately this is not true for random function (collision
probability for a pair can be O(rq/2n))

Iterated Random Function

Known Approach: Full Collision Probability

Used for analyzing Improved bound of CBC by Bellare,
Pietrzak and Rogaway in crypto 2005

O(rq2/2n) PRF advantage for CBC of length r

Collision between a final input (q such) and other rq inputs

On the average 1/2n collision probability for a pair

Unfortunately this is not true for random function (collision
probability for a pair can be O(rq/2n))

Iterated Random Function

Our Approach : Upper Bound

Allow all collisions on f that do not lead to collision on f r

Look at possible function graphs of f and f r

Bound probabilities of different types of collisions

Use Coefficient H Technique to upper bound advantage

Iterated Random Function

Our Approach : Upper Bound

Allow all collisions on f that do not lead to collision on f r

Look at possible function graphs of f and f r

Bound probabilities of different types of collisions

Use Coefficient H Technique to upper bound advantage

Iterated Random Function

Our Approach : Upper Bound

Allow all collisions on f that do not lead to collision on f r

Look at possible function graphs of f and f r

Bound probabilities of different types of collisions

Use Coefficient H Technique to upper bound advantage

Iterated Random Function

Our Approach : Upper Bound

Allow all collisions on f that do not lead to collision on f r

Look at possible function graphs of f and f r

Bound probabilities of different types of collisions

Use Coefficient H Technique to upper bound advantage

Iterated Random Function

Our Approach : Upper Bound

Allow all collisions on f that do not lead to collision on f r

Look at possible function graphs of f and f r

Bound probabilities of different types of collisions

Use Coefficient H Technique to upper bound advantage

Iterated Random Function

Our Approach : Lower Bound

We show lower bound

Vary first block and rest all blocks are same

For a pair collision probability about r/2n

Use Inclusion Exclusion Principle to lower bound advantage

So it is tight up to a small power of log r

Iterated Random Function

Our Approach : Lower Bound

We show lower bound

Vary first block and rest all blocks are same

For a pair collision probability about r/2n

Use Inclusion Exclusion Principle to lower bound advantage

So it is tight up to a small power of log r

Iterated Random Function

Our Approach : Lower Bound

We show lower bound

Vary first block and rest all blocks are same

For a pair collision probability about r/2n

Use Inclusion Exclusion Principle to lower bound advantage

So it is tight up to a small power of log r

Iterated Random Function

Our Approach : Lower Bound

We show lower bound

Vary first block and rest all blocks are same

For a pair collision probability about r/2n

Use Inclusion Exclusion Principle to lower bound advantage

So it is tight up to a small power of log r

Iterated Random Function

Our Approach : Lower Bound

We show lower bound

Vary first block and rest all blocks are same

For a pair collision probability about r/2n

Use Inclusion Exclusion Principle to lower bound advantage

So it is tight up to a small power of log r

Iterated Random Function

Function Graphs

Views function as directed graph

y = f (x) represented by an edge from x to y

Loops allowed, no multiple edges

Trails move together once merged

All trails eventually lead to cycles

Iterated Random Function

Function Graphs

Views function as directed graph

y = f (x) represented by an edge from x to y

Loops allowed, no multiple edges

Trails move together once merged

All trails eventually lead to cycles

Iterated Random Function

Function Graphs

Views function as directed graph

y = f (x) represented by an edge from x to y

Loops allowed, no multiple edges

Trails move together once merged

All trails eventually lead to cycles

Iterated Random Function

Function Graphs

Views function as directed graph

y = f (x) represented by an edge from x to y

Loops allowed, no multiple edges

Trails move together once merged

All trails eventually lead to cycles

Iterated Random Function

Function Graphs

Views function as directed graph

y = f (x) represented by an edge from x to y

Loops allowed, no multiple edges

Trails move together once merged

All trails eventually lead to cycles

Iterated Random Function

Function Graphs

Views function as directed graph

y = f (x) represented by an edge from x to y

Loops allowed, no multiple edges

Trails move together once merged

All trails eventually lead to cycles

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm

Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f

Two main approaches:

