Introduction	

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Cryptanalysis of RIPEMD-128

Thomas Peyrin

joint work with Franck Landelle

NTU - Singapore

ASK 2013

Weihai, China - August 29, 2013

Introduction	
00000	

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

Motivations to study RIPEMD-128

• MDx-like hash function is a very frequent design :

1990' MDx (MD4, MD5, SHA-1, HAVAL, RIPEMD) **2002** SHA-2 (SHA-224, ..., SHA-512)

Some old hash functions are still unbroken :

Broken MD4, MD5, RIPEMD-0 Broken HAVAL Broken SHA-1 Unbroken RIPEMD-128, RIPEMD-160 Unbroken SHA-2

• RIPEMD-128

Design 15 years old. unbroken 9 years after Wang's attacks [WLF+05].

Introduction	
00000	

escription of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

General design and security notions

- A hash function \mathcal{H} is often defined by repeated applications of a compression function *h*.
- A collision on the hash function \mathcal{H} always comes from a collision on the compression function *h*:

 $\mathcal{H}(M) = \mathcal{H}(M^*) \Longrightarrow h(cv, m) = h(cv^*, m^*)$

The conditions on cv and m give different kind of attacks :

Collision $cv = cv^*$ fixed and $m \neq m^*$ free. Semi-free-start Collision $cv = cv^*$ and $m \neq m^*$ are free. Free-start Collision $(cv, m) \neq (cv^*, m^*)$ are free.

The cryptanalysis history of MD5 is a good example of why (semi)-free-start collisions are a serious warning.

Introduction
00000

Results on RIPEMD-128 compression function

RIPEMD-128 parameters :

Digest 128 bits

Steps 64 steps (4 rounds of 16 steps each)

Known and new results on RIPEMD-128 compression function:

Target	#Steps	Complexity	Ref.
collision	48	2 ⁴⁰	[MNS12]
collision	60	2 ^{57.57}	new
collision	63	2 ^{59.91}	new
collision	Full	2 ^{61.57}	new
non-randomness	52	2 ¹⁰⁷	[SW12]
non-randomness	Full	2 ^{59.57}	new

Introduction 00000	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion
In this	talk			

Function RIPEMD-128 compression function

Attack a semi-free-start collision

Find $cv, m \neq m^* / h(cv, m) = h(cv, m^*)$.

- Strategy Choose a message difference $\delta_m = m \oplus m^*$ \rightarrow new message difference used
 - Find a differential path on all intermediate state variables
 - \rightarrow new type of differential path with two non-linear parts
 - Find conforming *cv* and *m*
 - \rightarrow new branch merging technique for collision search

Introduction
00000

Outline

Description of RIPEMD-128

- 2 Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 - Generating a starting point
 - Merging the 2 branches

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Conclusion

Outline

Finding a differential path
Finding a message difference
Finding the non-linear part

- Generating a starting point
 - Merging the 2 branches

4 Conclusion

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

A compression function

Introduction

Description of RIPEMD-128 0●00 Finding a differential path

Finding a conforming pair

Conclusion

Overview of RIPEMD-128 compression function

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

The step function

Left Branch - step *i*, round *j*

Right Branch - step *i*, round *j*

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

The boolean functions

Boolean functions in RIPEMD-128:

- $XOR(x, y, z) := x \oplus y \oplus z$,
- $\mathsf{IF}(x, y, z) := x \land y \oplus \bar{x} \land z$

•
$$\mathsf{ONX}(x,y,z) := (x \lor \bar{y}) \oplus z$$

Steps <i>i</i>	Round <i>j</i>	$\Phi^\ell_j(x,y,z)$	$\Phi_j^r(x,y,z)$
0 to 15	0	XOR(x, y, z)	IF(z, x, y)
16 to 31	1	IF(x, y, z)	ONX(x, y, z)
32 to 47	2	ONX(x, y, z)	IF(x, y, z)
48 to 63	3	IF(z, x, y)	XOR(x, y, z)

