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Boolean functions

I F2 is the prime field of characteristic 2.
I Fn

2 is the n dimensional vector space over F2.
I F2n is the n degree extension field of F2.
I Any function from Fn

2 to F2 is said to be a Boolean function
on n variables.

I Equivalently any function from F2n to F2 is said to be a
Boolean function on n variables.

I The set of all Boolean functions on n variables is denoted
by Bn.
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The distance between two Boolean functions (1/2)

I The distance between two Boolean functions F and G is

dH(F ,G) = #(F 6= G)

=
1
2
(#(F = G) + #(F 6= G))

− 1
2
(#(F = G)−#(F 6= G))

= 2n−1 − 1
2

∑
x∈Fn

2

(−1)F (x)+G(x)

(1)



The distance between two Boolean functions (2/2)

I We note that any affine function in Bn can be written as
`a,ε(x) = 〈a, x〉+ ε where a ∈ Fn

2, ε ∈ F2 and 〈a, x〉 is any
inner product of x and a.

I
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∑
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Walsh–Hadamard transform

I The Walsh–Hadamard transform of F at a ∈ Fn
2 is

WF (a) =
∑
x∈Fn

2

(−1)F (x)+〈a,x〉. (3)

I
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1
2

∑
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2

(−1)F (x)+〈a,x〉
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Nonlinearity

I The nonlinearity of F is defined as:

min
a∈Fn

2

min
ε∈F2

(dH(F , `a,ε)) = 2n−1 − 1
2

max
a∈Fn

2

|WF (a)|.

I It is known that
∑

a∈Fn
2

WF (a)2 = 22n. (Parseval’s equation).

I Therefore maxa∈Fn
2
|WF (a)| ≥ 2

n
2 implying that

I nonlinearity of F is bounded above by 2n−1 − 2
n
2−1.
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Bent functions

I Suppose n is an even positive integer.
I Maximum possible nonlinearity of a Boolean function in Bn

is 2n−1 − 2
n
2−1.

I In other words these are the functions for which
WF (a) = ±2

n
2 for all a ∈ Fn

2.
I These functions are said to be bent functions.
I Bent functions are Boolean functions which provide

maximum resistance to affine approximation.
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Maiorana–McFarland bent functions (MMF ): Rothaus
1966

I Let n = 2k and let F : F2k × F2k → F2 be defined as

F (y , x) = 〈π(y), x〉+ g(y). (5)

where π : F2k → F2k be a permutation and G ∈ Bk .
I Rothaus proved that F is a bent function. These are said to

be Maiorana–McFarland type bent functions.
I O. Rothaus, On bent functions, Journal of Combinatorial

Theory, Series A 20 (1976) 300–305.
I O. Rothaus On bent functions, IDA CRD W.P. No. 169.

1966
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Partial spreads bent functions: Dillon 1975 (1/2)

I Let E ⊆ Fn
2.

φE(x) =
{

1 if x ∈ E
0 if x /∈ E

is the indicator function of E .
I Suppose {Ei : i = 1,2, · · · , s} is a set of “mutually disjoint”

k -dimensional subspaces of Fn
2.

I Here mutually disjoint means Ei ∩ Ej = {0} whenever i 6= j .
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Partial spreads bent functions: Dillon 1975 (2/2)

I A function F ∈ Bn belonging to the class PS can be
expressed as

F (x) =
s∑

i=1

φEi (x)− 2k−1φ{0}(x) for all x ∈ Fn
2,

where s = 2k−1 if F ∈ PS− and s = 2k−1 + 1 if F ∈ PS+

and the sum is taken over the integers.
I J. F. Dillon, Elementary Hadamard difference sets,

Proceedings of Sixth S. E. Conference of Combinatorics,
Graph Theory, and Computing, Utility Mathematics,
Winnipeg, (1975), 237–249.
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PSap: an “efficient” construction

I Consider functions from F2n to F2.
I Let V0 = F2k , the subfield of order 2k of F2n .
I Let Vi = ζ iF2k for all i = 1, . . . ,2k , where ζ is a primitive

element of F2n .
I The set S = {Vi : i = 0, . . . ,2k} consists of mutually

disjoint k -dimensional subspaces of F2n .
I A subclass of PS type bent functions, called PSap, is

obtained by constructing functions whose supports are the
unions of any 2k−1 subspaces belonging to S excluding 0.

