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An optical fiber network oracle for NP-complete problems

Kan Wu1, Javier Garcı́a de Abajo2,3, Cesare Soci1, Perry Ping Shum1 and Nikolay I Zheludev1,2

The modern information society is enabled by photonic fiber networks characterized by huge coverage and great complexity and ranging

in size from transcontinental submarine telecommunication cables to fiber to the home and local segments. This world-wide network

has yet to match the complexity of the human brain, which contains a hundred billion neurons, each with thousands of synaptic

connections on average. However, it already exceeds the complexity of brains from primitive organisms, i.e., the honey bee, which has a

brain containing approximately one million neurons. In this study, we present a discussion of the computing potential of optical

networks as information carriers. Using a simple fiber network, we provide a proof-of-principle demonstration that this network can

be treated as an optical oracle for the Hamiltonian path problem, the famous mathematical complexity problem of finding whether a set

of towns can be travelled via a path in which each town is visited only once. Pronouncement of a Hamiltonian path is achieved by

monitoring the delay of an optical pulse that interrogates the network, and this delay will be equal to the sum of the travel times needed

to visit all of the nodes (towns). We argue that the optical oracle could solve this NP-complete problem hundreds of times faster than

brute-force computing. Additionally, we discuss secure communication applications for the optical oracle and propose possible

implementation in silicon photonics and plasmonic networks.
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INTRODUCTION

A class of famous complexity problems known as NP-complete pro-

blems1,2 consists of such tasks as the traveling salesman problem that

aims to find the shortest possible route on a map,1,3 the satisfiability task

of determining a Boolean interpretation of the formula2 and the real-

word ‘clique problem’ of graph theory for finding the largest subset of

people who all know each other.4 Importantly, different NP-complete

problems can be transferred to each other using a polynomial time

reduction,1 which indicates that if one of these problems can be solved

in a certain time, all of the others can be solved in that time plus a

polynomial time induced by the reduction. Unfortunately, the brute-

force algorithm solution time increases exponentially with the size of

the problem, and after many years of research, no improved algorithm

has been found to solve these problems within a polynomial time using

a deterministic Turing machine. In fact, many researchers believe that

such an algorithm does not exist in principle. As a response to this

failure of conventional computers, a number of physics approaches

have been considered for NP problems.5 These approaches include

the use of soap bubbles, protein folding, quantum6,7 and DNA8–10

computing. Optical computing also has been explored,11–14 including

free-space white light interference,15 beam masking13,16–18 and time

delay approaches.12,19 Unfortunately, not one of them reduces the com-

plexity of the problem or offers technologically efficient solutions with-

out exponentially increasing the demand on physical resources.

In this work, we provide experimental evidence that an NP-com-

plete problem may be solved using an optical telecommunication fiber

network as the information carrier. We demonstrate this approach

using the directed Hamiltonian path problem of deciding whether a

map can be traveled in a unidirectional manner such that each town is

visited exactly once by exploiting our network as an ‘oracle’ for making

a judgment on the existence of the Hamiltonian path rather than for

finding the exact path itself. We argue that although our solution does

not remove the fundamental mathematical complexity, it provides a

robust and fast oracle that could be scaled to analyze maps of consi-

derable size. Realization and demonstration of a fast-working solution

for NP-complete problems within telecommunication networks may

have a significant potential impact in applications such as secure com-

munications, routing optimization and optical data processing.

The graph is implemented as a network consisting of optical fibers

(roads) that connect all of the nodes (towns), and the network is

probed using a short optical pulse. Visiting each town introduces a

unique delay, and therefore, the existence of a directed Hamiltonian

path can be asserted if a pulse is observed after a time delay equal to the

sum of all of the towns’ delays. A proof-of-principle demonstration is

performed on a fiber network representing a graph with five towns in

which the decision is successfully obtained in only a few tens of nano-

seconds. Although this result does not break the limitation of expo-

nential solution time for NP-complete problems, our approach allows

solution of this NP-complete problem at a rate that is hundreds of

times faster than that of brute-force computing and may already find

applications in routing and secure communications. In addition, to

ease certain scaling issues typical of physical methods and to realize
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more complex cognitive photonic functions, the optical oracle can

readily be implemented in integrated optical networks, such as silicon

photonics or plasmonic networks.

