Constructions of Frameproof Codes

Xiande Zhang

Joint work with Yeow Meng Chee

November 2012, Singapore

Outline

- Introduction
- Upper Bounds of Frameproof Codes
- Constructions of Frameproof Codes
- Concluding Remarks

Outline

(1) Introduction

- Motivations
- Definition
- Related Objects
(2) Upper Bounds of FP codes
- Upper bound I
- Upper bound II
- Question
(3) Constructions
- From high distance codes
- Product Construction
- Optimal results
(4) Concluding Remarks

Motivations

- Frameproof codes were first introduced by Boneh and Shaw in 1998 to protect copyrighted materials.
- The study of related objects in the literature goes back to 1960s, as Rényi first introduced the concept of a separating system when concerning certain information-theoretic problems.
- It is applicable for different scenarios such as in broadcast encryption scheme and variants of pay-per-view movies.
(D. Boneh and J. Shaw, "Collusion-secure fingerprinting for digital data," IEEE

Trans. Inform. Theory, vol. 44, no. 5, pp. 1897-1905, 1998.)

Fingerprints

A distributor wants to sell copies of a digital product. He randomly chooses / fixed positions in the digital data. For each copy, he marks each position with one of q different states.

Coalitions

Notation:

- Let F be a finite set of cardinality q.
- $[/]=\{1, \ldots, I\}$, where I is a positive integer.
- $\forall x \in F^{\prime}$ and $\forall i \in[/]$, let x_{i} denote the ith component of x.
- Let $P \subset F^{\prime}$. The set of descendants of $P, \operatorname{desc}(P)$, is defined as

$$
\operatorname{desc}(P)=\left\{x \in F^{\prime}: x_{i} \in\left\{y_{i}: y \in P\right\}, i \in[/]\right\}
$$

Example

$C=\{011,012,211,222\}, P=\{012,211\} \subset C$, then $\operatorname{desc}(P)=\{012,011,212,211\}$. The coalition of users with fingerprints in P can frame the user with fingerprint 011.

Frameproof codes

Definition

Let $c(\geq 2)$ be an integer. A c-frameproof code (FP) is a subset $C \subset F^{\prime}$ s.t. $\forall P \subset C$ with $|P| \leq c$, we have $\operatorname{desc}(P) \cap C=P$ $(\Leftrightarrow x \in \operatorname{desc}(P) \cap C$ implies $x \in P \Leftrightarrow \forall|P|=c$ and $x \in C \backslash P$, $x \notin \operatorname{desc}(P))$.

Example

Let $F=\{\infty\} \cup \mathbb{Z}_{2}$ and $C=\cup_{i=1}^{4} X_{i}$, where

Then C is a 3 -frameproof code of size 8 . Further, let

Frameproof codes

Definition

Let $c(\geq 2)$ be an integer. A c-frameproof code (FP) is a subset $C \subset F^{\prime}$ s.t. $\forall P \subset C$ with $|P| \leq c$, we have $\operatorname{desc}(P) \cap C=P$ $(\Leftrightarrow x \in \operatorname{desc}(P) \cap C$ implies $x \in P \Leftrightarrow \forall|P|=c$ and $x \in C \backslash P$, $x \notin \operatorname{desc}(P))$.

Example

Let $F=\{\infty\} \cup \mathbb{Z}_{2}$ and $C=\cup_{i=1}^{4} X_{i}$, where

$$
\begin{aligned}
& X_{1}=\left\{(\infty, i \quad, i \quad, i \quad): i \in \mathbb{Z}_{2}\right\} \text {, } \\
& X_{2}=\left\{(i, \infty \quad, i \quad, i+1): i \in \mathbb{Z}_{2}\right\} \text {, } \\
& X_{3}=\left\{(i, i+1, \infty \quad, i \quad): i \in \mathbb{Z}_{2}\right\} \text {, } \\
& X_{4}=\left\{(i, i \quad, i+1, \infty \quad): i \in \mathbb{Z}_{2}\right\} .
\end{aligned}
$$

Then C is a 3 -frameproof code of size 8 . Further, let $I_{0}=(\infty, \infty, \infty, \infty)$, then $C \cup\left\{I_{0}\right\}$ is also 3-frameproof.