Introdu	iction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

イロト 不得 とうほう イヨン

3

Conclusion

Outline

Pinding a differential path

- Finding a message difference
- Finding the non-linear part
- Finding a conforming pair
 Generating a starting point
 Merging the 2 branches

4 Conclusion

The classical strategy (example SHA-1)

- Find a message difference δ_m and a differential path with high probability on the middle and last steps (ideally after the first round).
- Find a "realistic" non-linear differential path on the first steps (ideally on the first round for a semi-free-start collision).
- Find a chaining variable cv and a message m such that the state differential path is followed (use special freedom degrees tricks like neutral bits, message modification, boomerangs, etc.).

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

The classical strategy (example RIPEMD-128)

- Find a message difference δ_m and a differential path with high probability on the middle and last steps for both branches.
- 2 Find a "realistic" non-linear differential path on the first steps.
- Find a conforming chaining variable cv and a message m.

What shape should have the differential path ?

Boolean functions can help to control the diff. propagation.

Properties of the boolean functions:

- XOR : no control of differential propagation
- ONX: some control of differential propagation and permits low diffusion.
- IF : a good control of differential propagation and permits **no** diffusion.

Steps <i>i</i>	Round <i>j</i>	$\Phi_j^{\prime}(x,y,z)$	$\Phi_j^r(x,y,z)$
0 to 15	0	XOR(<i>x</i> , <i>y</i> , <i>z</i>)	IF(z, x, y)
16 to 31	1	IF(x, y, z)	ONX(x, y, z)
32 to 47	2	ONX(x, y, z)	IF(x, y, z)
48 to 63	3	IF(z, x, y)	XOR(x, y, z)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion
Finding a messag	ge difference			
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

- 2 Finding a differential path
 - Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 Generating a starting point
 Merging the 2 branches

Finding a differential path

Finding a conforming pair

Conclusion

Finding a message difference

Choosing the message block difference

Goals keep low ham. weight on the expanded message block Choice Put a difference on a single word of message

With the message block difference on m_{14} :

- "no difference" on rounds with XOR function.
- Non-linear differential paths are in the round with IF

Conclusion

Finding a message difference

Choosing the message block difference

 m_{14} is really "**magic**" with regards to our criteria.

However, how to handle these two non-linear parts which are in different branches, and not in the first round ?

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion
Finding the non	-linear part			
Outline	e			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

- Finding a differential path
 Finding a message difference
 - Finding the non-linear part
- Finding a conforming pair
 Generating a starting point
 Merging the 2 branches

Finding a differential path

Finding a conforming pair

Conclusion

= n<0</p>

Finding the non-linear part

Automatic tool on generalized conditions

We implemented a tool similar to [CR06] for ${\tt SHA-1}$ that uses generalized conditions.

	(<i>b</i> , <i>b</i> *)	(0,0)	(1,0)	(0,1)	(1,1)
Hexa	Notation				
0xF	?	\checkmark	\checkmark	\checkmark	\checkmark
0x9	_	\checkmark			\checkmark
0x6	Х		\checkmark	\checkmark	
0x1	0	\checkmark			
0x2	u		\checkmark		
0x4	n			\checkmark	
0x8	1				\checkmark

Where

- b: a bit during the treatment the message m
- b*: the same bit for the second message m*.

Introduction Des	cription of RIPEMD-128	Finding a differential path	Finding a conforming pair
		0000000000	

Finding the non-linear part

Left branch

Ste	p Xi	Wi	Пi
13: 14·			13 14
15:	***************************************	^	15
16:	???????????????????????????????????????		7
17:	7777777777777777777777777777777777		4
18:	???????????????????????????????????????		13
19:	???????????????????????????????????????		1
20:	///////////////////////////////////////		10
21:			15
22:	777777777777777777777777777777777777777		5 12
23.	777777777777777777777777777777777777		12
25:	777777777777777777777777777777777777	ı 	-0
26:	u		9
27:	10u		5
28:	010		2
29:	n11	x	14
30:	u		11
31:	u		8
32:	1		3
33:			10
34:		X	14
35:			4