Feedback Attack:

Based on Pollard’s Rho Algorithm
Keeps feeding back f ’s outputs to f

Query 1: x , query i : f i−1(x)

Tries to find cycle

Multiple Trails Attack:

Based loosely on van Oorschot-Wiener’s Parallel Search
Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : f i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Types on f

Rho collision

Tail length t

Cycle length c

Denoted ρ(t, c)

Lambda collision

Foot lengths t1

and t2

Denoted λ(t1, t2)

t

c

x

collision point

t1 t2

x1 x2

collision point

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Probabilities on f

t

c

x

t1 t2

x1 x2

Rho collision

Feedback attack from
some x

Pr [ρ(t, c)] ≤ 1
N

Pr [ρ(t, c)] ≤ e−α

N for

t = Θ(
√
αN)

Lambda collision

Two-trail attack from
some x1 and x2

Pr [λ(t1, t2)] ≤ 1
N

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Attack on f r

Same two approaches:

Feedback Attack:

Keeps feeding back f r ’s outputs to f r

Query 1: x , query i : (f r)i−1(x)

Tries to find cycle

Multiple Trails Attack:

Starts feedback queries simultaneously from many points

Query 1 on Trail j : xj , query i on Trail j : (f r)i−1(xj)

Tries to make two trails merge

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r

t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase

move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase

η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)

t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Rho collision:

Direct ρ collision:

f -collision in phase with r
t = t + c mod r

Delayed ρ collision:

f -collision out of phase
move around cycle η times in
all to adjust phase
η = r/gcd(c, r)
t = t + cη mod r

t

c

x

collision point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r

t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase

find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk

move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase

t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r

also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision

Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Types on f r

Can be reduced to collisions on f

Lambda collision:

Direct λ collision:

f -collision in phase with r
t1 = t2 mod r

Delayed λ collision:

f -collision out of phase
find ρ collision on merged walk
move around cycle η times in
all to adjust phase
t1 = t2 + cη mod r
also called λρ collision or ρ′

collision
Needs 2 f-collisions

∆t
c

second collision point

t1 t2

x1 x2

first
collision
point

Iterated Random Function

Collision Probabilities on f r

Rho collision:

q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)

Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:

q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)
Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:
q-query feedback attack from some point x

collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)
Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:
q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)
Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:
q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)

Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:
q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)
Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:
q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)
Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:
q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)
Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

Rho collision:
q-query feedback attack from some point x
collision probability cpρ[q]

cpρ[q] = O
(

q2r
N

)
Lambda collision:

(q1, q2)-query two-trail attack from some points x1, x2

collision probability cpλ[q1, q2]

cpλ[q1, q2] = O
(

q1q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

A general attack strategy, covering all adversaries:

m trails from m distinct starting points x1, . . . , xm

Trail lengths q1, . . . , qm with
∑

i qi = q

Tries to find either a ρ collision or a two-trail λ collision

Collision probability cp[q]

cp[q] = O
(
q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

A general attack strategy, covering all adversaries:

m trails from m distinct starting points x1, . . . , xm

Trail lengths q1, . . . , qm with
∑

i qi = q

Tries to find either a ρ collision or a two-trail λ collision

Collision probability cp[q]

cp[q] = O
(
q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

A general attack strategy, covering all adversaries:

m trails from m distinct starting points x1, . . . , xm

Trail lengths q1, . . . , qm with
∑

i qi = q

Tries to find either a ρ collision or a two-trail λ collision

Collision probability cp[q]

cp[q] = O
(
q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

A general attack strategy, covering all adversaries:

m trails from m distinct starting points x1, . . . , xm

Trail lengths q1, . . . , qm with
∑

i qi = q

Tries to find either a ρ collision or a two-trail λ collision

Collision probability cp[q]

cp[q] = O
(
q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

A general attack strategy, covering all adversaries:

m trails from m distinct starting points x1, . . . , xm

Trail lengths q1, . . . , qm with
∑

i qi = q

Tries to find either a ρ collision or a two-trail λ collision

Collision probability cp[q]

cp[q] = O
(
q2r(log r)3

N

)

