Lattices for Communication Engineers

Jean-Claude Belfiore

Télécom ParisTech CNRS, LTCI UMR 5141 February, 22 2011

Nanyang Technological University - SPMS

Part I

Introduction

• Link between signal space and transmitted analog signal through an orthogonal basis of signals

• Link between signal space and transmitted analog signal through an orthogonal basis of signals

Standard serial transmission Transmitted signal is

 $x(t) = \sum_{k} x_k h(t - kT)$

where x_k are the transmitted complex symbols and $\{h(t - kT)\}_k$ is a family of orthogonal signals (*h* is a Nyquist root).

• Link between signal space and transmitted analog signal through an orthogonal basis of signals

Standard serial transmission Transmitted signal is

 $x(t) = \sum_{k} x_k h(t - kT)$

where x_k are the transmitted complex symbols and $\{h(t - kT)\}_k$ is a family of orthogonal signals (*h* is a Nyquist root).

OFDM transmission Transmitted signal is

$$x(t) = \sum_{k} \sum_{q=-N/2}^{N/2} x_{k,q} h(t - kT) e^{i \frac{2\pi k}{N+1} \Delta f t}$$

where $x_{k,q}$ are the transmitted complex symbols and $\left\{h(t-kT)e^{i\frac{2\pi k}{N+1}\Delta ft}\right\}_{k,q}$ is a doubly indexed family of orthogonal signals (for instance,

 $h(t) = \operatorname{rect}_T(t)$

with
$$\Delta f = \frac{1}{T}$$
).

We define vector

$$\boldsymbol{x} = (x_1, x_2, \dots, x_m)$$

as a vector living in a *m*-dimensional complex space or a *n*-dimensional real space (n = 2m).

- Complex symbols used in practice are QAM symbols, components of vector *x*.
- We need to introduce coding structure the QAM symbols.

Figure: Symbol from a 64 QAM

A **Euclidean** \mathbb{Z} -**lattice** is a discrete additive subgroup with rank *p*, *p* \leq *n* of the Euclidean space \mathbb{R}^n . We restrict to the case *p* = *n* in the sequel.

A **Euclidean** \mathbb{Z} -**lattice** is a discrete additive subgroup with rank $p, p \le n$ of the Euclidean space \mathbb{R}^n . We restrict to the case p = n in the sequel.

• A lattice Λ is a \mathbb{Z} -module generated by vectors v_1, v_2, \ldots, v_n of \mathbb{R}^n .

An element v of Λ can be written as :

 $\boldsymbol{v} = a_1 \boldsymbol{v}_1 + a_2 \boldsymbol{v}_2 + \ldots + a_n \boldsymbol{v}_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{Z}$

A **Euclidean** \mathbb{Z} -**lattice** is a discrete additive subgroup with rank $p, p \le n$ of the Euclidean space \mathbb{R}^n . We restrict to the case p = n in the sequel.

• A lattice Λ is a \mathbb{Z} -module generated by vectors v_1, v_2, \ldots, v_n of \mathbb{R}^n .

• An element v of Λ can be written as :

 $\boldsymbol{v} = a_1 \boldsymbol{v}_1 + a_2 \boldsymbol{v}_2 + \ldots + a_n \boldsymbol{v}_n, \quad a_1, a_2, \ldots, a_n \in \mathbb{Z}$

The lattice Λ can be defined as :

$$\mathbf{\Lambda} = \left\{ \sum_{i=1}^{n} a_i \boldsymbol{v}_i \mid a_i \in \mathbb{Z} \right\}$$

• The set of vectors $v_1, v_2, ..., v_n$ is a **lattice basis**.

Definition

Matrix M whose columns are vectors $v_1, v_2, ..., v_n$ is a **generator matrix** of the lattice denoted Λ_M .

• The set of vectors $v_1, v_2, ..., v_n$ is a **lattice basis**.

Definition

Matrix M whose columns are vectors $v_1, v_2, ..., v_n$ is a **generator matrix** of the lattice denoted Λ_M .

• Each vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^\top$ in Λ_M , can be written as,

 $x = M \cdot z$

where $\boldsymbol{z} = (z_1, z_2, \dots, z_n)^\top \in \mathbb{Z}^n$.

• Lattice Λ_M may be seen as the result of a linear transform applied to lattice \mathbb{Z}^n (cubic lattice).

- Let $Q \in \mathcal{M}_n(\mathbb{R})$, such that $Q^\top \cdot Q = I_n$ be an isometry. The two lattices Λ_M and $\Lambda_{Q\cdot M}$ are said equivalent.
- Lattice $\Lambda_{Q:M}$ is a rotated version of Λ_M if det Q = 1.

- Let $Q \in \mathcal{M}_n(\mathbb{R})$, such that $Q^\top \cdot Q = I_n$ be an isometry. The two lattices Λ_M and $\Lambda_{Q\cdot M}$ are said equivalent.
- Lattice $\Lambda_{Q:M}$ is a rotated version of Λ_M if det Q = 1.
- If $T \in \mathcal{M}_n(\mathbb{Z})$ and det $T \neq \pm 1$, then lattice $\Lambda_{M:T}$ is a **sublattice** of Λ_M .
- We will often consider sublattices of Zⁿ.