A 4-FP code

Example

Let $F=\{\infty\} \cup \mathbb{Z}_{3}$. Define

$$
\begin{aligned}
& \left.X_{1}=\left\{\begin{array}{lll}
(\infty, i & , i & , i
\end{array}, i \quad\right): i \in \mathbb{Z}_{3}\right\}, \\
& X_{2}=\left\{(i, \infty \quad, i \quad, i+1, i+2): i \in \mathbb{Z}_{3}\right\}, \\
& X_{3}=\left\{(i, i \quad, \infty \quad, i+2, i+1): i \in \mathbb{Z}_{3}\right\}, \\
& X_{4}=\left\{(i, i+1, i+2, \infty \quad, i \quad): i \in \mathbb{Z}_{3}\right\}, \\
& X_{5}=\left\{(i, i+2, i+1, i \quad, \infty \quad): i \in \mathbb{Z}_{3}\right\} .
\end{aligned}
$$

Let $C=\cup_{i=1}^{5} X_{i}$, which forms a 4-ary 4-frameproof code of size 15 .
Furthermore, $C \cup\{(\infty, \infty, \infty, \infty, \infty)\}$ is also 4-frameproof.

c-SFP codes

Definition

Secure frameproof codes (SFP) are defined to demand that no coalition of at most c users can frame another disjoint coalition of at most c users; i.e., for any two disjoint subsets P and P^{\prime} of size at most c, we have $\operatorname{desc}(P) \cap \operatorname{desc}\left(P^{\prime}\right)=\emptyset$.

Example
$C=\{011,120,101,210\}$ is a 2-frameproof code. But $\{110\} \in \operatorname{desc}(\{011,120\}) \cap \operatorname{desc}(\{101,210\})$, i.e., C is not a 2-SFP code.

c-SFP codes

Definition

Secure frameproof codes (SFP) are defined to demand that no coalition of at most c users can frame another disjoint coalition of at most c users; i.e., for any two disjoint subsets P and P^{\prime} of size at most c, we have $\operatorname{desc}(P) \cap \operatorname{desc}\left(P^{\prime}\right)=\emptyset$.

Example

$C=\{011,120,101,210\}$ is a 2 -frameproof code. But $\{110\} \in \operatorname{desc}(\{011,120\}) \cap \operatorname{desc}(\{101,210\})$, i.e., C is not a 2-SFP code.

c-IPP codes

Definition

Codes with identifiable parent property (IPP) require that no coalition of at most c users can produce a copy that cannot be traced back to at least one member of the coalition; i.e., if $x \in \operatorname{desc}(P)$ for some $P \subset C$ of size at most c, then

$$
\bigcap_{\{Q: x \in \operatorname{desc}(Q),|Q| \leq c\}} Q \neq \emptyset .
$$

c-IPP codes

Definition

Codes with identifiable parent property (IPP) require that no coalition of at most c users can produce a copy that cannot be traced back to at least one member of the coalition; i.e., if $x \in \operatorname{desc}(P)$ for some $P \subset C$ of size at most c, then

$$
\bigcap_{\{Q: x \in \operatorname{desc}(Q),|Q| \leq c\}} Q \neq \emptyset .
$$

Example

$C=\{011,123,211,332\}$ is a 4-IPP code.
$D=\{011,113,121\}$ is not a 2 -IPP code, since $x=111$ is a descendent of any two codewords.

c-TA codes

Definition

Traceability codes (TA) have much stronger identifiable parent property which allows an efficient (i.e., linear-time in the size of the code) algorithm to determine one member of the coalition. For any $x, y \in C$, let $I(x, y)=\left\{i: x_{i}=y_{i}\right\}$. For any $|P| \leq c$ and any $x \in \operatorname{desc}(P)$, there exist $y \in P$ such that $|I(x, y)|>|I(x, z)|$ for all $z \in C \backslash P$.

Example

$C=\{011.123,211,332\}$ is a 4-IPP code. But it is not a 2-TA code. For example, let $x=111 \in \operatorname{desc}(\{011,123\})$. However, $|I(x, 123)|=1$ and $|I(x, 011)|=2$, and $|I(x, 211)|=2$.

c-TA codes

Definition

Traceability codes (TA) have much stronger identifiable parent property which allows an efficient (i.e., linear-time in the size of the code) algorithm to determine one member of the coalition. For any $x, y \in C$, let $I(x, y)=\left\{i: x_{i}=y_{i}\right\}$. For any $|P| \leq c$ and any $x \in \operatorname{desc}(P)$, there exist $y \in P$ such that $|I(x, y)|>|I(x, z)|$ for all $z \in C \backslash P$.

Example

$C=\{011,123,211,332\}$ is a 4 -IPP code. But it is not a 2 -TA code. For example, let $x=111 \in \operatorname{desc}(\{011,123\})$. However, $|I(x, 123)|=1$ and $|I(x, 011)|=2$, and $|I(x, 211)|=2$.

Hash families

Definition

An (n, q)-hash function is a function $h: A \rightarrow F$ with $|A|=n$ and $|F|=q$. An (n, q)-hash family is a set \mathcal{H} of (n, q)-hash functions from A to F. Denoted by $\operatorname{HF}(I ; n, q)$ if $|\mathcal{H}|=I$.

Hash families

Definition

An (n, q)-hash function is a function $h: A \rightarrow F$ with $|A|=n$ and $|F|=q$. An (n, q)-hash family is a set \mathcal{H} of (n, q)-hash functions from A to F. Denoted by $\operatorname{HF}(I ; n, q)$ if $|\mathcal{H}|=I$.