Iterated Random Function

Collision Probabilities on f r

A general attack strategy, covering all adversaries:

m trails from m distinct starting points x1, . . . , xm

Trail lengths q1, . . . , qm with
∑

i qi = q

Tries to find either a ρ collision or a two-trail λ collision

Collision probability cp[q]

cp[q] = O
(
q2r(log r)3

N

)

Iterated Random Function

PRF Security Result

A any prf adversary

AdvprfA [f r] = O
(
q2r(log r)3

N

)
Proof uses Patarin’s Coefficient H Technique

(log r)3 can be further improved, almost to log r

Probably possible to show AdvprfA [f r] = O
(
q2r
N

)

Iterated Random Function

PRF Security Result

A any prf adversary

AdvprfA [f r] = O
(
q2r(log r)3

N

)
Proof uses Patarin’s Coefficient H Technique

(log r)3 can be further improved, almost to log r

Probably possible to show AdvprfA [f r] = O
(
q2r
N

)

Iterated Random Function

PRF Security Result

A any prf adversary

AdvprfA [f r] = O
(
q2r(log r)3

N

)

Proof uses Patarin’s Coefficient H Technique

(log r)3 can be further improved, almost to log r

Probably possible to show AdvprfA [f r] = O
(
q2r
N

)

Iterated Random Function

PRF Security Result

A any prf adversary

AdvprfA [f r] = O
(
q2r(log r)3

N

)
Proof uses Patarin’s Coefficient H Technique

(log r)3 can be further improved, almost to log r

Probably possible to show AdvprfA [f r] = O
(
q2r
N

)

Iterated Random Function

PRF Security Result

A any prf adversary

AdvprfA [f r] = O
(
q2r(log r)3

N

)
Proof uses Patarin’s Coefficient H Technique

(log r)3 can be further improved, almost to log r

Probably possible to show AdvprfA [f r] = O
(
q2r
N

)

Iterated Random Function

PRF Security Result

A any prf adversary

AdvprfA [f r] = O
(
q2r(log r)3

N

)
Proof uses Patarin’s Coefficient H Technique

(log r)3 can be further improved, almost to log r

Probably possible to show AdvprfA [f r] = O
(
q2r
N

)

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)

Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Sketch of Proof

Parallel Graph: union of non-intersecting paths

Query transcript τ has multiple trails

Call τ BAD if not parallel graph

BAD is equivalent to collision in general m trail attack (after
reordering queries)

Pr [BAD] = O
(
q2r(log r)3

N

)
Internal states equally probable for isomorphic good
transcripts

Plug internal blocks into the good transcript τ

Iterated Random Function

Lower Bound on Collision Probability

General m trail attack is the best known attack

cp[q] is best known success probability

Inclusion-Exclusion Principle gives lower bound

cp[q] = Ω
(
q2r
N

)
Security bound tight up to a factor of (log r)3

Iterated Random Function

Lower Bound on Collision Probability

General m trail attack is the best known attack

cp[q] is best known success probability

Inclusion-Exclusion Principle gives lower bound

cp[q] = Ω
(
q2r
N

)
Security bound tight up to a factor of (log r)3

Iterated Random Function

Lower Bound on Collision Probability

General m trail attack is the best known attack

cp[q] is best known success probability

Inclusion-Exclusion Principle gives lower bound

cp[q] = Ω
(
q2r
N

)
Security bound tight up to a factor of (log r)3

Iterated Random Function

Lower Bound on Collision Probability

General m trail attack is the best known attack

cp[q] is best known success probability

Inclusion-Exclusion Principle gives lower bound

cp[q] = Ω
(
q2r
N

)
Security bound tight up to a factor of (log r)3

Iterated Random Function

Lower Bound on Collision Probability

General m trail attack is the best known attack

cp[q] is best known success probability

Inclusion-Exclusion Principle gives lower bound

cp[q] = Ω
(
q2r
N

)