- The generator matrix M describes the lattice Λ_M , but it is not unique. All matrices $M \cdot T$ with $T \in \mathcal{M}_n(\mathbb{Z})$ and det $T = \pm 1$ are generator matrices of Λ_M . T is called a unimodular matrix.
- $G = M^{\top} \cdot M$ is the *Gram matrix* of the lattice . M^{\top} is also a generator matrix of the **dual** of Λ_M .
- We define then gemetric parameters.

- The generator matrix M describes the lattice Λ_M , but it is not unique. All matrices $M \cdot T$ with $T \in \mathcal{M}_n(\mathbb{Z})$ and det $T = \pm 1$ are generator matrices of Λ_M . T is called a unimodular matrix.
- $G = M^{\top} \cdot M$ is the *Gram matrix* of the lattice . M^{\top} is also a generator matrix of the **dual** of Λ_M .
- We define then gemetric parameters.

• The **fundamental parallelotope** of Λ_M is the region,

 $\mathscr{P} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = a_1 \, \mathbf{v}_1 + a_2 \, \mathbf{v}_2 + \ldots + a_n \, \mathbf{v}_n, \, 0 \le a_i < 1, \, i = 1 \dots n \}$

- The *fundamental volume* is the volume of the fundamental parallelotope. It is denoted vol(Λ_M).
- The fundamental volume of the lattice is $vol(\Lambda_M) = |det(M)|$, which is $\sqrt{det(G)}$ either.

The *Voronoï cell* of a point u belonging to the lattice Λ is the region

$$\mathcal{V}_{\Lambda}(\boldsymbol{u}) = \left\{ \boldsymbol{x} \in \mathbb{R}^{n} \mid \|\boldsymbol{x} - \boldsymbol{u}\| \le \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \boldsymbol{y} \in \Lambda \right\}$$

- All Voronoï cells of a lattice are translated versions of the Voronoï cell of the zero point. This cell is called Voronoï cell of the lattice.
- The fundamental volume of a lattice is equal to the volume of its Voronoï cell.

• A **QAM constellation** is a finite part of \mathbb{Z}^2 .

• An **HEX constellation** is a finite part of *A*₂, the hexagonal lattice.

Construction A for a \mathbb{Z} -lattice

Let q be an integer. Then,

 $\mathbb{Z}/q\mathbb{Z}$

is a finite field if q is a prime and a finite ring otherwise. For a linear code \mathcal{C} of length n defined on $\mathbb{Z}/q\mathbb{Z}$, lattice Λ is given by

 $\Lambda = q\mathbb{Z}^n + \mathscr{C} \triangleq \bigcup_{\mathbf{x}\in\mathscr{C}} \left(q\mathbb{Z}^n + \mathbf{x} \right).$

Construction A for a \mathbb{Z} -lattice

Let q be an integer. Then,

 $\mathbb{Z}/q\mathbb{Z}$

is a finite field if q is a prime and a finite ring otherwise. For a linear code \mathcal{C} of length n defined on $\mathbb{Z}/q\mathbb{Z}$, lattice Λ is given by

$$\Lambda = q\mathbb{Z}^n + \mathscr{C} \triangleq \bigcup_{\mathbf{x}\in\mathscr{C}} \left(q\mathbb{Z}^n + \mathbf{x} \right).$$

Construction of D₄

 D_4 is obtained as

 $D_4 = 2\mathbb{Z}^4 + (4,3)_{\mathbb{F}_2}$

where $(4,3)_{\mathbb{F}_2}$ is a binary parity-check code.

Construction A for a \mathbb{Z} -lattice

Let q be an integer. Then,

 $\mathbb{Z}/q\mathbb{Z}$

is a finite field if q is a prime and a finite ring otherwise. For a linear code \mathcal{C} of length n defined on $\mathbb{Z}/q\mathbb{Z}$, lattice Λ is given by

 $\Lambda = q\mathbb{Z}^n + \mathscr{C} \triangleq \bigcup_{\mathbf{x}\in\mathscr{C}} \left(q\mathbb{Z}^n + \mathbf{x} \right).$

Construction of D_4 D_4 is obtained as

 $D_4 = 2\mathbb{Z}^4 + (4,3)_{\mathbb{F}_2}$

where $(4,3)_{\mathbb{F}_2}$ is a binary parity-check code.

Construction of *E*₈

 E_8 is obtained as

$$2E_8 = 2\mathbb{Z}^8 + (8,4)_{\mathbb{F}_2}$$

where $(8,4)_{\mathbb{F}_2}$ is the extended binary Hamming code (7,4).

Construction A of the Leech lattice

The Leech lattice can be obtained as

 $2\Lambda_{24} = 2\mathbb{Z}^{24} + (24, 12)_{\mathbb{Z}_4}$

where $(24, 12)_{\mathbb{Z}_4}$ is the quaternary self-dual code obtained by extending the quaternary cyclic Golay code over \mathbb{Z}_4 .

Construction A of the Leech lattice

The Leech lattice can be obtained as

 $2\Lambda_{24} = 2\mathbb{Z}^{24} + (24, 12)_{\mathbb{Z}_4}$

where $(24, 12)_{\mathbb{Z}_4}$ is the quaternary self-dual code obtained by extending the quaternary cyclic Golay code over \mathbb{Z}_4 .

Other constructions

Construction *A* can be generalized. Constructions *B* or *D* for instance. But one can show that all these constructions are equivalent to construction *A* with a suitable alphabet (for the code).

Construction D: Barnes-Wall

• A family of lattices of dimension 2^{m+1} , $m \ge 2$ can be constructed by construction *D*.