- $c \geq 2$. \mathcal{H} is an (n, q, c)-perfect hash family if $\forall X \subset A$ with $|X|=c$, there exists at least one $h \in \mathcal{H}$ s.t. $\left.h\right|_{X}$ is injective. Denoted by $\operatorname{PHF}(I ; n, q, c)$ if $|\mathcal{H}|=I$;
- \mathcal{H} is an $\left(n, q, c_{1}, c_{2}\right)$-separating hash family if for any disjoint

one $h \in \mathcal{H}$ s.t. $\left|h\left(X_{1}\right) \cap h\left(X_{2}\right)\right|=\emptyset$. Denoted by
$\operatorname{SHF}\left(I ; n, q, c_{1}, c_{2}\right)$ if $|\mathcal{H}|=I$;

Hash families

Definition

An (n, q)-hash function is a function $h: A \rightarrow F$ with $|A|=n$ and $|F|=q$. An (n, q)-hash family is a set \mathcal{H} of (n, q)-hash functions from A to F. Denoted by $\operatorname{HF}(I ; n, q)$ if $|\mathcal{H}|=I$.

- $c \geq 2$. \mathcal{H} is an (n, q, c)-perfect hash family if $\forall X \subset A$ with $|X|=c$, there exists at least one $h \in \mathcal{H}$ s.t. $\left.h\right|_{X}$ is injective. Denoted by $\operatorname{PHF}(I ; n, q, c)$ if $|\mathcal{H}|=I$;
- \mathcal{H} is an (n, q, c_{1}, c_{2})-separating hash family if for any disjoint $X_{1}, X_{2} \subset A$ with $\left|X_{1}\right|=c_{1}$ and $\left|X_{2}\right|=c_{2}$, there exists at least one $h \in \mathcal{H}$ s.t. $\left|h\left(X_{1}\right) \cap h\left(X_{2}\right)\right|=\emptyset$. Denoted by $\operatorname{SHF}\left(I ; n, q, c_{1}, c_{2}\right)$ if $|\mathcal{H}|=I$;

HFs and codes (Staddon, Stinson and Wei, 2001, IT IEEE)

A code $C \subset F^{\prime}$ with $|C|=n \Leftrightarrow$ an $\mathrm{HF}(I ; n, q)$ when depicted by a $n \times I$ matrix.

$$
\mathcal{H}(C)=\begin{array}{cccc}
c_{1} & h_{2} & \cdots & h_{l} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\left(\begin{array}{llll}
\\
& & & \\
& & &
\end{array}\right)_{n \times 1}
$$

C is a c-FP code iff $\mathcal{H}(C)$ is an $\operatorname{SHF}(I ; n, q, c, 1)$;
C is a c-SFP code iff $\mathcal{H}(C)$ is an $\operatorname{SHF}(I ; n, q, c, c)$;
C is a 2-IPP code iff $\mathcal{H}(C)$ is simultaneously a $\operatorname{PHF}(I ; n, q, 3)$ and an $\operatorname{SHF}(I ; n, q, 2,2)$.

Introduction

Outline

(1) Introduction

- Motivations
- Definition
- Related Objects
(2) Upper Bounds of FP codes
- Upper bound I
- Upper bound II
- Question
(3) Constructions
- From high distance codes
- Product Construction
- Optimal results

4 Concluding Remarks

$M_{c, l}(q)$

- Let $M_{c, I}(q)$ be the largest cardinality of a q-ary c-frameproof code of length I.

- Staddon, Stinson and Wei(2001) proved

for all $q \geq 2$.
(Blackburn, 2003) Let $r \equiv /(m o d ~ c)$. Then

$M_{c, l}(q)$

- Let $M_{c, l}(q)$ be the largest cardinality of a q-ary c-frameproof code of length I.
- Staddon, Stinson and Wei(2001) proved

$$
M_{c, l}(q) \leq c\left(q^{\lceil 1 / c\rceil}-1\right) .
$$

for all $q \geq 2$.

- (Blackburn, 2003) Let $r \equiv$ / (mod c). Then

$M_{c, l}(q)$

- Let $M_{c, l}(q)$ be the largest cardinality of a q-ary c-frameproof code of length l.
- Staddon, Stinson and Wei(2001) proved

$$
M_{c, l}(q) \leq c\left(q^{\lceil 1 / c\rceil}-1\right) .
$$

for all $q \geq 2$.