MATERIALS AND METHODS

A target graph with five nodes (towns) connected by directional paths

(roads) is chosen to determine whether there exists a directed

Hamiltonian path, as shown in Figure 1a. Node 1 is set as both the

starting and ending node. It can be observed that a Hamiltonian path

of 1R2R5R3R4R1 exists. The concept underlying this approach is

that an optical pulse is injected into the graph starting from node 1 to

mimic the behavior of a ‘traveler’. The pulse ‘traveler’ simultaneously

attempts all possible routes in the graph. For example, a pulse that

reaches node 2 from node 1 will simultaneously try the path from

node 2 to node 3 and the path from node 2 to node 5. The return

pulses are monitored at node 1. These pulses represent all of the

different routes in the graph that start from and end at node 1.

These routes include three basic loops: (i) 1(inject)R2R3R4R1;

(ii) 1(inject)R5R3R4R1; and (iii) 1(inject)R2R5R3R4R1, as

well as the combinations of these basic loops, i.e., 1(inject)R
2R3R4R1R2 R5R3R4R1. Thus, if pulses traveling along differ-

ent routes can be separated, the pronouncement of the existence of the

Hamiltonian path becomes trivial. The method we use assigns specific

delays to each node, i.e., node j has a delay of Tj (j51–5). The delay of

each node is chosen such that its sum
P5

j~1 Tj can only be obtained by

summing each node’s delay exactly once. This approach indicates that

for a pulse that visits all of the nodes exactly once, the delay that it

experiences is unique, i.e., this pulse will not overlap with other pulses

traveling along different routes in the pulse train returning to node 1.

If such a pulse is observed from the returning pulses after a total delay

of
P5

j~1 Tj , then we can conclude that a Hamiltonian path exists;

otherwise, the answer is negative.

The actual realization of the graph is based on optical fiber and fiber

couplers, as shown in Figure 1b. Details of the actual components and

signal propagation are provided in Supplementary Information. For

the specific graph used in this proof-of-concept demonstration, the

delays of each node are set using different lengths of fibers, i.e., 18.8 ns

for node 1, 14.8 ns for node 2, 15 ns for node 3, 5 ns for node 4 and

28.4 ns for node 5, such that the total delay
P5

j~1 Tj582 ns is unique.

General strategies for the assignment of node delays in large graphs

with arbitrary numbers of nodes and connections are discussed in the

following section.

RESULTS AND DISCUSSION

The experimental set-up is shown in Figure 2. Light from an amplified

spontaneous emission source at 1.55 mm is modulated by a Mach-

Zehnder intensity modulator driven by an electrical pulse generator.

After the modulator, the optical pulses have a pulse width of 8 ns, a

repetition rate of 1 MHz and a pulse energy of 48 pJ. The pulses are

injected into the target graph shown in Figure 1b. The pulses exiting

the graph are detected by a photodetector and monitored by a real-

time oscilloscope triggered by the synchronization signal from the

pulse generator. Use of a low-coherence amplified spontaneous emis-

sion source guarantees that the pulses in the graph are incoherently

combined in the fiber coupler (e.g., node 2 and node 5 combine their

output pulses at node 3). Otherwise, coherent addition would lead to

pulse energy fluctuation due to interference and fiber length fluc-

tuation. The pulse train outputs from the graph are shown in

Figure 3a–3c. The output from node 1 shown in Figure 3a is also

the output of the entire graph. The time axis shows the delay with

respect to the injected pulse. In Figure 3a, the first pulse is the pulse

that travels along the path of 1(inject)R2R3R4R1, and its time

delay with respect to the injected pulse is 53.6 ns. The second pulse

with equal amplitude is the pulse that travels along the path of

1(inject)R5R3R4R1, and its time delay is 67.2 ns. The delay relative

to the first pulse is 13.6 ns. The third pulse is the pulse that travels

along the path of 1(inject)R2R5R3R4R1, and its time delay is

82 ns, which is equal to the sum of the total delays. The observation

of this pulse proves the existence of a Hamiltonian path in the graph.

This pulse visits an additional node compared with the paths of the

first two pulses, and thus, its amplitude is half of that of the first two

pulses. Certain pulses with smaller amplitudes also can be observed.

