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Motivations

Frameproof codes were first introduced by Boneh and Shaw in
1998 to protect copyrighted materials.

The study of related objects in the literature goes back to
1960s, as Rényi first introduced the concept of a separating
system when concerning certain information-theoretic
problems.

It is applicable for different scenarios such as in broadcast
encryption scheme and variants of pay-per-view movies.

(D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,” IEEE

Trans. Inform. Theory, vol. 44, no. 5, pp. 1897–1905, 1998.)
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Fingerprints

A distributor wants to sell copies of a digital product. He randomly
chooses l fixed positions in the digital data. For each copy, he
marks each position with one of q different states.
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Coalitions

Notation:

Let F be a finite set of cardinality q.

[l ] = {1, . . . , l}, where l is a positive integer.

∀x ∈ F l and ∀i ∈ [l ], let xi denote the ith component of x .

Let P ⊂ F l . The set of descendants of P, desc(P), is defined
as

desc(P) = {x ∈ F l : xi ∈ {yi : y ∈ P}, i ∈ [l ]}.

Example

C = {011, 012, 211, 222}, P = {012, 211} ⊂ C , then
desc(P) = {012, 011, 212, 211}. The coalition of users with
fingerprints in P can frame the user with fingerprint 011.
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Frameproof codes

Definition

Let c(≥ 2) be an integer. A c-frameproof code (FP) is a subset
C ⊂ F l s.t. ∀P ⊂ C with |P| ≤ c , we have desc(P) ∩ C = P
(⇔ x ∈ desc(P) ∩ C implies x ∈ P ⇔ ∀|P| = c and x ∈ C \ P,
x 6∈ desc(P)).

Example

Let F = {∞} ∪ Z2 and C = ∪4
i=1Xi , where

X1 = {(∞, i , i , i ) : i ∈ Z2},
X2 = {(i ,∞ , i , i + 1) : i ∈ Z2},
X3 = {(i , i + 1,∞ , i ) : i ∈ Z2},
X4 = {(i , i , i + 1,∞ ) : i ∈ Z2}.

Then C is a 3-frameproof code of size 8. Further, let
I0 = (∞,∞,∞,∞), then C ∪ {I0} is also 3-frameproof.
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A 4-FP code

Example

Let F = {∞} ∪ Z3. Define

X1 = {(∞, i , i , i , i ) : i ∈ Z3},
X2 = {(i ,∞ , i , i + 1, i + 2) : i ∈ Z3},
X3 = {(i , i ,∞ , i + 2, i + 1) : i ∈ Z3},
X4 = {(i , i + 1, i + 2,∞ , i ) : i ∈ Z3},
X5 = {(i , i + 2, i + 1, i ,∞ ) : i ∈ Z3}.

Let C = ∪5
i=1Xi , which forms a 4-ary 4-frameproof code of size 15.

Furthermore, C ∪ {(∞,∞,∞,∞,∞)} is also 4-frameproof.
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c-SFP codes

Definition

Secure frameproof codes (SFP) are defined to demand that no
coalition of at most c users can frame another disjoint coalition of
at most c users; i.e., for any two disjoint subsets P and P ′ of size
at most c , we have desc(P) ∩ desc(P ′) = ∅.

Example

C = {011, 120, 101, 210} is a 2-frameproof code. But
{110} ∈ desc({011, 120}) ∩ desc({101, 210}), i.e., C is not a
2-SFP code.

X Zhang CCRG Constructions of Frameproof Codes



Introduction
Upper Bounds of FP codes

Constructions
Concluding Remarks

Motivations
Definition
Related Objects

c-SFP codes

Definition

Secure frameproof codes (SFP) are defined to demand that no
coalition of at most c users can frame another disjoint coalition of
at most c users; i.e., for any two disjoint subsets P and P ′ of size
at most c , we have desc(P) ∩ desc(P ′) = ∅.

Example

C = {011, 120, 101, 210} is a 2-frameproof code. But
{110} ∈ desc({011, 120}) ∩ desc({101, 210}), i.e., C is not a
2-SFP code.