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion		
Finding the non	Finding the non-linear part					

Left branch

Step Xi	Wi Пi
13:	13
14:n	x 14 15 7
17:111	4 1
19:u1n1	1
20:000	10
21:1n	6
22:0	15
23:00000	3
24:1	12
25:n-01	0
26:1	9
27: 101-u	5
28: 010	
29: n1	x 14
30: u	11
32: 1 33:	8 3 10
34:	x 14
35:	1 4
	◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 - ����

Introduction	Description of RIPEMD-128 0000	Finding a differential path	Finding a conforming pair	Conclusion
Finding the non-	-linear part			
Right k	branch			

Step	p Yi	Wi	πi
:			
:			
:			
:			5
01:		x	14
02:	???????????????????????????????????????		7
03:	???????????????????????????????????????		0
04:	???????????????????????????????????????		9
05:	???????????????????????????????????????		2
06:	???????????????????????????????????????		11
07:	???????????????????????????????????????		4
08:	???????????????????????????????????????		13
09:	???????????????????????????????????????		6
10:	???????????????????????????????????????		15
11:	???????????????????????????????????????		8
12:	???????????????????????????????????????		1
13:	???????????????????????????????????????		10
14:	???????????????????????????????????????		3
15:	uu		12
16:	uuu		6
17:	u-0u		11
18:	u0		3
19:	00		7
20:	u		0
		・ロト ・四ト ・日ト ・日ト 三日	୬୯୯

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion
Finding the non	-linear part			
Right k	oranch			

Ster	o Yi	Wi	πi
:			
:			
:			
:	00		5
01:	11	x	14
02:	nn		7
03:			0
04:	0000000		9
05:	1111111		2
06:	nuuuuuu		11
07:	010-000	1	4
08:	-010-011		13
09:	-1n-nnn		6
10:	1n01000011-1		15
11:	001111111000nu-n		8
12:	nuuuuuuu11110		1
13:	1nnunu		10
14:	101u		3
15:	u100		12
16:	0-uu		6
17:	u-0u		11
18:	u0		3
19:	00		7
20:	u		0

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 🗉 のへで

Introduction	

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

イロト 不得 とうほう イヨン

3

Conclusion 00000

Outline

Finding a differential path
 Finding a message difference
 Finding the non-linear part

Finding a conforming pair
 Generating a starting point
 Merging the 2 branches

4) Conclusion

Finding a differential path

Finding a conforming pair

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Following a classical differential path

A classical collision search is composed of two subparts:

- step 1 handling the low-probability non-linear parts using the message block freedom
- step 2 the remaining steps in both branches are verified probabilistically

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Conclusion

Finding a conforming pair

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

Finding a conforming pair

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion		
Generating a starting point						
Outline						

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Finding a differential path
 Finding a message difference
 Finding the non-linear part

Finding a conforming pair
 Generating a starting point
 Merging the 2 branches

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Concl
			00000000000	

Satisfying the two non-linear parts simultaneously (step 1)

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Concl
			00000000000	

Satisfying the two non-linear parts simultaneously (step 1)

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Concl
			00000000000	

Satisfying the two non-linear parts simultaneously (step 1)

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conc 0000

Satisfying the two non-linear parts simultaneously (step 1)

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches

Handling probabilistically the linear parts (step 3)

Probabilities of the linear parts are fixed after the first step:

- The probability of the left branch is 2⁻¹⁵.
- The probability of the right branch is 2^{-14.32}.
- one extra bit condition in order to get a collision when adding the two branches
- \rightarrow The overall probability for collision is 2^{-30.32}.

(these probabilities have been verified experimentally)

Our collision search is composed of three subparts:

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words

step 3 Handle probabilistically the linear part in both branches

Introduction

escription of RIPEMD-128 000 Finding a differential path

Finding a conforming pair

Conclusion

Generating a starting point

Handling probabilistically the linear parts (step 3)

 \rightarrow we need to obtain 2^{30.32} solutions of the merging system

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words
- step 3 Handle probabilistically the linear part in both branches.

