Minimum Blockcipher Calls for Block cipher based Designs

Mridul Nandi

Indian Statistical Institute, Kolkata

mridul@isical.ac.in

30th Sept, ASK-2015, NTU, Singapore
Symmetric Key Primitives

Distinguishing Game
Distinguishing a real keyed construction from an ideal object.

1. PRF or Pseudorandom function.
2. PRP or Pseudorandom permutation.
3. SPRP or Strong Pseudorandom permutation.
4. ...
Differential Distinguisher Event

1. Make some queries x_i and obtain responses y_i, $1 \leq i \leq q$.
2. Finally makes two queries X and X', obtain corresponding responses Y, Y'.
3. Distinguisher Event:
 1. $\Delta Y := Y \oplus Y' = \mu$ (some constant). It is n bit equations.
 2. A more general event look like $L(\Delta Y) = b$ where L is a binary equation and b is a bit.

Notation

$\Delta X := X \oplus X'$
Block cipher based constructions

1. No field multiplication.
2. All lightweight operations - linear functions
3. Only Non-linear Operations - block cipher (modeled PRP), keyed non-compressing function (PRF)
4. Multiple independent keys can be used.
5. Masking (again, linear operation) by random keys

Examples

1. PRF: Counter-based Stream cipher.
2. (S)PRP: Luby-Rackoff, Feistel Structure, CMC, EME, AEZ, FMix etc.
Is It Pseudorandom Function?

\[m_1 \xrightarrow{f_1} m_2 \xrightarrow{\oplus} m_3 \xrightarrow{f_2} \oplus \xrightarrow{f_3} c_1 \xrightarrow{c_2} \]
Is It Pseudorandom Function?

\[m_1 \xrightarrow{f_1} m_2 \oplus f_2 \oplus f_3 \oplus c_1 \oplus c_2 \]
Is It Pseudorandom Function?

\[\Delta m_1 = 0 \quad \Delta m_2 = 0 \quad \Delta m_3 = \delta \]

\[f_1 \rightarrow f_2 \rightarrow f_3 \rightarrow c_1 \]

\[\Delta (c_1 \oplus c_2) = \delta \]

Differential Distinguisher

\[\Delta (c_1 \oplus c_2) = \delta. \]
So, it is not PRF.
Is It Pseudorandom Function?

- We know that 2 round balanced Fiestel for 2 blocks is not PRF.
- What about Unbalanced Fiestel Structure with different rounds?

1. Initially blocks $X = (X_1, \ldots, X_\ell)$ is set to be the message.
2. For round $i = 1$ to $2\ell - 2$, updates ℓ blocks $X = (X_1, \ldots, X_\ell)$ as $X \leftarrow \text{Lin}(X, f(X_1))$. \(^1\)
3. returns X;

Is it secure?

\(^1\)Here the linear function Lin and the non-linear function f can be different at each round. Lin should be chosen so that invertible property maintains (in case of PRP construction).
Is It Strong Pseudorandom Permutation?

\[m_1 \xrightarrow{f_1} m_2 \xrightarrow{\alpha} m_2 \]

\[m_1 \xrightarrow{f_2} m_2 \xrightarrow{\alpha} m_2 \]

\[c_1 \xrightarrow{f_3} c_2 \]
solve for x as follows:

1. $\alpha \cdot (x \oplus \delta) = \delta c_2$
2. $x = \alpha^{-1}(\Delta c_2) \oplus \delta$.

So,

$f(c_2) \oplus f(c'_2) = x \oplus \Delta c_1$.

\[\begin{align*}
\Delta m_1 &= \delta \\
\Delta m_2 &= 0
\end{align*} \]
Is It Strong Pseudorandom Permutation?

\[
\Delta m_1 = \delta \quad \Delta m_2 = 0
\]

\[
\Delta = x
\]

\[
\Delta c_1 \quad \Delta c_2 = c_2 \oplus c'_2
\]
Is It Strong Pseudorandom Permutation?

So It is not.
Is It Strong Pseudorandom Permutation?

\[m_1 \oplus f_1 \oplus f_3 \oplus m_2 \oplus f_2 \]

(construction is proposed due to Lear Bahack)
1. It is not again SPRP.
2. We find the difference of inputs for f_3 and so we make two decryption queries with same Δc_2.

Decryption order

This example is different from other examples. The decryption order is $3 \rightarrow 1 \rightarrow 2$. Usual decryption order $3 \rightarrow 2 \rightarrow 1$.

\[
\begin{align*}
\Delta m_1 &= 0 \\
\Delta m_2 &= \delta \\
\Delta &= \Delta c_2 \\
\Delta c_1 \\
\Delta c_2
\end{align*}
\]
We know that XLS is not SPRP.
We know that three round LR is PRP but not SPRP, whereas 4 round is SPRP.

Nandi in Indocrypt 2010 showed that LR with $r \geq 3$ rounds is not insecure if and only if key-assignment is palindorme.
1. We know that three round LR is PRP but not SPRP, whereas 4 round is SPRP.

2. Nandi in Indocrypt 2010 showed that LR with \(r \geq 3 \) rounds is not secure if and only if key-assignment is palindromic.

3. One can use some linear mixing layers.
Can we have PRP for 3 rounds?

Nandi showed that an PRP attack on 3 rounds. So single key inverse free PRP construction requires 4 rounds.