X Zhang CCRG Constructions of Frameproof Codes



Introduction
Upper Bounds of FP codes

Constructions
Concluding Remarks

Motivations
Definition
Related Objects

c-IPP codes

Definition

Codes with identifiable parent property (IPP) require that no
coalition of at most c users can produce a copy that cannot be
traced back to at least one member of the coalition; i.e., if
x ∈ desc(P) for some P ⊂ C of size at most c , then⋂

{Q:x∈desc(Q),|Q|≤c}

Q 6= ∅.

Example

C = {011, 123, 211, 332} is a 4-IPP code.
D = {011, 113, 121} is not a 2-IPP code, since x = 111 is a
descendent of any two codewords.
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c-TA codes

Definition

Traceability codes (TA) have much stronger identifiable parent
property which allows an efficient (i.e., linear-time in the size of
the code) algorithm to determine one member of the coalition. For
any x , y ∈ C , let I (x , y) = {i : xi = yi}. For any |P| ≤ c and any
x ∈ desc(P), there exist y ∈ P such that |I (x , y)| > |I (x , z)| for all
z ∈ C \ P.

Example

C = {011, 123, 211, 332} is a 4-IPP code. But it is not a 2-TA
code. For example, let x = 111 ∈ desc({011, 123}). However,
|I (x , 123)| = 1 and |I (x , 011)| = 2, and |I (x , 211)| = 2.
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Hash families

Definition

An (n, q)-hash function is a function h : A → F with |A| = n and
|F | = q. An (n, q)-hash family is a set H of (n, q)-hash functions
from A to F . Denoted by HF(l ; n, q) if |H| = l .

c ≥ 2. H is an (n, q, c)-perfect hash family if ∀X ⊂ A with
|X | = c , there exists at least one h ∈ H s.t. h|X is injective.
Denoted by PHF(l ; n, q, c) if |H| = l ;

H is an (n, q, c1, c2)-separating hash family if for any disjoint
X1,X2 ⊂ A with |X1| = c1 and |X2| = c2, there exists at least
one h ∈ H s.t. |h(X1) ∩ h(X2)| = ∅. Denoted by
SHF(l ; n, q, c1, c2) if |H| = l ;
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HFs and codes (Staddon, Stinson and Wei, 2001, IT IEEE)

A code C ⊂ F l with |C | = n ⇔ an HF(l ; n, q) when depicted by a
n × l matrix.

H(C ) =


h1 h2 · · · hl

c1

c2
...
cn


n×l

C is a c-FP code iff H(C ) is an SHF(l ; n, q, c , 1);
C is a c-SFP code iff H(C ) is an SHF(l ; n, q, c , c);
C is a 2-IPP code iff H(C ) is simultaneously a PHF(l ; n, q, 3) and
an SHF(l ; n, q, 2, 2).
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Mc ,l(q)

Let Mc,l(q) be the largest cardinality of a q-ary c-frameproof
code of length l .

Staddon, Stinson and Wei(2001) proved

Mc,l(q) ≤ c
(
qdl/ce − 1

)
.

for all q ≥ 2.

(Blackburn, 2003) Let r ≡ l (mod c). Then

Mc,l(q) ≤ max
{
qdl/ce, r(qdl/ce − 1) + (c − r)(qbl/cc − 1)

}
.
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Sketch of the proof

Proof of Mc,l(q) ≤ max
˘
qdl/ce, r(qdl/ce − 1) + (c − r)(qbl/cc − 1)

¯
:

S ⊂ [l ], |S | = s, US = {x ∈ C : @y ∈ C s.t. xi = yi ,∀i ∈ S},
|US | ≤ q|S |. If |C | > q|S |, then |US | ≤ q|S | − 1.

[l ] = S1|S2| . . . |Sc , |Sj | = dl/ce or bl/cc. If C = ∪c
j=1USj

then the upper bound is obvious.

Otherwise, ∃x ∈ C \ ∪c
j=1USj

.

x 6∈ USj
⇔ ∃y j ∈ C \ {x} s.t. y j |Sj

= x |Sj
.

It is true for each j = 1, 2, . . . , c , so there exist
y1, y2, . . . , y c ∈ C \ {x} such that
x ∈ desc({y1, y2, . . . , y c}).
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Small Optimal Cases (l ≤ c)

Lemma

If 2 ≤ l ≤ c, Mc,l(q) = l(q − 1).

Since

By the previous upper bound, Mc,l(q) ≤ l(q − 1).