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion
Merging the 2 brai	nches			
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Description of RIPEMD-128

Finding a differential path
 Finding a message difference
 Finding the non-linear part

Finding a conforming pair
 Generating a starting point

Merging the 2 branches

Introduction
00000

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

3

Merging the 2 branches

Merging the two branches (step 2)

Our collision search is composed of three subparts:

- step 1 Satisfy the two non-linear parts using the freedom from both branches internal states and a few message words
- step 2 From this **starting point**, merge the two branches using some remaining free message words

step 3 Handle probabilistically the linear part in both branches

Introduction

Description of RIPEMD-128

Finding a differential path

Finding a conforming pair

Conclusion

Merging the 2 branches

The starting point

What is fixed ?

Message $m_{12}, m_3, m_{10}, m_1, m_8, m_{15}, m_6, m_{13}, m_4, m_{11}, m_7$. Left State (X_{12}, \ldots, X_{24}) Right State $(Y_3, Y_4, \ldots, Y_{14})$. What is free ?

Message $m_0, m_2, m_5, m_9, m_{14}$.

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion		
Merging the 2 branches						
Prepar	e the merging	system				

The system is quite complex:

The probability that a random choice of $m_0, m_2, m_5, m_9, m_{14}$ gives a solution is

 2^{-128}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Introduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion 00000
Merging the 2 t	pranches			
Reduc	ing the merging	g system		
۲	in the search for a s	starting point (step	o 1), we chose m_{11}	

- such that: $Y_3 = Y_4$ • randomly chose a m_{14} value and deduce m_9 such that: $X_5^{\gg 5} \boxminus m_4 = 0 \times \text{fffffff}$
- \rightarrow the system becomes much simpler and represents less steps of the compression function.

Introduction 00000	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion		
Merging the 2 branches						
Solving the merging system						

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	X_0	Y_0	<i>X</i> _1	<i>Y</i> _1	<i>X</i> _2	<i>Y</i> _2	<i>X</i> _3	<i>Y</i> _3
<i>m</i> ₂		\checkmark						
m_0		\checkmark					\checkmark	
<i>m</i> 5					\checkmark	1	\checkmark	\checkmark

To solve the merging system:

- **1** find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- ② deduce m_0 to fulfill $X_0 = Y_0$
- obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- In ally the 4th equation is verified with probability 2^{-32}

Introduction 00000	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion						
Merging the 2 branches										
Solvin	Solving the merging system									

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	<i>X</i> ₀	Y_0	<i>X</i> ₋₁	<i>Y</i> ₋₁	<i>X</i> _2	<i>Y</i> _2	<i>X</i> _3	<i>Y</i> _3
<i>m</i> ₂		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
m_0		\checkmark					\checkmark	
<i>m</i> 5					\checkmark	1	\checkmark	\checkmark

To solve the merging system:

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- ② deduce m_0 to fulfill $X_0 = Y_0$
- obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- In ally the 4th equation is verified with probability 2^{-32}

Introduction 00000	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion						
Merging the 2 branches										
Solvin	Solving the merging system									

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

	<i>X</i> ₀	Y ₀	X_{-1}	Y_{-1}	<i>X</i> _2	<i>Y</i> _2	<i>X</i> _3	<i>Y</i> _3
m_2		\checkmark	\checkmark	\checkmark	\sim	\checkmark	\sim	\checkmark
<i>m</i> ₀		\checkmark					\checkmark	
<i>m</i> 5				I	\checkmark		\checkmark	\checkmark

To solve the merging system:

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- **2** deduce m_0 to fulfill $X_0 = Y_0$
- (a) obtain m_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$