What about general constructions of Fiestel? Surprisingly we see that inverse free single key PRP and SPRP have same cost.
1. We need to formally define ALL block cipher based constructions.

2. We consider affine mode for this.

\[\rho_i \text{ non linear functions, } U[i,] \text{ are linear or affine functions.} \]
Examples of Affine Mode

\[
\begin{align*}
U[1, \ast] & \xrightarrow{1} \rho_1 & v_1 \\
U[2, \ast] & \xrightarrow{1} \rho_2 & v_2 \\
U[3, \ast] & \xrightarrow{1} \rho_\ell & v_\ell \\
& \vdots & \vdots \\
X & \xrightarrow{b} Y
\end{align*}
\]
PMAC: Examples of Affine Mode

\[u_1 = p_1 \]

\[v_1 \]

\[\rho_1 \]

\[u_{a-1} = p_{a-1} \]

\[v_{a-1} \]

\[\rho_{a-1} \]

\[p_a \]

\[c_1 = v_a \]
What is this affine mode???

\[u_1 = p_1 \]

\[v_1 \]

\[u_2 \]

\[v_2 \]

\[u_3 \]

\[v_3 \]

\[c_1 = u_3 \]

\[c_2 = v_3 + u_2 \]
Figure: CMC for four blocks, with tweak ξ and $M = 2(X \oplus Y)$. Here 2 represents a primitive element of a finite field over $\{0, 1\}^n$.
MCBC: Examples - online-SPRP

Diagram showing a sequence of operations with variables v, y_1, y_2, and K_1, with inputs 0 and 1.
OLEF: Examples - online-SPRP

\[T_2 = X_1 \oplus Y_1 \]

\[T_3 = X_2 \oplus Y_2 \]

Figure: OleF for \(l \) Complete Diblocks
Recall PRF attack of our first example.

\[
\Delta m_1 = 0 \quad \Delta m_2 = 0 \quad \Delta m_3 = \delta
\]

\[
\Delta(\oplus c_1 \oplus c_2) = \delta
\]
1. we try to equate inputs for two messages as much as possible.
2. then after observing the outputs we try to obtain all other internal input output differences.
3. if the number of blocks of unknown differences is less than the number of output blocks then we have redundancy.
PRP for a blocks - $2a - 1$ calls. LR with 3 rounds. CMC without one of the middle blockcipher call is PRP.

PRF from a blocks to b blocks - $a + b - 1$ calls. PMAC, PMAC with counter mode.

SPRP for a blocks - $2a$ calls. CMC, LR with 4 rounds, FMix.

Online over a blocks - $2a$ calls for both PRP and SPRP. MCBC, OLEF, TC3 etc.

IV-PRP For inverse-free single key PRP over a blocks - $2a$ calls. However, we see if we are allowed to mask by a key then $2a - 1$ is sufficient.
PRP Distinguisher for a block message $2a - 2$ calls

1. **step-1** find a difference in a pair of plaintext queries such that the first a inputs are same.

2. **step-2** make the queries m, m' with the difference Δm obtained in step-1. Let

 $$u_1, v_1, \ldots, u_{2a-2}, v_{2a-2}, \text{ and } u'_1, v'_1, \ldots, u'_{2a-2}, v'_{2a-2}$$

 denote the intermediate inputs outputs for the two queries respectively. We have $1 \leq i \leq a - 1, u_i = u'_i, v_i = v'_i$.

3. **step-3** find a relation on a blocks output difference depends linearly on $a - 1$ blocks unknown output difference.
SPRP Distinguisher for a block message $2a - 1$ calls

step-1 Make two queries with a certain difference, same as PRP distinguisher. Let $u_1, v_1, \ldots, u_{2a-1}, v_{2a-1}$ and $u'_1, v'_1, \ldots, u'_{2a-1}, v'_{2a-1}$ denote the intermediate inputs outputs for the two queries respectively. We have $1 \leq i \leq a - 1, u_i = u'_i, v_i = v'_i$.

step-2 solve for $\Delta u, \Delta v$ using the invertible property.

step-3 find a difference for the final decryption query. Now we find a non zero difference d' for ciphertext such that a block inputs will be same.

step-4 So again we find a relation on a block output difference which is defined on $a - 1$ blocks unknown output differences.
PRP Distinguisher for inverse-free single keyed

step-1 Make two queries with a certain difference, same as PRP distinguisher. Let \(u_1, v_1, \ldots, u_{2a-1}, v_{2a-1} \) and \(u'_1, v'_1, \ldots, u'_{2a-1}, v'_{2a-1} \) denote the intermediate inputs outputs for the two queries respectively. We have \(1 \leq i \leq a-1, u_i = u'_i, v_i = v'_i. \)

step-2 solve for \(\Delta u, \Delta v \) using the invertible property.

step-3 We can not make decryption query .. However, we can find the last input blocks (due to invertibility). So we can make two encryption queries such that

1. the first block inputs for two queries are same as the last block inputs for the previous queries.
2. the next \(a - 1 \) block inputs are same.

step-4 So again we make output difference for the first \(a \) blocks known and so find a relation on a block output difference which is defined on \(a - 1 \) blocks unknown output differences.
Figure: with a presence of masking key we can have three rounds inverse free single function keyed PRP.
1. Introduce Affine Mode.
2. Lower bounds on the number of calls for symmetric key primitives.
3. Tight by showing some constructions achieving bounds.

Thank You