Barnes-Wall Lattices Constructed as $\mathbb{Z}[i]$ – lattices,

$$\mathsf{BW}_{m} = (1+i)^{m} \mathbb{Z}[i]^{2^{m}} + \sum_{r=0}^{m-1} (1+i)^{r} \mathsf{RM}(m,r)$$

where RM (*m*, *r*) is a Reed-Müller code (binary) of length $n = 2^m$, dimension $k = \sum_{l=0}^r \binom{m}{l}$ and minimum Hamming distance $d = 2^{m-r}$. BW_m is a \mathbb{Z} -lattice of dimension 2^{m+1} .

Construction D: Barnes-Wall

• A family of lattices of dimension 2^{m+1} , $m \ge 2$ can be constructed by construction *D*.

Barnes-Wall Lattices Constructed as $\mathbb{Z}[i]$ – lattices,

Lattices

$$\mathsf{BW}_{m} = (1+i)^{m} \mathbb{Z}[i]^{2^{m}} + \sum_{r=0}^{m-1} (1+i)^{r} \mathsf{RM}(m,r)$$

where RM (*m*, *r*) is a Reed-Müller code (binary) of length $n = 2^m$, dimension $k = \sum_{l=0}^r \binom{m}{l}$ and minimum Hamming distance $d = 2^{m-r}$. BW_m is a \mathbb{Z} -lattice of dimension 2^{m+1} .

Another construction of E₈

We have

$$2E_8 = (1+i)^2 \mathbb{Z}[i]^4 + (1+i)(4,3,2) + (4,1,4)$$

which can also be considered as a construction *A* on the ring $\mathscr{R} = \mathbb{F}_2 + u \cdot \mathbb{F}_2$, $u^2 = 0$ by using the linear code of generator matrix

$$G = \left[\begin{array}{rrrrr} 1 & 1 & 1 & 1 \\ 0 & u & 0 & u \\ 0 & 0 & u & u \end{array} \right].$$

Part II

Coding for the Gaussian Channel

What are Lattice Codes? An example

Toy example: the 4-QAM

A code with 4 codewords

Figure: The 4 codewords are in red. Structure is $\mathbb{Z}^2/2\mathbb{Z}^2$.

What are Lattice Codes? An example

Toy example: the 4-QAM

A code with 4 codewords

Figure: The 4 codewords are in red. Structure is $\mathbb{Z}^2/2\mathbb{Z}^2$.

• Centers of the squares are shifted points of a sublattice.

What are Lattice Codes? The general case

- Take a lattice Λ_c and a sublattice $\Lambda_s \subset \Lambda_c$ of finite index *M*.
- Each point $x \in \Lambda_c + c$ can be written as

 $x = x_S + x_Q + c$

where $x_s \in \Lambda_s$ and x_q is the representative of x in Λ_c/Λ_s , of smallest Euclidean norm. c is a constant vector which ensures that the overall finite constellation has zero mean.

What are Lattice Codes? The general case

- Take a lattice Λ_c and a sublattice $\Lambda_s \subset \Lambda_c$ of finite index *M*.
- Each point $x \in \Lambda_c + c$ can be written as

 $x = x_S + x_Q + c$

where $x_s \in \Lambda_s$ and x_q is the representative of x in Λ_c/Λ_s , of smallest Euclidean norm. c is a constant vector which ensures that the overall finite constellation has zero mean.

Lattice Codes

Lattice codes are the representatives of the quotient group Λ_c/Λ_s , with smallest Euclidean norm, shifted so that the overall constellation has zero mean.

What are Lattice Codes? The general case

- Take a lattice Λ_c and a sublattice $\Lambda_s \subset \Lambda_c$ of finite index *M*.
- Each point $x \in \Lambda_c + c$ can be written as

 $x = x_S + x_Q + c$

where $x_s \in \Lambda_s$ and x_q is the representative of x in Λ_c/Λ_s , of smallest Euclidean norm. c is a constant vector which ensures that the overall finite constellation has zero mean.

Lattice Codes

Lattice codes are the representatives of the quotient group Λ_c/Λ_s , with smallest Euclidean norm, shifted so that the overall constellation has zero mean.

Performance of lattice codes

Lattice codes will be compared to the uncoded 2^m – QAM constellation which is $\mathbb{Z}^n/2^{\frac{m}{2}}\mathbb{Z}^n$. Vector *c* is the all-1/2 vector.

Coding: Minimum distance of Λ_c

The Coding Lattice Λ_c

We want to characterize the performance of Λ_c . Suppose that Λ_s is a scaled version of \mathbb{Z}^n (separation). On the Gaussian channel, error probability is dominated by minimum pairwise error probability

$$\max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} P(\mathbf{x} \to \mathbf{t}) = \max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} Q\left(\frac{\|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right) = Q\left(\frac{\min_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} \|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right)$$

where Q(x) is the error function

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

and N_0 is the power spectrum density of the noise.

Coding: Minimum distance of Λ_c

The Coding Lattice Λ_c

We want to characterize the performance of Λ_c . Suppose that Λ_s is a scaled version of \mathbb{Z}^n (separation). On the Gaussian channel, error probability is dominated by minimum pairwise error probability

$$\max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} P(\mathbf{x} \to \mathbf{t}) = \max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} Q\left(\frac{\|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right) = Q\left(\frac{\min_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} \|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right)$$

where Q(x) is the error function

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

and N_0 is the power spectrum density of the noise.