- (Blackburn, 2003) Let $r \equiv I(\bmod c)$. Then

$$
M_{c, l}(q) \leq \max \left\{q^{\lceil/ / c\rceil}, r\left(q^{\lceil I / c\rceil}-1\right)+(c-r)\left(q^{[I / c\rfloor}-1\right)\right\} .
$$

Sketch of the proof

$$
\begin{aligned}
& \text { Proof of } M_{c, 1}(q) \leq \max \left\{q^{[\mid / / c]}, r\left(q^{[/ / c]}-1\right)+(c-r)\left(q^{1 / / c]}-1\right)\right\}: \\
& \bullet S \subset[/],|S|=s, U_{S}=\left\{x \in C: \nexists y \in C \text { s.t. } x_{i}=y_{i}, \forall i \in S\right\} \text {, } \\
& \left|U_{S}\right| \leq q^{|S|} \text {. If }|C|>q^{|S|} \text {, then }\left|U_{S}\right| \leq q^{|S|}-1 \text {. }
\end{aligned}
$$

then the upper bound is obvious.

Sketch of the proof

Proof of $M_{c, I}(q) \leq \max \left\{q^{\lceil 1 / c\rceil}, r\left(q^{[1 / c\rceil}-1\right)+(c-r)\left(q^{[1 / c\rfloor}-1\right)\right\}$:

- $S \subset[/],|S|=s, U_{S}=\left\{x \in C: \nexists y \in C\right.$ s.t. $\left.x_{i}=y_{i}, \forall i \in S\right\}$, $\left|U_{S}\right| \leq q^{|S|}$. If $|C|>q^{|S|}$, then $\left|U_{S}\right| \leq q^{|S|}-1$.
- $[I]=S_{1}\left|S_{2}\right| \ldots\left|S_{c},\left|S_{j}\right|=\lceil I / c\rceil\right.$ or $\lfloor I / c\rfloor$. If $C=\cup_{j=1}^{c} U_{S_{j}}$ then the upper bound is obvious.

Sketch of the proof

Proof of $M_{c, l}(q) \leq \max \left\{q^{[/ / c]}, r\left(q^{[/ / c\rceil}-1\right)+(c-r)\left(q^{\lfloor/ / c\rfloor}-1\right)\right\}$:

- $S \subset[/],|S|=s, U_{S}=\left\{x \in C: \nexists y \in C\right.$ s.t. $\left.x_{i}=y_{i}, \forall i \in S\right\}$, $\left|U_{S}\right| \leq q^{|S|}$. If $|C|>q^{|S|}$, then $\left|U_{S}\right| \leq q^{|S|}-1$.
- $[I]=S_{1}\left|S_{2}\right| \ldots\left|S_{c},\left|S_{j}\right|=\lceil I / c\rceil\right.$ or $\lfloor I / c\rfloor$. If $C=\cup_{j=1}^{c} U_{S_{j}}$ then the upper bound is obvious.
- Otherwise, $\exists x \in C \backslash \cup_{j=1}^{c} U_{S_{j}}$.
$x \notin U_{s_{j}} \Leftrightarrow \exists y^{j} \in C \backslash\{x\}$ s.t. $y^{j}\left|s_{j}=x\right| s_{j}$.
- It is true for each $j=1,2, \ldots, c$, so there exist

Sketch of the proof

Proof of $M_{c, l}(q) \leq \max \left\{q^{[/ / c]}, r\left(q^{[/ / c\rceil}-1\right)+(c-r)\left(q^{\lfloor/ / c\rfloor}-1\right)\right\}$:

- $S \subset[/],|S|=s, U_{S}=\left\{x \in C: \nexists y \in C\right.$ s.t. $\left.x_{i}=y_{i}, \forall i \in S\right\}$, $\left|U_{S}\right| \leq q^{|S|}$. If $|C|>q^{|S|}$, then $\left|U_{S}\right| \leq q^{|S|}-1$.
- $[I]=S_{1}\left|S_{2}\right| \ldots\left|S_{c},\left|S_{j}\right|=\lceil I / c\rceil\right.$ or $\lfloor I / c\rfloor$. If $C=\cup_{j=1}^{c} U_{S_{j}}$ then the upper bound is obvious.
- Otherwise, $\exists x \in C \backslash \cup_{j=1}^{c} U_{S_{j}}$.
$x \notin U_{s_{j}} \Leftrightarrow \exists y^{j} \in C \backslash\{x\}$ s.t. $y^{j}\left|s_{j}=x\right| s_{j}$.
- It is true for each $j=1,2, \ldots, c$, so there exist
$y^{1}, y^{2}, \ldots, y^{c} \in C \backslash\{x\}$ such that
$x \in \operatorname{desc}\left(\left\{y^{1}, y^{2}, \ldots, y^{c}\right\}\right)$.