I This subclass of PS was originally constructed by Dillon.
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Other Classes of bent functions: Carlet 1993, Dobertin
et al. 2006

I Carlet modified MMF and PS type bent functions to
construct two new classes of bent functions.
(Eurocrypt ’93, LNCS, Vol. 765, (1994), pp. 77–101).

I Bent functions via Kasami exponents.
(Dobbertin and Leander, A survey of some recent results
on bent functions, SETA 2004, LNCS 3486.)

I H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke
and P. Gaborit, Construction of bent functions via Niho
power functions, Journal of Combinatorial Theory, Series
A, 113 (2006), 779–798.

I Carlet and Mesnager, On Dillon’s class H of bent functions,
Niho bent functions and o-polynomials, Journal of
Combinatorial Theory, Series A, 118 (2011) 2392–2410.
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Quoting Dobberin and Leander: 2008 DCC

I “A main obstacle in the study of bent functions is the lack of
recurrence laws. There are only few constructions deriving
bent functions from smaller ones. But it seems that most
bent functions appear without any roots to bent functions in
lower dimensions, which could explain their existence.”

I Dobbertin and Leander (2008 DCC) did exactly that but
they had to go out of the class of bent functions to Z-bent
functions.

I In fact, they went out of the class of Boolean functions.
I H. Dobbertin, G. Leander, Bent functions embedded into

the recursive framework of Z-bent functions, Des. Codes
Cryptogr. 49 (2008), 3–22.
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Z-bent functions (1/2)

I Given a Boolean function F we consider the function

f : Fn
2 → {−1,1} ⊆ Z defined by

f (x) = (−1)F (x) for all x ∈ Fn
2.

I The Fourier transform defined by

f̂ (a) =
1
2k

∑
x∈Fn

2

f (x)(−1)〈a,x〉.

I The Walsh-transform given by f̂ (a) = 1
2k WF (a).

I f is bent if and only if both f and f̂ are {−1,1}-valued.
I f is said to be Z-bent of level 0.
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2.

I The Fourier transform defined by

f̂ (a) =
1
2k

∑
x∈Fn

2

f (x)(−1)〈a,x〉.

I The Walsh-transform given by f̂ (a) = 1
2k WF (a).

I f is bent if and only if both f and f̂ are {−1,1}-valued.
I f is said to be Z-bent of level 0.
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Z-bent functions (2/2)

I

W0 = {−1,1},
Wr = {w ∈ Z| − 2r−1 ≤ w ≤ 2r−1} for r > 0.

I A function f : Fn
2 −→Wr is said to be a Z-bent function of

size k (equivalently, on n variables) and level r if and only if
f̂ is also a function into Wr . The set of all Z-bent functions
of size k and level r is denoted by BF k

r .
I Any function belonging to ∪r≥0BF k

r is said to be a Z-bent
function.
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From bent to Z-bent functions and back (1/3)

I Suppose f ∈ BF k
r , and

hε1ε2(y) = f (ε1, ε2, y), for all (ε1, ε2, y) ∈ F2 × F2 × Fn−2
2 .

Define functions fε1ε2 as follows:
I For r = 0:(

f00 f10
f01 f11

)
=

1
2

(
1 1
1 −1

)(
h00 h10
h01 h11

)
. (6)

I For r ≥ 1:(
f00 f10
f01 f11

)
=

(
1 1
1 −1

)(
h00 h10
h01 h11

)
. (7)
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From bent to Z-bent functions and back (2/3)

I Dobbertin and Leander proved that if f is a Z-bent function
of size k level r then fε1,ε2 are Z-bent functions of size k − 1
and level r + 1.

I Thus all Z-bent functions of size k and level r are obtained
by “gluing” Z-bent functions of size k − 1 and level r + 1.