Minimum distance

We define the minimum distance of the lattice Λ as

 $d_{\min}\left(\Lambda\right) = \min_{\boldsymbol{x} \in \Lambda \setminus \{0\}} \|\boldsymbol{x}\|$

Energetic considerations

• Communication engineers express error probability as a function of

 $\frac{E_b}{N_0}$

where E_b is the required energy to transmit one bit and N_0 is the power spectrum density of the noise.

Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points)⇒αZⁿ with a carefully chosen α.

Energetic considerations

• Communication engineers express error probability as a function of

 $\frac{E_b}{N_0}$

where E_b is the required energy to transmit one bit and N_0 is the power spectrum density of the noise.

- Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points) $\Rightarrow \alpha \mathbb{Z}^n$ with a carefully chosen α .
- Opposite the opposite of the error probability is

$$Q\left(\frac{\min_{\boldsymbol{x},\boldsymbol{t}\in\mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2\sqrt{N_0}}\right) = Q\left(\sqrt{m\frac{d_{\min}^2}{E_s} \cdot \frac{E_b}{N_0}}\right)$$

m being the spectral efficiency and E_s the energy per symbol. Compare $\frac{d_{\min}^2}{E_s}$ of the lattice code with the one of $\alpha \mathbb{Z}^n$.

Energetic considerations

• Communication engineers express error probability as a function of

 $\frac{E_b}{N_0}$

where E_b is the required energy to transmit one bit and N_0 is the power spectrum density of the noise.

- Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points)⇒αZⁿ with a carefully chosen α.
- Dominant term of the error probability is

$$Q\left(\frac{\min_{\boldsymbol{x},\boldsymbol{t}\in\mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2\sqrt{N_0}}\right) = Q\left(\sqrt{m\frac{d_{\min}^2}{E_s}\cdot\frac{E_b}{N_0}}\right)$$

m being the spectral efficiency and E_s the energy per symbol. Compare $\frac{d_{\min}^2}{E_s}$ of the lattice code with the one of $\alpha \mathbb{Z}^n$.

Fundamental Volume and coding gain The obtained gain (called the "Coding Gain") is

$$\gamma_{c}(\Lambda) = \frac{d_{\min}^{2}}{\operatorname{vol}(\Lambda)^{\frac{2}{n}}}$$

Dimension 4

The checkerboard lattice D_4 has generator matrix

$$M_{D_4} = \begin{bmatrix} -1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

with det $(M_{D_4}) = 2$ and $d_{\min}^2 = 2$. Coding gain is

$$\gamma_c(D_4) = \frac{d_{\min}^2}{\operatorname{vol}(D_4)^{\frac{1}{2}}} = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

Coding Gain: Examples

Dimension 8

The Gosset lattice E_8 has generator matrix

$$M_{E_8} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 1/2 & 1/2 & 1/2 & 1/2 & 1/2 & 1/2 & 1/2 & 1/2 \end{bmatrix}$$

with det $(M_{E_8}) = 1$ and $d_{\min}^2 = 2$. Coding gain is

$$\gamma_c(E_8) = \frac{d_{\min}^2}{\operatorname{vol}(E_8)^{\frac{1}{4}}} = 2.$$

Normalized Second Order Moment

Energy

Performance of Λ_s is related to the energy minimization of the lattice code. All points of the lattice code are in the Voronoï region of 0 of Λ_s . For high rates, we assume points of Λ_c uniformly distributed in the Voronoï region, so the energy per dimension of the lattice code becomes

$$E = \frac{1}{n} \mathbb{E}\left(\|\boldsymbol{x}\|^2 \right) = \frac{1}{n} \int_{\mathcal{V}_{\Lambda_s}(\boldsymbol{0})} \frac{1}{\operatorname{vol}(\Lambda_s)} \|\boldsymbol{x}\|^2 d\boldsymbol{x}$$

Normalized Second Order Moment

Energy

Performance of Λ_s is related to the energy minimization of the lattice code. All points of the lattice code are in the Voronoï region of 0 of Λ_s . For high rates, we assume points of Λ_c uniformly distributed in the Voronoï region, so the energy per dimension of the lattice code becomes

$$E = \frac{1}{n} \mathbb{E}\left(\|\boldsymbol{x}\|^2\right) = \frac{1}{n} \int_{\mathcal{V}_{\Lambda_s}(\boldsymbol{0})}^{\infty} \frac{1}{\operatorname{vol}(\Lambda_s)} \|\boldsymbol{x}\|^2 d\boldsymbol{x}$$

Normalized Second Order Moment

The parameter

$$G(\Lambda) = \left(\frac{1}{n} \frac{\int_{\mathcal{V}_{\Lambda}(\mathbf{0})} \|\boldsymbol{x}\|^2 \, d\boldsymbol{x}}{\operatorname{vol}(\Lambda)}\right) \operatorname{vol}(\Lambda)^{-\frac{2}{n}}$$

is called the normalized second order moment of the lattice. It has to be minimized.

