## Lattices for Communication Engineers

## Jean-Claude Belfiore

Télécom ParisTech CNRS, LTCI UMR 5141
February, 222011
Nanyang Technological University - SPMS

## Part I

Introduction

## The transmission problem

- Link between signal space and transmitted analog signal through an orthogonal basis of signals


## TELECOM <br> The transmission problem

- Link between signal space and transmitted analog signal through an orthogonal basis of signals


## Standard serial transmission

Transmitted signal is

$$
x(t)=\sum_{k} x_{k} h(t-k T)
$$

where $x_{k}$ are the transmitted complex symbols and $\{h(t-k T)\}_{k}$ is a family of orthogonal signals ( $h$ is a Nyquist root).

## The transmission problem

- Link between signal space and transmitted analog signal through an orthogonal basis of signals


## Standard serial transmission

Transmitted signal is

$$
x(t)=\sum_{k} x_{k} h(t-k T)
$$

where $x_{k}$ are the transmitted complex symbols and $\{h(t-k T)\}_{k}$ is a family of orthogonal signals ( $h$ is a Nyquist root).

## OFDM transmission

Transmitted signal is

$$
x(t)=\sum_{k} \sum_{q=-N / 2}^{N / 2} x_{k, q} h(t-k T) e^{i \frac{2 \pi k}{N+1} \Delta f t}
$$

where $x_{k, q}$ are the transmitted complex symbols and $\left\{h(t-k T) e^{i \frac{2 \pi k}{N+1} \Delta f t}\right\}_{k, q}$ is a doubly indexed family of orthogonal signals (for instance,

$$
h(t)=\operatorname{rect}_{T}(t)
$$

with $\Delta f=\frac{1}{T}$ ).

## Complex symbols and Signal Space

- We define vector

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{\top}
$$

as a vector living in a $m$-dimensional complex space or a $n$-dimensional real space ( $n=2 m$ ).

- Complex symbols used in practice are QAM symbols, components of vector $\boldsymbol{x}$.
- We need to introduce coding $\longrightarrow$ structure the QAM symbols.


Figure: Symbol from a 64 QAM

## Definition

A Euclidean $\mathbb{Z}$-lattice is a discrete additive subgroup with rank $p, p \leq n$ of the Euclidean space $\mathbb{R}^{n}$. We restrict to the case $p=n$ in the sequel.

## Definition and properties

## Definition

A Euclidean $\mathbb{Z}$-lattice is a discrete additive subgroup with rank $p, p \leq n$ of the Euclidean space $\mathbb{R}^{n}$. We restrict to the case $p=n$ in the sequel.

- A lattice $\boldsymbol{\Lambda}$ is a $\mathbb{Z}$-module generated by vectors $\boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}, \ldots, \boldsymbol{v}_{n}$ of $\mathbb{R}^{n}$.
- An element $\boldsymbol{v}$ of $\boldsymbol{\Lambda}$ can be written as :

$$
\boldsymbol{v}=a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}, \quad a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}
$$

## Definition and properties

## Definition

A Euclidean $\mathbb{Z}$-lattice is a discrete additive subgroup with rank $p, p \leq n$ of the Euclidean space $\mathbb{R}^{n}$. We restrict to the case $p=n$ in the sequel.

- A lattice $\boldsymbol{\Lambda}$ is a $\mathbb{Z}$-module generated by vectors $\boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}, \ldots, \boldsymbol{v}_{n}$ of $\mathbb{R}^{n}$.
- An element $\boldsymbol{v}$ of $\boldsymbol{\Lambda}$ can be written as :

$$
\boldsymbol{v}=a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}, \quad a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}
$$

- The lattice $\boldsymbol{\Lambda}$ can be defined as :

$$
\boldsymbol{\Lambda}=\left\{\sum_{i=1}^{n} a_{i} \boldsymbol{v}_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$

## Lattices : Generator matrix

- The set of vectors $\boldsymbol{\nu}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ is a lattice basis.


## Definition

Matrix $\boldsymbol{M}$ whose columns are vectors $\boldsymbol{\nu}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ is a generator matrix of the lattice denoted $\Lambda_{M}$.

## Lattices: Generator matrix

- The set of vectors $\boldsymbol{\nu}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ is a lattice basis.