Introduction

Small Optimal Cases $(I \leq c)$

Lemma

$$
\text { If } 2 \leq I \leq c, M_{c, I}(q)=I(q-1) .
$$

Since

- By the previous upper bound, $M_{c, I}(q) \leq I(q-1)$. - Let $F=0,1, \ldots, q-1$. The set C of all words of length I and weight exactly 1 (i.e., the elements of F^{\prime} with exactly one nonzero component) forms a c-frameproof code of cardinality

Small Optimal Cases $(I \leq c)$

Lemma

If $2 \leq I \leq c, M_{c, I}(q)=I(q-1)$.
Since

- By the previous upper bound, $M_{c, l}(q) \leq I(q-1)$.
- Let $F=0,1, \ldots, q-1$. The set C of all words of length I and weight exactly 1 (i.e., the elements of F^{\prime} with exactly one nonzero component) forms a c-frameproof code of cardinality I(q-1)

Small Optimal Cases $(I \leq c)$

Lemma

If $2 \leq I \leq c, M_{c, I}(q)=I(q-1)$.
Since

- By the previous upper bound, $M_{c, I}(q) \leq I(q-1)$.
- Let $F=0,1, \ldots, q-1$. The set C of all words of length I and weight exactly 1 (i.e., the elements of F^{\prime} with exactly one nonzero component) forms a c-frameproof code of cardinality I $(q-1)$.

Blackburn, 2003

Theorem

Let c, I and q be positive integers greater than 1. Let $t \in\{1,2, \ldots, c\}$ be an integer such that $t \equiv I(\bmod c)$. Then

$$
M_{c, I}(q) \leq\left(\frac{I}{I-(t-1)\lceil I / c\rceil}\right) q^{\lceil I / c\rceil}+O\left(q^{\lceil I / c\rceil-1}\right)
$$

Reed-Solomn codes are c-FP codes: Let $q \geq I$ be a prime power. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}$ be distinct elements in \mathbb{F}_{q}. Define

$$
C=\left\{\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{l}\right)\right): f \in \mathbb{F}_{q}[X], \operatorname{deg} f<\lceil I / c\rceil\right\} .
$$

Then C is a c-frameproof code of cardinality $q^{[/ / c\rceil}(\forall c, l)$. If $q=I-1$, allow a polynomial f to be evaluated at a "point at infinity": $f(\infty)$ is defined to be the coefficient of $X^{\lceil I / c\rceil}$ in $f_{\text {此 }}$

$R_{c, l}$

Definition

Let $R_{c, I}(q):=M_{c, l}(q) / q^{[/ / c\rceil}$ and $R_{c, l}:=\lim _{q \rightarrow \infty} R_{c, /}(q)$.

Corollary

Let c and I be positive integers greater than 1 . Let $t \in[c]$ be an integer such that $t \equiv I(\bmod c)$. Then

$$
R_{c, l} \leq \frac{1}{1-(t-1)\lceil I / c\rceil} .
$$

Theorem

(1) $R_{c, I}=1$ when $I \equiv 1(\bmod c)$;
(2) $R_{c, l}=2$ when $c=2$ and I is even (Blackburn, 2003);

Question

Blackburn (2003) asked the following question: Is there a q-ary c-frameproof code of length / with cardinality approximately $I /(I-\lceil I / c\rceil) q^{\lceil I / c\rceil}$ when $I \equiv 2(\bmod c)$?
i.e., $R_{c, I}=I /(I-\lceil I / c\rceil)$?

When $I=c+2, R_{c, c+2} \leq \frac{c+2}{c}$. Blackburn proved that $R_{3,5}=5 / 3$.
Our work is to prove that $R_{c, c+2}^{c}=\frac{c+2}{c}$ for a large amount of integers c.

Introduction

Outline

(1) Introduction

- Motivations
- Definition
- Related Objects
(2) Upper Bounds of FP codes
- Upper bound I
- Upper bound II
- Question

(3) Constructions

- From high distance codes
- Product Construction
- Optimal results
(4) Concluding Remarks

Introduction
Upper Bounds of FP codes

From high distance codes Product Construction Optimal results

From high distance codes

Lemma

Let C be a code of minimum distance d and length I. Then C is a c-frameproof code for any $c \geq 2$ satisfying $I>c(I-d)$.

Example

(1)(RS codes) Let $q \geq /$ be a prime power. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}$ be distinct elements in \mathbb{F}_{q}

$$
C=\left\{\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{I}\right)\right): f \in F[X], \operatorname{deg} f<\lceil I / c\rceil\right\} .
$$

Then C is of minimum distance $d=I-(\lceil I / c\rceil-1)$. Obviously, $I>c(I-d)$. So C is a c-frameproof code of cardinality q (2) The converse is not true. $C=\{112,212,312\}$ is a $2-\mathrm{FP}$ code Let $d=2$, then $I>c(I-d)$, but C is not of minimum distance 2 .

From high distance codes

Lemma

Let C be a code of minimum distance d and length I. Then C is a c-frameproof code for any $c \geq 2$ satisfying $I>c(I-d)$.