Normalized Second Order Moment

Energy

Performance of Λ_s is related to the energy minimization of the lattice code. All points of the lattice code are in the Voronoï region of 0 of Λ_s . For high rates, we assume points of Λ_c uniformly distributed in the Voronoï region, so the energy per dimension of the lattice code becomes

$$E = \frac{1}{n} \mathbb{E}\left(\|\boldsymbol{x}\|^2\right) = \frac{1}{n} \int_{\mathcal{V}_{\Lambda_s}(\boldsymbol{0})} \frac{1}{\operatorname{vol}(\Lambda_s)} \|\boldsymbol{x}\|^2 d\boldsymbol{x}$$

Normalized Second Order Moment

The parameter

$$G(\Lambda) = \left(\frac{1}{n} \frac{\int_{\mathcal{V}_{\Lambda}(\mathbf{0})} \|\boldsymbol{x}\|^2 \, d\boldsymbol{x}}{\operatorname{vol}(\Lambda)}\right) \operatorname{vol}(\Lambda)^{-\frac{2}{n}}$$

is called the normalized second order moment of the lattice. It has to be minimized.

Shaping Gain

The ratio

$$\gamma_{\mathcal{S}}(\Lambda) = \frac{G(\mathbb{Z}^n)}{G(\Lambda)} = \frac{1}{12} G(\Lambda)^{-1}$$

is called the shaping gain of Λ . Its value is upperbounded by the shaping gain of the *n*-dimensional sphere which tends to $\frac{\pi e}{6}$ when $n \to \infty$.

Coding Gain and Shaping Gain

Dominant term of the Error Probability

The error probability of a lattice code using Λ_c as the coding lattice and Λ_s as the shaping lattice is dominated by the term

$$Q\left(\sqrt{\frac{3mE_b}{N_0}\cdot\gamma_c\left(\Lambda_c\right)\cdot\gamma_s\left(\Lambda_s\right)}\right)$$

Part III

Nested Lattices and the Secrecy Gain

Figure: The Gaussian Wiretap Channel model

+2 mod (4) Channel

We suppose the alphabet \mathbb{Z}_4 and a channel Alice \hookrightarrow Eve that outputs

y = x + 2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.

+2 mod (4) Channel

We suppose the alphabet \mathbb{Z}_4 and a channel Alice \hookrightarrow Eve that outputs

y = x + 2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.

Symbol to Bits Labelling

 $x = 2b_1 + b_0$

Bit b_1 experiences error probability 1/2 while bit b_0 experiences error probability 0.

+2 mod (4) Channel

We suppose the alphabet \mathbb{Z}_4 and a channel Alice \hookrightarrow Eve that outputs

y = x + 2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.

Symbol to Bits Labelling

 $x = 2b_1 + b_0$

Bit b_1 experiences error probability 1/2 while bit b_0 experiences error probability 0.

Confidential data must be encoded through b_1 . On b_0 , put random bits.

Assume that $Alice \rightarrow Eve$ channel is corrupted by an additive uniform noise

Figure: Points can be decoded error free: label with pseudo-random symbols

Assume that $Alice \rightarrow Eve$ channel is corrupted by an additive uniform noise

Figure: Points are not distinguishable: label with data

Figure: Constellation corrupted by uniform noise

Error Probability

Pseudo-random symbols are perfectly decoded by Eve when data error probability will be high.

• unfortunately not valid for Gaussian noise.

Coset Coding with Integers

Example

- Suppose that points *x* are in \mathbb{Z} .
- Euclidean division

x = 3q + r

• *q* carries the pseudo-random symbols while *r* carries the data or "pseudo-random symbols label points in 3Z while data label elements of Z/3Z".

Label points with data + pseudo-random bits

Gaussian noise is **not** bounded: it **needs** a *n*-dimensional approach (then let $n \to \infty$ for **sphere hardening**).

	1-dimensional	<i>n</i> -dimensional
Transmitted lattice	Z	Fine lattice Λ_b
Pseudo-random symbols	$m\mathbb{Z} \subset \mathbb{Z}$	Coarse lattice $\Lambda_e \subset \Lambda_b$
Data	$\mathbb{Z}/m\mathbb{Z}$	Cosets Λ_b / Λ_e

Table: From the example to the general scheme

Gaussian noise is **not** bounded: it **needs** a *n*-dimensional approach (then let $n \to \infty$ for sphere hardening).

Figure: Example of coset coding

Part IV

The Secrecy Gain

The secrecy gain

Eve's Probability of Correct Decision (data)

The secrecy gain

Eve's Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding another coset representative

The secrecy gain

Eve's Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding another coset representative

Eve's Probability of correct decision

$$\begin{aligned} \mathcal{L}_{c,e} &\simeq & \left(\frac{1}{\sqrt{2\pi N_{1}}}\right)^{n} \operatorname{Vol}(\Lambda_{b}) \sum_{\mathbf{r} \in \Lambda_{e}} e^{-\frac{\|\mathbf{r}\|^{2}}{2N_{1}}} \\ &\simeq & \left(\frac{1}{\sqrt{2\pi N_{1}}}\right)^{n} \operatorname{Vol}(\Lambda_{b}) \Theta_{\Lambda_{e}} \left(\frac{1}{2\pi N_{1}}\right) \end{aligned}$$

where

$$\Theta_{\Lambda}(y) = \sum_{\boldsymbol{x} \in \Lambda} q^{\|\boldsymbol{x}\|^2}, \ q = e^{-\pi y}, \quad y > 0$$

is the theta series of Λ .