In ally the 4th equation is verified with probability 2^{-32}

Introduction 00000	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion					
Merging the 2 b	Merging the 2 branches								
Solvin	Solving the merging system								

$$X_i = Y_i \text{ for } i \in \{-3, -2, -1, 0\}$$

To solve the merging system:

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- **2** deduce m_0 to fulfill $X_0 = Y_0$

Solution of M_5 to satisfy a combination of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$

If inally the 4th equation is verified with probability 2^{-32}

Sac

Introduction 00000	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion						
Merging the 2 branches										
Solvin	Solving the merging system									

$$X_i = Y_i$$
 for $i \in \{-3, -2, -1, 0\}$

	X_0	Y_0	X_{-1}	Y_{-1}	<i>X</i> _2	<i>Y</i> _2	<i>X</i> _3	<i>Y</i> _3
m_2		\checkmark	\sim	\checkmark	\sim	\checkmark	\sim	\checkmark
m_0		\checkmark					\sim	
m_5		1		1	\sim	1	\sim	\sim

To solve the merging system:

- find a value of m_2 that verifies $X_{-1} = Y_{-1}$
- **2** deduce m_0 to fulfill $X_0 = Y_0$
- Solution of $X_{-2} = Y_{-2}$ and $X_{-3} = Y_{-3}$
- Inally the 4th equation is verified with probability 2⁻³²

3

Conclusion

Merging the 2 branches

Complexity of the semi-free-start collision attack

- Solving the merging system costs 19 RIPEMD-128 step computations (19/128 of the compression function cost).
- The probability of success of the merging is 2⁻³⁴ (because of 4th equation and 2 extra hidden bit conditions)
- We need to find 2^{30.32} solutions of the merging system.

The total complexity is therefore

$$19/128\times 2^{34}\times 2^{30.32}\simeq 2^{61.57}$$

calls to the compression function.

Introduction	

イロト 不得 とうほう イヨン

-

Outline

Finding a conforming pair
Generating a starting point
Merging the 2 branches

Introduction 00000	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair	Conclusion ●0000
Conclu	usion			
This	work:			

• a new cryptanalysis technique for parallel branches based functions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- a collision attack on the full compression function of RIPEMD-128
- a distinguisher on the hash function of RIPEMD-128
- a LOT of details (many not described here)

Perspectives:

- improvements of this technique
- an example of collision for RIPEMD-128?
- apply to other 2-branch hash functions
- what about RIPEMD-160?

ntroduction	Description of RIPEMD-128	Finding a differential path	Finding a conforming pair

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Cryptanalysis of RIPEMD-160

Thomas Peyrin

joint work with F. Mendel, M. Schläffer, L. Wang and S. Wu

(accepted at Asiacrypt 2013)

ASK 2013

Weihai, China - August 29, 2013

Finding a differential path

Finding a conforming pair

Conclusion

Results on RIPEMD-160 compression function

RIPEMD-160 parameters :

Digest 160 bits Steps 80 steps (5 rounds of 16 steps each)

Known and new results on RIPEMD-160 compression function:

Target	#Steps	Complexity	Ref.
semi-free-start collision	36	low (practical)	[MNS12]
1 st round			
semi-free-start collision	36	2 ^{70.4}	new
semi-free-start collision	42	2 ^{75.5}	new

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Introduction	

RIPEMD-160 >> RIPEMD-128

Why are the improvements far less impressive for $$\tt RIPEMD-160"$

The technique we applied on RIPEMD-128 is much harder to apply on RIPEMD-160:

- finding non-linear parts is more difficult than for RIPEMD-128
- evaluating the probability of a differential path is hard (because two additions are interlinked)
- ... so more complicated to have a global view of what will and what won't work when trying to organize the attack

On top of that, RIPEMD-160 has

- better diffusion (impossible to force no diffusion, even in IF rounds)
- more steps ...

Finding a differential path

Finding a conforming pair

Conclusion ○○○○●

Thank you for your attention !

We are looking for good PhD students in symmetric key crypto.

If interested, please contact me at: thomas.peyrin@ntu.edu.sg