Let F = 0, 1, . . . , q − 1. The set C of all words of length l
and weight exactly 1 (i.e., the elements of F l with exactly one
nonzero component) forms a c-frameproof code of cardinality
l(q − 1).
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Blackburn, 2003

Theorem

Let c, l and q be positive integers greater than 1. Let
t ∈ {1, 2, . . . , c} be an integer such that t ≡ l (mod c). Then

Mc,l(q) ≤
( l

l − (t − 1)dl/ce
)
qdl/ce + O(qdl/ce−1).

Reed-Solomn codes are c-FP codes: Let q ≥ l be a prime power.
Let α1, α2, . . . , αl be distinct elements in Fq. Define

C = {(f (α1), f (α2), . . . , f (αl)) : f ∈ Fq[X ], deg f < dl/ce}.

Then C is a c-frameproof code of cardinality qdl/ce (∀c , l). If
q = l − 1, allow a polynomial f to be evaluated at a “point at
infinity”: f (∞) is defined to be the coefficient of X dl/ce in f .

X Zhang CCRG Constructions of Frameproof Codes



Introduction
Upper Bounds of FP codes

Constructions
Concluding Remarks

Upper bound I
Upper bound II
Question

Rc ,l

Definition

Let Rc,l(q) := Mc,l(q)/qdl/ce and Rc,l := limq→∞ Rc,l(q).

Corollary

Let c and l be positive integers greater than 1. Let t ∈ [c] be an
integer such that t ≡ l (mod c). Then

Rc,l ≤
l

l − (t − 1)dl/ce
.

Theorem

(1) Rc,l = 1 when l ≡ 1 (mod c);

(2) Rc,l = 2 when c = 2 and l is even (Blackburn, 2003);
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Question

Blackburn (2003) asked the following question: Is there a q-ary
c-frameproof code of length l with cardinality approximately
l/(l − dl/ce)qdl/ce when l ≡ 2 (mod c)?
i.e., Rc,l = l/(l − dl/ce)?
When l = c + 2, Rc,c+2 ≤ c+2

c . Blackburn proved that R3,5 = 5/3.
Our work is to prove that Rc,c+2 = c+2

c for a large amount of
integers c .
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From high distance codes

Lemma

Let C be a code of minimum distance d and length l . Then C is a
c-frameproof code for any c ≥ 2 satisfying l > c(l − d).

Example

(1)(RS codes) Let q ≥ l be a prime power. Let α1, α2, . . . , αl be
distinct elements in Fq.

C = {(f (α1), f (α2), . . . , f (αl)) : f ∈ F [X ], deg f < dl/ce}.

Then C is of minimum distance d = l − (dl/ce − 1). Obviously,
l > c(l − d). So C is a c-frameproof code of cardinality qdl/ce.
(2) The converse is not true. C = {112, 212, 312} is a 2-FP code.
Let d = 2, then l > c(l − d), but C is not of minimum distance 2.
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l > c(l − d). So C is a c-frameproof code of cardinality qdl/ce.
(2) The converse is not true. C = {112, 212, 312} is a 2-FP code.
Let d = 2, then l > c(l − d), but C is not of minimum distance 2.
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Product Construction (PC)

Lemma

If

(1) C: an s-ary code, length l over an alphabet S, d ≥ l − (t − 1)
(i.e. each codeword is uniquely determined by specifying t of
its components), and

(2) D: an m-ary code, length l over an alphabet F ,
d ≥ l − (t − 1).

Then

C ′ = {(x , y) : x ∈ C , y ∈ D} is an sm-ary code, length l over
S × F , d ≥ l − (t − 1), |C ′| = |C ||D|, where

(x , y) = ((x1, y1), (x2, y2), . . . , (xl , yl)).

If c(t − 1) < l , then C ′ is a c-FP code.
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Modified Product Construction (MPC)

Lemma

If: c ≥ t ≥ 2, l ≥ 2t − 1 and l = c(t − 1) + r , where t ≤ r ≤ c.

(1) C: an s-ary code, length l over an alphabet S,
d ≥ l − (t − 1). C satisfies Property P(t), i.e., ∃ a special
element say ∞ ∈ S, s.t. each codeword contains ≤ t − 1 ∞’s.

(2) D: an m-ary code, length l over an alphabet F ,
d ≥ l − (t − 1).