Example

(1)(RS codes) Let $q \geq I$ be a prime power. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{I}$ be distinct elements in \mathbb{F}_{q}.

$$
C=\left\{\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{I}\right)\right): f \in F[X], \operatorname{deg} f<\lceil I / c\rceil\right\} .
$$

Then C is of minimum distance $d=I-(\lceil I / c\rceil-1)$. Obviously, $I>c(I-d)$. So C is a c-frameproof code of cardinality $q^{[I / c\rceil}$. (2) The converse is not true. $C=\{112,212,312\}$ is a $2-F P$ code. Let $d=2$, then $I>c(I-d)$, but C is not of minimum distance 2 .

Product Construction (PC)

Lemma

If

(1) C: an s-ary code, length I over an alphabet $S, d \geq I-(t-1)$ (i.e. each codeword is uniquely determined by specifying t of its components), and
(2) D: an m-ary code, length I over an alphabet F, $d \geq I-(t-1)$.
Then

$$
\begin{aligned}
& C^{\prime}=\{(x, y): x \in C, y \in D\} \text { is an sm-ary code, length I over } \\
& S \times F, d \geq I-(t-1),\left|C^{\prime}\right|=|C||D| \text {, where } \\
& \qquad(x, y)=\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{l}, y_{l}\right)\right) . \\
& \text { If } c(t-1)<I \text {, then } C^{\prime} \text { is a } c \text {-FP code. }
\end{aligned}
$$

Modified Product Construction (MPC)

Lemma

If: $c \geq t \geq 2, I \geq 2 t-1$ and $I=c(t-1)+r$, where $t \leq r \leq c$.
(1) C : an s-ary code, length I over an alphabet S, $d \geq I-(t-1)$. C satisfies Property $P(t)$, i.e., \exists a special element say $\infty \in S$, s.t. each codeword contains $\leq t-1 \infty$'s.
(2) D : an m-ary code, length I over an alphabet F, $d \geq I-(t-1)$
Then
$C^{\prime}=\{[x, y]: x \in C, y \in D\}$ is an $((s-1) m+1)$-ary code, length I over $((S \backslash\{\infty\}) \times F) \cup\{\infty\}$, c-FP code, $\left|C^{\prime}\right|=|C||D|$, where $[x, y]$ is defined as

$$
[x, y]_{i}= \begin{cases}\infty, & \text { if } x_{i}=\infty \\ \left(x_{i}, y_{i}\right), & \text { otherwise }\end{cases}
$$

Modified Product Construction (MPC)

Proof.

(1) Aim: $\forall[x, y] \in C^{\prime}$ and $P \subset C^{\prime},|P|=c$ such that $[x, y] \in \operatorname{desc}(P) \Rightarrow[x, y] \in P$.
Since $I=c(t-1)+r$, where $r>t$ and $[x, y]$ has $\leq t-1 \infty$'s, there exist $\left[x^{\prime}, y^{\prime}\right] \in P$ that agrees with $[x, y]$ more than t components that are not equal to ∞.
Thus x, x^{\prime} have more than t identical components, $x=x^{\prime}$.
Similarly, $y=y^{\prime}$.
(2) $\left|C^{\prime}\right|=|C||D|$ since $I \geq 2 t-1$.

Comparison of two constructions

PC: $C^{\prime}=\{(x, y): x \in C, y \in D\}$ is an sm-ary code, length / over $S \times F, d \geq I-(t-1),\left|C^{\prime}\right|=|C||D| ;$

Comparison of two constructions

PC: $C^{\prime}=\{(x, y): x \in C, y \in D\}$ is an sm-ary code, length / over $S \times F, d \geq I-(t-1),\left|C^{\prime}\right|=|C||D| ;$
MPC: $C^{\prime}=\{[x, y]: x \in C, y \in D\}$ is an $((s-1) m+1)$-ary code, length / over $((S \backslash\{\infty\}) \times F) \cup\{\infty\}, d \geq I-(t-1)$ (i.e., c-FP code), $\left|C^{\prime}\right|=|C||D|$.

Comm

C, \mid and $\left|C^{\prime}\right|$
PC: sm-ary, but MPC: $((s-1) m+1)$-ary. MPC needs a little
stronger C.

Comparison of two constructions

PC: $C^{\prime}=\{(x, y): x \in C, y \in D\}$ is an sm-ary code, length / over $S \times F, d \geq I-(t-1),\left|C^{\prime}\right|=|C||D| ;$
MPC: $C^{\prime}=\{[x, y]: x \in C, y \in D\}$ is an $((s-1) m+1)$-ary code, length / over $((S \backslash\{\infty\}) \times F) \cup\{\infty\}, d \geq I-(t-1)$ (i.e., c-FP code), $\left|C^{\prime}\right|=|C||D|$.
Comm: c, I and $\left|C^{\prime}\right|$.
Diff: PC: sm-ary, but MPC: $((s-1) m+1)$-ary. MPC needs a little stronger C.