Eve's Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding another coset representative

Eve's Probability of correct decision

$$\begin{aligned} \dot{c}_{c,e} &\simeq & \left(\frac{1}{\sqrt{2\pi N_1}}\right)^n \operatorname{Vol}(\Lambda_b) \sum_{\mathbf{r} \in \Lambda_e} e^{-\frac{\|\mathbf{r}\|^2}{2N_1}} \\ &\simeq & \left(\frac{1}{\sqrt{2\pi N_1}}\right)^n \operatorname{Vol}(\Lambda_b) \Theta_{\Lambda_e} \left(\frac{1}{2\pi N_1}\right) \end{aligned}$$

where

$$\Theta_{\Lambda}(y) = \sum_{\boldsymbol{x} \in \Lambda} q^{\|\boldsymbol{x}\|^2}, \ q = e^{-\pi y}, \quad y > 0$$

is the theta series of Λ .

Problem Minimize $\Theta_{\Lambda}(y)$ for some *y*.

he secrecy gain

Secrecy function

Definition

Let Λ be a *n*-dimensional lattice with volume λ^n . Its secrecy function is defined as,

$$\Xi_{\Lambda}(y) \triangleq \frac{\Theta_{\lambda \mathbb{Z}^n}(y)}{\Theta_{\Lambda}(y)} = \frac{\vartheta_3^n \left(e^{-\pi \sqrt{\lambda}y} \right)}{\Theta_{\Lambda}(y)}$$

where $\vartheta_3(q) = \sum_{n=-\infty}^{+\infty} q^{n^2}$ (Jacobi theta function) and y > 0.

The secrecy gain

Secrecy function

Definition

Let Λ be a *n*-dimensional lattice with volume λ^n . Its secrecy function is defined as,

$$\Xi_{\Lambda}(y) \triangleq \frac{\Theta_{\lambda \mathbb{Z}^n}(y)}{\Theta_{\Lambda}(y)} = \frac{\vartheta_3^n \left(e^{-\pi \sqrt{\lambda}y} \right)}{\Theta_{\Lambda}(y)}$$

where $\vartheta_3(q) = \sum_{n=-\infty}^{+\infty} q^{n^2}$ (Jacobi theta function) and y > 0.

Examples

Figure: Secrecy functions of E_8 and Λ_{24}

he secrecy gain

Definition

The strong secrecy gain of a lattice Λ is

$$\chi^s_{\Lambda} \stackrel{\Delta}{=} \sup_{y>0} \Xi_{\Lambda}(y)$$

The secrecy gain

Secrecy Gain

Definition

The strong secrecy gain of a lattice Λ is

$$\chi^s_{\Lambda} \stackrel{\Delta}{=} \sup_{y > 0} \Xi_{\Lambda}(y)$$

Definition

For a lattice Λ equivalent to its dual and of determinant $d(\Lambda)$ (determinant of the Gram matrix), we define the **weak secrecy gain**,

$$\chi_{\Lambda} \triangleq \Xi_{\Lambda} \left(d(\Lambda)^{-\frac{1}{n}} \right)$$

The secrecy gain

Secrecy Gain

Definition

The strong secrecy gain of a lattice Λ is

$$\chi^s_{\Lambda} \stackrel{\Delta}{=} \sup_{y > 0} \Xi_{\Lambda}(y)$$

Definition

For a lattice Λ equivalent to its dual and of determinant $d(\Lambda)$ (determinant of the Gram matrix), we define the **weak secrecy gain**,

$$\chi_{\Lambda} \triangleq \Xi_{\Lambda} \left(d(\Lambda)^{-\frac{1}{n}} \right)$$

• A lattice equivalent to its dual has a theta series with a multiplicative symmetry point at $d(\Lambda)^{-\frac{1}{n}}$ (Poisson-Jacobi's formula),

$$\Xi_{\Lambda}\left(d(\Lambda)^{-\frac{1}{n}}y\right) = \Xi_{\Lambda}\left(\frac{d(\Lambda)^{-\frac{1}{n}}}{y}\right)$$

Conjecture

If Λ is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

Corollary

The strong secrecy gain of a unimodular lattice Λ is

 $\chi^s_\Lambda \triangleq \Xi_\Lambda(1)$

he secrecy gain

First conjecture

Conjecture

If Λ is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

Corollary

so we get

The strong secrecy gain of a unimodular lattice Λ is

 $\chi^s_{\Lambda} \triangleq \Xi_{\Lambda}(1)$

Calculation of E₈ secrecy gain

From E_8 theta series,

$$\frac{1}{\Xi_{E_8}(1)} = \frac{\frac{1}{2} \left(\vartheta_2(e^{-\pi})^8 + \vartheta_3(e^{-\pi})^8 + \vartheta_4(e^{-\pi})^8 \right)}{\vartheta_3(e^{-\pi})^8}$$
$$= \frac{3}{4} \quad (\text{since } \frac{\vartheta_2(e^{-\pi})}{\vartheta_3(e^{-\pi})} = \frac{\vartheta_4(e^{-\pi})}{\vartheta_3(e^{-\pi})} = \frac{1}{\sqrt[4]{2}})$$
$$\chi_{E_8} = \Xi_{E_8}(1) = \frac{4}{3} \ .$$

• Want to study the behavior of even unimodular lattices when $n \to \infty$.

Question

How does the optimal secrecy gain behaves when $n \to \infty$?

The secrecy gain

Asymptotic behavior for unimodular lattices

• Want to study the behavior of even unimodular lattices when $n \to \infty$.

Question

How does the optimal secrecy gain behaves when $n \to \infty$?