These pulses propagate two cycles in the graph, and their time delays

and amplitudes are summarized in Table 1.
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Figure 1 Optical network representation of the graph. (a) Illustration of the oracle approach to solution of the Hamiltonian path problem on a target graph with five

nodes. An optical pulse is injected into the optical network and travels along all possible paths. A Hamiltonian path exists if a pulse returning to node 1 is observed after a

delay equal to the total delay of the entire network. (b) Actual design of the graph with optical fiber components. The optical pulse is injected into the network via a

50 : 50 fiber coupler. All of the couplers shown in nodes 2, 3 and 5 are 50 : 50 fiber couplers. The pulses returning to node 1 are extracted using an 80 : 20 fiber coupler,

and 80% of their power is re-injected into the network. The delay of each node is realized by inserting a certain length of optical fiber. Two monitoring ports are included

at nodes 3 and 5.
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The inset of Figure 3a shows the output from node 1 on a larger time

scale. It can be seen that the amplitudes of the output pulses vanish

within 200 ns and thus do not overlap with the pulse train generated by

the following injected pulse. Figure 3b shows the output pulses from

the monitoring port of node 3. Because the output pulses of node 3

propagate to node 1 via node 4, they are expected to be the same as the

output pulses from node 1 (i.e., pulses in Figure 3a) except for differ-

ent pulse amplitudes. For easy comparison with the pulses shown in

Figure 3a, the time axis of Figure 3b is shifted such that the corres-

ponding pulses can be shown in the same timing position, i.e., the first

pulse in Figure 3b generates the first pulse in Figure 3a, the second

pulse in Figure 3b generates the second pulse in Figure 3a, and so on.

For the output of node 5 shown in Figure 3c (note that the time axis is

shifted in a manner similar to that of Figure 3b), the first pulse is the

one originating directly from node 1, and the second pulse is the one

traveling from node 1 via node 2. All of the remaining small-amplitude

pulses also can be identified in a similar manner, as summarized in

Table 1.

To verify the validity of the proposed optical approach for deter-

mining the existence of a Hamiltonian path, we disconnected path

2R5 in the graph. In this condition, the third pulse corresponding to

the Hamiltonian path 1(inject)R2R5R3R4R1 is expected to dis-

appear from the output pulse trains in nodes 1, 3 and 5. This behavior

is indeed confirmed by the outputs shown in Figure 3d–3f, which were

recorded after breaking the connection from node 2 to node 5.

The key to the unambiguous oracle performance is the assignment

of suitable delays for each node in the graph. If the number of nodes is

small, as in our proof-of-concept demonstration, assignment of

unique delays is straightforward. For the general case of a graph with

N nodes and arbitrary connections among different nodes, node

delays must be employed that satisfy the following relationship:

XN

j~1

CjTj~
XN

j~1

TjuC1~C2~:::~CN ~1 ð1Þ

where Cj is a non-negative integer representing the number of times

node j has been visited, and N is the number of nodes in the graph. In

other words, the total delay introduced by the Hamiltonian path can

only be obtained by summing the delay of each node in the graph
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Figure 2 Experimental set-up for solving the Hamiltonian path problem with an optical oracle. Light from a low-coherence ASE source is fed into an optical intensity

modulator driven by an electrical pulse generator. The pulse train after the modulator has a pulse energy of 48 pJ, a pulse width of 8 ns and a repetition rate of 1 MHz.

The pulse train is injected into the target graph built from an optical fiber network. The pulses exiting the graph are monitored by a photodetector and an oscilloscope for

detection of the pulse, thus indicating the existence of a Hamiltonian path. ASE, amplified spontaneous emission.
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Figure 3 Pulse train outputs from the graph. Outputs from (a) node 1, (b) node 3

and (c) node 5 of the graph and outputs from (d) node 1, (e) node 3 and (f) node 5

after the path from node 2 to node 5 is disconnected. The inset of (a) shows the

pulse outputs from node 1 on a larger time scale. All of the time axes are refer-

enced to the pulse injected into the graph. It can be observed that in (a)–(c), the

third pulse has a delay of 82 ns, which is equal to the total delay of the graph.

Therefore, this pulse indicates the existence of a Hamiltonian path. In comparison,

in (d)–(f), because the path from node 2 to node 5 is disconnected, there is no

Hamiltonian path, and the third pulse disappears accordingly. These results con-

firm that our approach is effective in indicating the existence of a Hamiltonian path.
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exactly once. Such delay combinations exist. A theoretical proposal of

delay assignment suitable for optical solution of the Hamiltonian path

problem was advanced by Oltean:12

Tj~Dt : 2N {2j{1
� �

ð2Þ

whereDt is the optical pulse duration. The corresponding solving time

is Dt?N2N. Alternative assignments also can be found, e.g.,

Tj~Dt : 2N z2j{1
� �

ð3Þ

Tj~Dt : P
N

k~1
pk

� ��
pj ð4Þ

where pj (j51–N) is a prime number. Detailed proof of the validity

of these two unique assignments is provided in Supplementary

Information.