Comparison of two constructions

PC: $C^{\prime}=\{(x, y): x \in C, y \in D\}$ is an sm-ary code, length / over $S \times F, d \geq I-(t-1),\left|C^{\prime}\right|=|C||D| ;$
MPC: $C^{\prime}=\{[x, y]: x \in C, y \in D\}$ is an $((s-1) m+1)$-ary code, length / over $((S \backslash\{\infty\}) \times F) \cup\{\infty\}, d \geq I-(t-1)$ (i.e., c-FP code), $\left|C^{\prime}\right|=|C||D|$.
Comm: c, I and $\left|C^{\prime}\right|$.
Diff: PC: $s m$-ary, but MPC: $((s-1) m+1)$-ary. MPC needs a little stronger C.

Comparison of two constructions

$\mathrm{PC}: C^{\prime}=\{(x, y): x \in C, y \in D\}$ is an sm-ary code, length / over $S \times F, d \geq I-(t-1),\left|C^{\prime}\right|=|C||D| ;$
MPC: $C^{\prime}=\{[x, y]: x \in C, y \in D\}$ is an $((s-1) m+1)$-ary code, length $/ \operatorname{over}((S \backslash\{\infty\}) \times F) \cup\{\infty\}, d \geq I-(t-1)$ (i.e., $c-$ FP code $),\left|C^{\prime}\right|=|C||D|$.
Comm: c, I and $\left|C^{\prime}\right|$.
Diff: PC: $s m$-ary, but MPC: $((s-1) m+1)$-ary. MPC needs a little stronger C.
Example: C and D are both RS codes. By PC, $\frac{|C|}{s^{1 / / c \mid}} \cdot \frac{|D|}{m^{[1 / c]}}=\frac{|C||D|}{(s m)^{[/ / c]}}=1$.

Corollary

An application of the Modified Product Construction:
C: Let $s=c+1$ be a prime power and $I=c+2, t=r=2$. Let C be the RS code defined by all nonzero $f \in \mathbb{F}_{s}[X]$, $\operatorname{deg} f<2$. Then $|C|=s^{2}-1$ satisfying Property $P(2)$ with 0 as the special element.
Let m be a prime power and I, c, t, r as above. Let D be the RS code defined by all $f \in \mathbb{F}_{m}[X], \operatorname{deg} f<2$. Then $|D|=m^{2}$ Applying the modified product construction to C and D, we have C^{\prime} is a q-ary c-frameproof code, where

Corollary

An application of the Modified Product Construction:
C: Let $s=c+1$ be a prime power and $I=c+2, t=r=2$. Let C be the RS code defined by all nonzero $f \in \mathbb{F}_{s}[X]$, $\operatorname{deg} f<2$. Then $|C|=s^{2}-1$ satisfying Property $P(2)$ with 0 as the special element.
D: Let m be a prime power and I, c, t, r as above. Let D be the RS code defined by all $f \in \mathbb{F}_{m}[X]$, $\operatorname{deg} f<2$. Then $|D|=m^{2}$.

Result: Applying the modified product construction to C and D, we

 have C^{\prime} is a q-ary c-frameproof code, where $q=(s-1) m+1=c m+1$ and

Corollary

An application of the Modified Product Construction:
C: Let $s=c+1$ be a prime power and $I=c+2, t=r=2$. Let C be the RS code defined by all nonzero $f \in \mathbb{F}_{s}[X]$, $\operatorname{deg} f<2$. Then $|C|=s^{2}-1$ satisfying Property $P(2)$ with 0 as the special element.
D: Let m be a prime power and I, c, t, r as above. Let D be the RS code defined by all $f \in \mathbb{F}_{m}[X]$, $\operatorname{deg} f<2$. Then $|D|=m^{2}$.
Result: Applying the modified product construction to C and D, we have C^{\prime} is a q-ary c-frameproof code, where
$q=(s-1) m+1=c m+1$ and

$$
\begin{align*}
\left|C^{\prime}\right| & =\left(s^{2}-1\right) m^{2}=\frac{\left(s^{2}-1\right)}{(s-1)^{2}}(q-1)^{2} \\
& =\frac{(s+1)}{(s-1)}(q-1)^{2}=\frac{c+2}{c}(q-1)^{2}
\end{align*}
$$

From high distance codes Product Construction Optimal results

$R_{c, c+2}$

Corollary

Let $c \geq 2$ be an integer such that $c+1$ is a prime power, and let $m \geq c+1$ be any prime power. Then there exists a q-ary c-frameproof code of length $c+2$ with cardinality $\frac{c+2}{c}(q-1)^{2}$, where $q=c m+1$.

Theorem

Let $c \geq 2$ be an integer such that $c+1$ is a prime power, then $R_{c, c+2}=(c+2) / c$

$R_{c, c+2}$

Corollary

Let $c \geq 2$ be an integer such that $c+1$ is a prime power, and let $m \geq c+1$ be any prime power. Then there exists a q-ary c-frameproof code of length $c+2$ with cardinality $\frac{c+2}{c}(q-1)^{2}$, where $q=c m+1$.