First answer

Apply the Siegel-Weil formula,

$$\sum_{\Lambda \in \Omega_n} \frac{\Theta_\Lambda(q)}{|\operatorname{Aut}(\Lambda)|} = M_n \cdot E_k\left(q^2\right)$$

where

$$M_n = \sum_{\Lambda \in \Omega_n} \frac{1}{|\operatorname{Aut}(\Lambda)|}$$

and E_k is the Eisenstein series with weight $k = \frac{n}{2}$. Ω_n is the set of all inequivalent *n*-dimensional, even unimodular lattices. We get

$$\Theta_{n,\mathsf{opt}}\left(e^{-\pi}\right) \leq E_k\left(e^{-2\pi}\right)$$

The secrecy gain

Asymptotic behavior (II)

Maximal Secrecy gain

For a given dimension *n*, multiple of 8, there **exists** an even unimodular lattice whose secrecy gain is

$$\chi_n \ge \frac{\vartheta_3^n \left(e^{-\pi}\right)}{E_k \left(e^{-2\pi}\right)} \simeq \frac{1}{2} \left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^n \simeq \frac{1.086^n}{2}$$
The secrecy gain

Asymptotic behavior (II)

Maximal Secrecy gain

For a given dimension *n*, multiple of 8, there **exists** an even unimodular lattice whose secrecy gain is

$$\chi_n \geq \frac{\vartheta_3^n \left(e^{-\pi}\right)}{E_k \left(e^{-2\pi}\right)} \simeq \frac{1}{2} \left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^n \simeq \frac{1.086^n}{2}$$

Behavior of Eisenstein Series We have

$$E_k(e^{-2\pi}) = 1 + \frac{2k}{|B_k|} \sum_{m=1}^{+\infty} \frac{m^{k-1}}{e^{2\pi m} - 1}$$

 B_k being the Bernoulli numbers. For k a multiple of 4, then $E_k(e^{-2\pi})$ fastly converges to 2 $(k \to \infty)$.

The secrecy gain

Asymptotic behavior (II)

Maximal Secrecy gain

For a given dimension *n*, multiple of 8, there **exists** an even unimodular lattice whose secrecy gain is

$$\chi_n \geq \frac{\vartheta_3^n\left(e^{-\pi}\right)}{E_k\left(e^{-2\pi}\right)} \simeq \frac{1}{2} \left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^n \simeq \frac{1.086^n}{2}$$

Behavior of Eisenstein Series We have

$$E_k(e^{-2\pi}) = 1 + \frac{2k}{|B_k|} \sum_{m=1}^{+\infty} \frac{m^{k-1}}{e^{2\pi m} - 1}$$

 B_k being the Bernoulli numbers. For k a multiple of 4, then $E_k(e^{-2\pi})$ fastly converges to 2 $(k \to \infty)$.

Bound from Siegel-Weil Formula vs. Extremal lattices

Figure: Lower bound of the minimal secrecy gain as a function of n from Siegel-Weil formula.

Part V

Wireless Channels - Other Lattices

- Assume a wireless communication system transmitting on *q* subcarriers sufficiently spaced and during *n* channel uses.
- Assume Rayleigh fadings and 2 codewords X and T such that

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{q1} & x_{q2} & \cdots & x_{qn} \end{bmatrix} \qquad T = \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ t_{21} & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \vdots \\ t_{q1} & t_{q2} & \cdots & t_{qn} \end{bmatrix}.$$

- Assume a wireless communication system transmitting on *q* subcarriers sufficiently spaced and during *n* channel uses.
- Assume Rayleigh fadings and 2 codewords X and T such that

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{q1} & x_{q2} & \cdots & x_{qn} \end{bmatrix} \qquad T = \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ t_{21} & t_{22} & \cdots & t_{2n} \\ \vdots & & \ddots & \vdots \\ t_{q1} & t_{q2} & \cdots & t_{qn} \end{bmatrix}$$

Pairwise Error Probability

Error probability will be dominated by

$$\max_{X,T} P(X \to T) \cong \max_{X,T} \prod_{i=1}^{q} \|x_i - t_i\|^{-2} \left(\frac{\Gamma}{4}\right)^{-r}$$

where Γ is the average signal to noise ratio and x_i (resp. t_i) is the i^{th} row of X (resp. T). This equality is valid if, for any $i, x_i \neq t_i$. Hence, one has to find a code which maximizes

$$\min_{\boldsymbol{X},\boldsymbol{T}} \mu(\boldsymbol{X},\boldsymbol{T}) = \min_{\boldsymbol{X},\boldsymbol{T}} \prod_{i=1}^{q} \|\boldsymbol{x}_i - \boldsymbol{t}_i\|^2$$

Block Fading Channel

Lattice formulation over number fields

Control the product in $\mu(X, T)$

The product $\prod_{i=1}^{q} \|\mathbf{x}_{i} - \mathbf{t}_{i}\|^{2}$ which becomes $\mu(\mathbf{X}) = \prod_{i=1}^{q} \|\mathbf{x}_{i}\|^{2}$ by linearity can be controlled by introducing the algebraic norm in a well-chosen algebraic Galois extension \mathbb{K} of degree q.