Similar to other ‘physical’ approaches, i.e., soap bubbles or DNA

computing, the ability of the optical oracle to solve large NP problems

is limited by scaling of the physical resources required, including the

overall length of the optical fibers needed to encode the network and

the light intensity required to overcome absorption losses or pulse

width broadening due to dispersion. For example, if a 30-node graph

is constructed as an optical oracle fiber network using the delay assign-

ments in Equation (2) and is interrogated with 1-ps optical pulses, its

implementation would require a minimum fiber length of approxi-

mately 100 km and a maximum fiber length of approximately 200 km.

Although such lengths may require in-fiber optical signal amplifica-

tion to compensate for the losses, this approach is widely used in

telecom networks and is within reach of current fiber technology.

Dispersion-induced pulse broadening also can be overcome by choos-

ing a center wavelength for the probe pulse that is close to the

zero dispersion point of the fiber and using dispersion compensation

elements.

The optical oracle relies on short pulses that propagate with the

speed of light and the massive parallelism of fiber networks resulting

from multiple branching of the pulses. This structure enables a fast and

reliable pronouncement on the existence of a Hamiltonian path. For

comparison, a brute-force search on a conventional computer would

require up to N! attempts. Even with smart algorithms such as

dynamic programming, the conventional computers would require

approximately 1/8?N22N operations (additions and comparisons).20,21

For computers with a clock period t, this process will require at least

t?1/8?N22N s to perform, which indicates that our approach is Nt/8Dt

times faster than dynamic programming algorithms. With a pulse

duration of 1 ps, a graph with 30 nodes could be solved approximately

375 times faster than with a 10-GHz clock rate computer. We note that

the optical oracle loses to probabilistic Monte Carlo algorithms21 that

can solve the Hamiltonian path problem with a certain degree of

uncertainty in time O(1.657N). However, our approach completely

excludes false predictions.

Practical applications of the Hamiltonian path oracle could include

secure communications in which a scrambled binary signal sequence

(or key) is encoded as a sequence of graphs, each of which represents

either ‘1’ or ‘0’ bits in the binary signal depending on whether they

support the Hamiltonian path. For a graph of 30 nodes, the

Hamiltonian path oracle pronouncement with dynamic program-

ming algorithms would require approximately 12 s on a 10-GHz clock

rate electronic computer, whereas the optical oracle could accomplish

this task in a brisk 32 ms. Although the network will be multifarious, it

could be easily reconfigured using optomechanical switches, thus

allowing the interrogation of hundreds of networks within a second.

Therefore, on a reconfigurable oracle, the scrambled sequence (or key)

may be unscrambled in a time proportional to the number of bits

in the sequence and the time needed to reconfigure the network and

verify the existence of the Hamiltonian path (ms), whereas if

performed by brute-force computing, it may require a prohibitive

amount of time.

CONCLUSIONS

In conclusion, we have provided an experimental demonstration of

how a fiber network can be used to solve a well-known NP-complete

problem. Although we do not suggest that existing global or local

optical fiber networks can realistically be deployed for computing

applications, we argue that in the future, highly reconfigurable optical

fiber networks should not be overlooked as a powerful computing and

decision-making hardware platform. Moreover, our strategy also can

be implemented on a silicon photonics platform, and in principle,

could be deployed on plasmonic waveguide networks with femto-

second lasers by exploiting the slow dispersion of plasmon polariton

pulses.22 This approach would allow for compact, highly integrated

solutions and the development of multiple network parallel architec-

tures similar to the multicore structure of conventional processors.
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Table 1 Summary of the time delays of the pulses output from node 1 in Figure 3a

Pulse no. Path

Delay with respect to

the injected pulse (ns)

Delay with respect to

the first pulse (ns)

Amplitude with respect to

the first pulse

1 1(in)R2R3R4R1 53.6 0 1

2 1(in)R5R3R4R1 67.2 13.6 1

3 1(in)R2R5R3R4R1 82 28.4 0.5

4 1(in)R2R3R4R1R2R3R4R1 107.2 53.6 0.1

5 1(in)R2R3R4R1R5R3R4R1 120.8 67.2 0.2

1(in)R5R3R4R1R2R3R4R1 120.8 67.2

6 1(in)R5R3R4R1R5R3R4R1 134.4 80.8 0.2

1(in)R2R3R4R1R2R5R3R4R1 135.6 82

1(in)R2R5R3R4R1R2R3R4R1 135.6 82

7 1(in)R5R3R4R1R2R5R3R4R1 149.2 95.6 0.1

1(in)R2R5R3R4R1R5R3R4R1 149.2 95.6
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