Theorem

Let $c \geq 2$ be an integer such that $c+1$ is a prime power, then $R_{c, c+2}=(c+2) / c$.

Introduction
Upper Bounds of FP codes

Constructions

Concluding Remarks

From high distance codes Product Construction Optimal results

Proof of Theorem

Proof.

(1) $R_{c, c+2} \leq(c+2) / c$ (Upper bound).

which shows $R_{c, c+2} \geq(c+2) / c$.

Introduction

Proof of Theorem

Proof.

(1) $R_{c, c+2} \leq(c+2) / c$ (Upper bound).

$$
\begin{aligned}
& \text { (2) } \forall q \text {, denote } q_{l} \text { the largest prime power s.t. } c q_{l}+1 \leq q \text {, and } q_{u} \\
& \text { the smallest integer s.t. } c q_{u}+1 \geq q \text {. Then } \frac{q_{l}}{q_{u}}=1-o(1) . \\
& M_{c, c+2}(q) / q^{2} \geq M_{c, c+2}\left(c q_{l}+1\right) / q^{2} \\
& \geq \frac{c+2}{c}\left(c q_{l}\right)^{2} / q^{2} \geq \frac{c+2}{c}\left(c q_{l}\right)^{2} /\left(c q_{u}+1\right)^{2},
\end{aligned}
$$

which shows $R_{c, c+2} \geq(c+2) / c$.

Proof of Theorem

Proof.

(1) $R_{c, c+2} \leq(c+2) / c$ (Upper bound).
(2) $\forall q$, denote q_{l} the largest prime power s.t. $c q_{I}+1 \leq q$, and q_{u} the smallest integer s.t. $c q_{u}+1 \geq q$. Then $\frac{q_{l}}{q_{u}}=1-o(1)$.

$$
\begin{aligned}
& M_{c, c+2}(q) / q^{2} \geq M_{c, c+2}\left(c q_{I}+1\right) / q^{2} \\
& \geq \frac{c+2}{c}\left(c q_{I}\right)^{2} / q^{2} \geq \frac{c+2}{c}\left(c q_{I}\right)^{2} /\left(c q_{u}+1\right)^{2}
\end{aligned}
$$

which shows $R_{c, c+2} \geq(c+2) / c$.

Introduction

Other results

Theorem

There exists a q-ary 2-frameproof code with length 4 of cardinality $2(q-1)^{2}+1$ for any odd $q>1$.

Theorem

There exists a q-ary 3-frameproof code with length 5 of cardinality $\frac{5}{3}(q-1)^{2}+1$ for any integer $q \equiv 4(\bmod 6)$.

Other results

Theorem

There exists a q-ary 2-frameproof code with length 4 of cardinality $2(q-1)^{2}+1$ for any odd $q>1$.

Theorem

There exists a q-ary 3-frameproof code with length 5 of cardinality $\frac{5}{3}(q-1)^{2}+1$ for any integer $q \equiv 4(\bmod 6)$.

Outline

(1) Introduction

- Motivations
- Definition
- Related Objects
(2) Upper Bounds of FP codes
- Upper bound I
- Upper bound II
- Question
(3) Constructions
- From high distance codes
- Product Construction
- Optimal results

4 Concluding Remarks

Concluding Remarks

Theorem

(1) $R_{c, l}=1$ when $I \equiv 1(\bmod c)$;
(2) $R_{c, l}=2$ when $c=2$ and I is even;
(3) $R_{c, c+2}=\frac{c+2}{c}$ for all c s.t. $c+1$ is a prime power.

Question

(1) What is $R_{c, c+2}$ for other values of c ?
(2) What is $R_{c, l}$ in general?

Concluding Remarks

Theorem

(1) $R_{c, l}=1$ when $I \equiv 1(\bmod c)$;
(2) $R_{c, l}=2$ when $c=2$ and I is even;
(3) $R_{c, c+2}=\frac{c+2}{c}$ for all c s.t. $c+1$ is a prime power.

Question

(1) What is $R_{c, c+2}$ for other values of c ?
(2) What is $R_{c, l}$ in general?

References

[1] S. R. Blackburn, "Frameproof codes," SIAM J. Discrete Math., vol. 16, no. 3, pp. 499-510, 2003.
[2] Y. M. Chee and X. Zhang, "Improved constructions of frameproof codes," IEEE Transactions on Information Theory, vol. 58, no. 8, pp. 5449-5453, 2012.
[3] J. N. Staddon, D. R. Stinson, and R. Wei, "Combinatorial properties of frameproof and traceability codes," IEEE Trans. Inform. Theory, vol. 47, no. 3, pp. 1042-1049, 2001.

Thank You!!!

Thank You!!!

Thank You！！！

Thank You!!!