• Let $(\sigma_1, \sigma_2, ..., \sigma_q)$ be the Galois group of K. Use the canonical embedding so that

X =	$\begin{bmatrix} \sigma_1(x_1) \\ \sigma_2(x_1) \end{bmatrix}$	$\sigma_1(x_2) \\ \sigma_2(x_2)$	 	$\left. \begin{array}{c} \sigma_1 \left(x_n \right) \\ \sigma_2 \left(x_n \right) \end{array} \right $
	\vdots $\sigma_q(x_1)$	$\sigma_q(x_2)$	`. 	$\begin{bmatrix} \vdots \\ \sigma_q(x_n) \end{bmatrix}$

Block Fading Channel

Lattice formulation over number fields

Control the product in $\mu(X, T)$

The product $\prod_{i=1}^{q} \|\mathbf{x}_{i} - \mathbf{t}_{i}\|^{2}$ which becomes $\mu(\mathbf{X}) = \prod_{i=1}^{q} \|\mathbf{x}_{i}\|^{2}$ by linearity can be controlled by introducing the algebraic norm in a well-chosen algebraic Galois extension \mathbb{K} of degree q.

• Let $(\sigma_1, \sigma_2, ..., \sigma_q)$ be the Galois group of K. Use the canonical embedding so that

	$\begin{bmatrix} \sigma_1(x_1) \\ \sigma_2(x_1) \end{bmatrix}$		····	$\left. \begin{array}{c} \sigma_1 \left(x_n \right) \\ \sigma_2 \left(x_n \right) \end{array} \right $
<i>X</i> =	: : :	(r.)	÷.,	: : :
	$Uq(x_1)$	$0q(x_2)$		$O_q(x_n)$

Metric and Norm

Then metric $\mu(X)$ can be written as

$$\mu(\mathbf{X}) = N\left(\|\mathbf{x}\|^2\right) = N\left(\sum_{i=1}^n x_i^2\right)$$

where *N* is for the algebraic norm and $\mathbf{x} = (x_1, x_2, ..., x_n)$.

38 /

• A construction A for $\mathscr{O}_{\mathbb{K}}$ -lattices where $\mathscr{O}_{\mathbb{K}}$ is the ring of integers of \mathbb{K} can be given where a $\mathscr{O}_{\mathbb{K}}$ -lattice is a $\mathscr{O}_{\mathbb{K}}$ -module.

Construction of $\mathcal{O}_{\mathbb{K}}$ – lattices

• A construction A for $\mathcal{O}_{\mathbb{K}}$ -lattices where $\mathcal{O}_{\mathbb{K}}$ is the ring of integers of \mathbb{K} can be given where a $\mathcal{O}_{\mathbb{K}}$ -lattice is a $\mathcal{O}_{\mathbb{K}}$ -module.

Construction A (binary) over $\mathcal{O}_{\mathbb{K}}$

Take, for instance q = 2, $\mathbb{K} = \mathbb{Q}(\sqrt{2})$. So, we have $\mathcal{O}_{\mathbb{K}} = \mathbb{Z}[\sqrt{2}]$. Consider the principal ideal

 $\mathcal{I}=\sqrt{2}\cdot\mathbb{Z}[\sqrt{2}].$

As $N(\mathscr{I}) = 2$, then $\mathbb{Z}[\sqrt{2}]/\mathscr{I} = \mathbb{F}_2$. So, we can construct $\mathcal{O}_{\mathbb{K}}$ –lattices in that way,

$$\Lambda = \mathscr{I}^n + \mathscr{C}$$

where \mathscr{C} is a binary linear code of length *n*.

Block Fading Channel

TELECOM

Paristech Construction of $\mathcal{O}_{\mathbb{K}}$ -lattices

• A construction A for $\mathcal{O}_{\mathbb{K}}$ -lattices where $\mathcal{O}_{\mathbb{K}}$ is the ring of integers of \mathbb{K} can be given where a $\mathcal{O}_{\mathbb{K}}$ -lattice is a $\mathcal{O}_{\mathbb{K}}$ -module.

Construction A (binary) over $\mathcal{O}_{\mathbb{K}}$

Take, for instance q = 2, $\mathbb{K} = \mathbb{Q}(\sqrt{2})$. So, we have $\mathcal{O}_{\mathbb{K}} = \mathbb{Z}[\sqrt{2}]$. Consider the principal ideal

 $\mathcal{I}=\sqrt{2}\cdot\mathbb{Z}[\sqrt{2}].$

As $N(\mathcal{I}) = 2$, then $\mathbb{Z}[\sqrt{2}]/\mathcal{I} = \mathbb{F}_2$. So, we can construct $\mathcal{O}_{\mathbb{K}}$ –lattices in that way,

$$\Lambda = \mathscr{I}^n + \mathscr{C}$$

where \mathscr{C} is a binary linear code of length *n*.

Construction A (quaternary) over $\mathcal{O}_{\mathbb{K}}$

Here, take q = 2, $\mathbb{K} = \mathbb{Q}(\sqrt{5})$. So, we have $\mathcal{O}_{\mathbb{K}} = \mathbb{Z}[\phi]$ where $\phi = \frac{1+\sqrt{5}}{2}$. Consider the ideal $\mathscr{I} = 2 \cdot \mathbb{Z}[\sqrt{\phi}]$. As $N(\mathscr{I}) = 4$ and \mathscr{I} is prime, then $\mathbb{Z}[\sqrt{\phi}]/\mathscr{I} = \mathbb{F}_4$. So, we have

$$\Lambda = \mathscr{I}^n + \mathscr{C}$$

where \mathscr{C} is a linear code of length *n* over \mathbb{F}_4 .

• O-lattices where O is a maximal order of some division algebra for the MIMO case

- Nested lattices for other applications in which 2 or more data streams must be constructed
 - Han and Kobayashi
 - Wyner-Ziv
 - ...
- Nested "exotic" lattices on other Dedekind domains?

Thank You !!