I The “gluing” process is described in the next slide.
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A construction of Z-bent functions of arbitrary level
(1/2)

I Let m1,m2, · · · ,ms ∈ Z and E1,E2, · · · ,Es be
k -dimensional subspaces of Fn

2, then the function

f (x) =
s∑

i=1

miφEi (x)

is a Z-bent function and its dual is given by
∑s

i=1 miφE⊥i
(x).



A construction of Z-bent functions of arbitrary level
(2/2)

I Suppose {Ei : i = 1,2, · · · , s} is a set of k -dimensional
subspaces of Fn

2 with the property that Ei ∩ Ej = {0}
whenever i 6= j . The function

f (x) =
s∑

i=1

miφEi (x), for all x ∈ Fn
2, (10)

where mi ∈Wr , for all i = 1,2, . . . , s, is a Z-bent function of
level r , for any r ≥ 1, if and only if

∑s
i=1 mi ∈Wr .



Proof Outline

I

f̂ (a) =
1
2k

∑
x∈Fn

2

f (x)(−1)〈a,x〉

=
1
2k

∑
x∈Fn

2

s∑
i=1

miφEi (x)(−1)〈a,x〉

=
1
2k

s∑
i=1

mi
∑
x∈Ei

(−1)〈a,x〉

=
1
2k

s∑
i=1

mi2kφE⊥i
(a)

=
s∑

i=1

miφE⊥i
(a)



A new primary construction of bent functions (1/5)
I Let four Z-bent functions f00, f01, f10, f11 of level 1 and size k

be given such that

f00(x) ≡ f01(x) + 1 mod 2, (11)
f10(x) ≡ f11(x) + 1 mod 2, (12)
f̂00(x) ≡ f̂10(x) + 1 mod 2, (13)
f̂01(x) ≡ f̂11(x) + 1 mod 2. (14)

Then the function

h : F2 × F2 × Fn
2 → {−1,1} defined by

h(y , z, x) = hyz(x) for all x ∈ Fn
2,

where (
h00 h10
h01 h11

)
=

(
1 1
1 −1

)(
f00 f10
f01 f11

)
is a bent function (of level 0).



A new primary construction of bent functions (2/5)

I We start by letting S = {Si} be a spread, i.e. a collection of
2k + 1 subspaces of dimension k with the condition that

Si ∩ Sj = {0} for i 6= j , and ∪i Si = Fn
2.

I Next, we partition this spread S into two parts, A and B,
i.e. A ∩ B = ∅ and A ∪ B = S and select coefficients,
mA,m′A,nB,n′B ∈ {−1,1} for all A ∈ A and B ∈ B,

(mA)A∈A such that
∑

mA ∈ {−1,0,1},

(m′A)A∈A such that
∑

m′A ∈ {−1,0,1},

(nB)B∈B such that
∑

nB ∈ {−1,0,1},

(n′B)B∈B such that
∑

n′B ∈ {−1,0,1}.
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A new primary construction of bent functions (3/5)

I Construct

f00(x) =
∑
A∈A

mAφA(x),

f10(x) =
∑
B∈B

nBφB(x),

f01(x) =
∑
B∈B

n′BφB(x),

f11(x) =
∑
A∈A

m′AφA(x).



A new primary construction of bent functions (4/5)
I If x ∈ Fn

2, then

f00(x) + f01(x) =
∑
A∈A

mAφA(x) +
∑
B∈B

n′BφB(x)

=
∑
A∈A

φA(x) +
∑
B∈B

φB(x) (mod 2)

=
∑
Si∈S

φSi (x) (mod 2).

I If x 6= 0 then, as S is a spread, there exists exactly one
subspace Sk such that x ∈ Sk and

f00(x) + f01(x) =
∑
Si∈S

φSi (x) = φSk (x) = 1 (mod 2).

On the other hand, if x = 0 then

f00(0) + f01(0) =
∑
Si∈S

1 = 2k + 1 = 1 (mod 2).
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A new primary construction of bent functions (5/5)

I We compute

h00 = f00 + f01,

h01 = f00 − f01,

h10 = f01 + f11,

h11 = f01 − f11.

I The gives a bent function.
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Construction of an 8-variable bent function (1/2)

I Let ζ be a root of the primitive polynomial x6 + x + 1 on F2.
We consider the finite field
F26 = {ζ i : i = 0,1, . . . ,62} ∪ {0}.