Security bound tight up to a factor of (log r)3

Iterated Random Function

Lower Bound on Collision Probability

General m trail attack is the best known attack

cp[q] is best known success probability

Inclusion-Exclusion Principle gives lower bound

cp[q] = Ω
(
q2r
N

)
Security bound tight up to a factor of (log r)3

Iterated Random Function

Lower Bound on Collision Probability

x := (x1, x2, . . . , xq), xi are distinct blocks from {0, 1}n.

Let collf (xi ; xj) denote the event f (`)(xi) = f (`)(xj) and
collf (x) :=

⋃
xi ,xj∈x collf (xi ; xj).

Iterated Random Function

Lower Bound on Collision Probability

Pr
f

[
collf (x)

]
≥
∑
i<j

colli,j︷ ︸︸ ︷
Pr
f

[collf (xi ; xj)]

− 3
∑

i<j<k

colli,j,k︷ ︸︸ ︷
Pr
f

[collf (xi ; xj) ∩ collf (xj ; xk)]

− 1

2

∑
i<j ,k<m

{i ,j}∩{k,m}=∅

colli,j,k,m︷ ︸︸ ︷
Pr
f

[collf (xi ; xj) ∩ collf (xk ; xm)]

Iterated Random Function

Upper Bound on colli ,j ,k

Pr[Case 1] ≤ 2`2

N2 Pr[Case 2] ≤ 6`6

N3

colli ,j ,k ≤
2`2

N2
+

6`6

N3
.

Iterated Random Function

Upper Bound on colli ,j ,k ,m

Pr[Case 1] ≤ `2

N2 Pr[Case 2] ≤ 6`3

N3 Pr[Case 3] ≤ 2`5

N3

Iterated Random Function

Upper Bound on colli ,j ,k ,m

Pr[Case 4] ≤ 24`8

N4 Pr[Case 5] ≤ 4`8

N4 .

colli ,j ,k,m ≤
`2

N2
+

6`3 + 2`5

N3
+

28`8

N4
.

Iterated Random Function

Lower Bound on colli ,j

Let cycle be the event that at least one of the walks
(corresponding to xi and xj) has a cycle.

colli ,j |¬cycle = `
N Pr[cycle] ≤ 2`2

N .

colli ,j ≥
`

N

(
1− 2`2

N

)
.

Iterated Random Function

Main Result on Lower Bound

Lower Bound Theorem

Let x := (x1, . . . , xq) ∈
(
{0, 1}n

)q
be a q tuple of distinct inputs.

For `, q ≥ 3, q2`
N < 1 and ` < min(N

5184 ,
N

1
2

4
√

3
, N

1
3

3√36
), we have

Pr[collf (x)] ≥ q2`

12N
.

Example

Collision for N = 264. Hence taking q =
√

20 · 2
64
3 , ` = 0.1× 2

64
3 ,

we get δ = 0.499.

Iterated Random Function

Future Research and Conclusion

Removing log r factor.

The attack requires some lower bound on q. Can we prove
some lower bound for all attacks?

Almost tight bound (up to a log r factor).

THANK YOU

Iterated Random Function

Future Research and Conclusion

Removing log r factor.

The attack requires some lower bound on q. Can we prove
some lower bound for all attacks?

Almost tight bound (up to a log r factor).

THANK YOU

Iterated Random Function

Future Research and Conclusion

Removing log r factor.

The attack requires some lower bound on q. Can we prove
some lower bound for all attacks?

Almost tight bound (up to a log r factor).

THANK YOU

Iterated Random Function

Future Research and Conclusion

Removing log r factor.

The attack requires some lower bound on q. Can we prove
some lower bound for all attacks?

Almost tight bound (up to a log r factor).

THANK YOU

Iterated Random Function

Conclusion