Then

C ′ = {[x , y ] : x ∈ C , y ∈ D} is an ((s − 1)m + 1)-ary code,
length l over ((S \ {∞})× F ) ∪ {∞}, c-FP code,
|C ′| = |C ||D|, where [x , y ] is defined as

[x , y ]i =

{
∞, if xi = ∞;

(xi , yi ), otherwise.
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Modified Product Construction (MPC)

Proof.

(1) Aim: ∀[x , y ] ∈ C ′ and P ⊂ C ′, |P| = c such that
[x , y ] ∈ desc(P) ⇒ [x , y ] ∈ P.
Since l = c(t − 1) + r , where r > t and [x , y ] has ≤ t − 1 ∞’s,
there exist [x ′, y ′] ∈ P that agrees with [x , y ] more than t
components that are not equal to ∞.
Thus x , x ′ have more than t identical components, x = x ′.
Similarly, y = y ′.
(2)|C ′| = |C ||D| since l ≥ 2t − 1.
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Comparison of two constructions

PC: C ′ = {(x , y) : x ∈ C , y ∈ D} is an sm-ary code, length l over
S × F , d ≥ l − (t − 1), |C ′| = |C ||D|;

MPC: C ′ = {[x , y ] : x ∈ C , y ∈ D} is an ((s − 1)m + 1)-ary code,
length l over ((S \ {∞})× F ) ∪ {∞}, d ≥ l − (t − 1) (i.e.,
c-FP code), |C ′| = |C ||D|.

Comm: c , l and |C ′|.
Diff: PC: sm-ary, but MPC: ((s − 1)m + 1)-ary. MPC needs a little

stronger C .

Example: C and D are both RS codes. By PC,
|C |

sdl/ce ·
|D|

mdl/ce = |C ||D|
(sm)dl/ce = 1.
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Corollary

An application of the Modified Product Construction:

C: Let s = c + 1 be a prime power and l = c + 2, t = r = 2. Let
C be the RS code defined by all nonzero f ∈ Fs [X ], deg f < 2.
Then |C | = s2 − 1 satisfying Property P(2) with 0 as the
special element.

D: Let m be a prime power and l , c , t, r as above. Let D be the
RS code defined by all f ∈ Fm[X ], deg f < 2. Then |D| = m2.

Result: Applying the modified product construction to C and D, we
have C ′ is a q-ary c-frameproof code, where
q = (s − 1)m + 1 = cm + 1 and

|C ′| = (s2 − 1)m2 =
(s2 − 1)

(s − 1)2
(q − 1)2

=
(s + 1)

(s − 1)
(q − 1)2 =

c + 2

c
(q − 1)2.
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Rc ,c+2

Corollary

Let c ≥ 2 be an integer such that c + 1 is a prime power, and let
m ≥ c + 1 be any prime power. Then there exists a q-ary
c-frameproof code of length c + 2 with cardinality c+2

c (q − 1)2,
where q = cm + 1.

Theorem

Let c ≥ 2 be an integer such that c + 1 is a prime power, then
Rc,c+2 = (c + 2)/c.
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Proof of Theorem

Proof.

(1) Rc,c+2 ≤ (c + 2)/c (Upper bound).

(2) ∀q, denote ql the largest prime power s.t. cql + 1 ≤ q, and qu

the smallest integer s.t. cqu + 1 ≥ q. Then ql
qu

= 1− o(1).

Mc,c+2(q)/q2 ≥ Mc,c+2(cql + 1)/q2

≥ c + 2

c
(cql)

2/q2 ≥ c + 2

c
(cql)

2/(cqu + 1)2,

which shows Rc,c+2 ≥ (c + 2)/c .
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Other results

Theorem

There exists a q-ary 2-frameproof code with length 4 of cardinality
2(q − 1)2 + 1 for any odd q > 1.

Theorem

There exists a q-ary 3-frameproof code with length 5 of cardinality
5
3(q − 1)2 + 1 for any integer q ≡ 4 (mod 6).
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Theorem

(1) Rc,l = 1 when l ≡ 1 (mod c);
(2) Rc,l = 2 when c = 2 and l is even;
(3) Rc,c+2 = c+2

c for all c s.t. c + 1 is a prime power.

Question

(1) What is Rc,c+2 for other values of c?
(2) What is Rc,l in general?
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