I The subfield V0 = F23 = {ζ9i : i = 0,1, . . . ,6} ∪ {0}, along
with the spread

S = {Vi : Vi = ζ iV0, i = 0,1, . . . ,8}.

I The subsets A = {V0,V1,V2,V3,V4} and
B = {V5,V6,V7,V8} form a partition of S.
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Construction of an 8-variable bent function (2/2)

I Consider the following four Z-bent function of level 1.

f00(x) = φV0(x)− φV1(x) + φV2(x)− φV3(x) + φV4(x),
f10(x) = φV5(x)− φV6(x)− φV7(x) + φV8(x),
f01(x) = φV5(x)− φV6(x) + φV7(x)− φV8(x),
f11(x) = φV0(x) + φV1(x)− φV2(x)− φV3(x)− φV4(x).

I We construct h00 = f00 + f01, h01 = f00 − f01, h10 = f10 + f11
and h11 = f10 − f11. The 8-variable function

f (y , z, x) = (1 + y)(1 + z)h00(x) + (1 + y)zh01(x)
+y(1 + z)h10(x) + yzh11(x),
for all (y , z, x) ∈ F2 × F2 × F26 ,

is bent.



Construction of an 8-variable bent function (2/2)

I Consider the following four Z-bent function of level 1.

f00(x) = φV0(x)− φV1(x) + φV2(x)− φV3(x) + φV4(x),
f10(x) = φV5(x)− φV6(x)− φV7(x) + φV8(x),
f01(x) = φV5(x)− φV6(x) + φV7(x)− φV8(x),
f11(x) = φV0(x) + φV1(x)− φV2(x)− φV3(x)− φV4(x).

I We construct h00 = f00 + f01, h01 = f00 − f01, h10 = f10 + f11
and h11 = f10 − f11. The 8-variable function

f (y , z, x) = (1 + y)(1 + z)h00(x) + (1 + y)zh01(x)
+y(1 + z)h10(x) + yzh11(x),
for all (y , z, x) ∈ F2 × F2 × F26 ,

is bent.



Checking (affine) inequivalence

I Two Boolean functions F and G are equivalent if and only if
there exists A ∈ GL(n,F2) and b,u ∈ Fn

2 and ε ∈ F2 such
that

G(x) = F (Ax + b) + 〈u, x〉+ ε.

I The second-derivative of F at a subspace V generated by
a,b ∈ Fn

2, a 6= b is defined as

DV F (x) = F (x) + F (x + a) + F (x + b) + F (x + a + b).

I The frequency distribution of the weights of the
second-derivatives of F with respect to all the distinct
two-dimensional subspaces of F28 is

Weights 64 96 112 128 144 160 256
# of subspaces 56 224 2240 5810 1344 1120 1
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Classes of inequivalent PSap bents on 8-variables

0 64 96 112 128 144 160 192 # of
functions

0 0 940 2360 3885 2360 1220 30 8160
0 75 605 1760 5640 1600 1055 60 4080
0 0 750 2800 3360 2800 1080 5 2040
0 0 590 2280 4635 2440 850 0 8160
0 0 510 2440 4635 2280 930 0 1360

35 240 640 0 8760 0 640 480 510



MMF functions on 8 variables

I It is known that any F ∈ MMF on n = 2k variables is
concatenation of affine functions on k variables. This
implies that there exists at least (2k−1)(2k−1−1)

3 many two
dimensional subspaces such that with respect of each of
them the second derivative of F is identically zero.

I For k = 4 this number is 35.
I The second-derivative spectrum of the constructed bent

function does not contain the value 35.
I Thus F cannot be equivalent to a function in MMF .
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I Thus the bent function constructed above is neither
equivalent to PSap nor to MMF .

I S. Gangopadhyay, A. Joshi, G. Leander and R. K. Sharma,
A new construction of bent functions based on Z-bent
functions. In: the proceedings of The Seventh International
Workshop on Coding and Cryptography 2011. April 11–15,
2011, Paris, France, pp. 153–162.
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