## Definition

Matrix $\boldsymbol{M}$ whose columns are vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ is a generator matrix of the lattice denoted $\Lambda_{M}$.

- Each vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ in $\Lambda_{\boldsymbol{M}}$, can be written as,

$$
\boldsymbol{x}=\boldsymbol{M} \cdot \boldsymbol{z}
$$

where $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)^{\top} \in \mathbb{Z}^{n}$.

- Lattice $\Lambda_{\boldsymbol{M}}$ may be seen as the result of a linear transform applied to lattice $\mathbb{Z}^{n}$ (cubic lattice).


## TELECOM <br> Lattices: Elementary Properties (I)

- Let $\boldsymbol{Q} \in \mu_{n}(\mathbb{R})$, such that $\boldsymbol{Q}^{\top} \cdot \boldsymbol{Q}=\boldsymbol{I}_{\boldsymbol{n}}$ be an isometry. The two lattices $\Lambda_{\boldsymbol{M}}$ and $\Lambda_{\mathbf{Q} \cdot \boldsymbol{M}}$ are said equivalent.
- Lattice $\Lambda_{\boldsymbol{Q} \cdot \boldsymbol{M}}$ is a rotated version of $\Lambda_{\boldsymbol{M}}$ if $\operatorname{det} \boldsymbol{Q}=1$.


## Lattices: Elementary Properties (I)

- Let $\boldsymbol{Q} \in \mathscr{M}_{n}(\mathbb{R})$, such that $\boldsymbol{Q}^{\top} \cdot \boldsymbol{Q}=\boldsymbol{I}_{n}$ be an isometry. The two lattices $\Lambda_{\boldsymbol{M}}$ and $\Lambda_{\mathbf{Q} \cdot \boldsymbol{M}}$ are said equivalent.
- Lattice $\Lambda_{\boldsymbol{Q} \cdot \boldsymbol{M}}$ is a rotated version of $\Lambda_{\boldsymbol{M}}$ if $\operatorname{det} \boldsymbol{Q}=1$.
- If $\boldsymbol{T} \in \mathscr{M}_{n}(\mathbb{Z})$ and $\operatorname{det} \boldsymbol{T} \neq \pm 1$, then lattice $\Lambda_{\boldsymbol{M} \cdot \boldsymbol{T}}$ is a sublattice of $\Lambda_{\boldsymbol{M}}$.
- We will often consider sublattices of $\mathbb{Z}^{n}$.


## Lattices : Elementary Properties (II)

- The generator matrix $\boldsymbol{M}$ describes the lattice $\Lambda_{\boldsymbol{M}}$, but it is not unique. All matrices $\boldsymbol{M} \cdot \boldsymbol{T}$ with $\boldsymbol{T} \in \mathscr{M}_{\boldsymbol{n}}(\mathbb{Z})$ and $\operatorname{det} \boldsymbol{T}= \pm 1$ are generator matrices of $\Lambda_{\boldsymbol{M}} . \boldsymbol{T}$ is called a unimodular matrix.
- $\boldsymbol{G}=\boldsymbol{M}^{\top} \cdot \boldsymbol{M}$ is the Gram matrix of the lattice. $\boldsymbol{M}^{\top}$ is also a generator matrix of the dual of $\Lambda_{\boldsymbol{M}}$.
- We define then gemetric parameters.


## Lattices : Elementary Properties (II)

- The generator matrix $\boldsymbol{M}$ describes the lattice $\Lambda_{\boldsymbol{M}}$, but it is not unique. All matrices $\boldsymbol{M} \cdot \boldsymbol{T}$ with $\boldsymbol{T} \in \mathscr{M}_{n}(\mathbb{Z})$ and $\operatorname{det} \boldsymbol{T}= \pm 1$ are generator matrices of $\Lambda_{\boldsymbol{M}} . \boldsymbol{T}$ is called a unimodular matrix.
- $\boldsymbol{G}=\boldsymbol{M}^{\top} \cdot \boldsymbol{M}$ is the Gram matrix of the lattice. $\boldsymbol{M}^{\top}$ is also a generator matrix of the dual of $\Lambda_{\boldsymbol{M}}$.
- We define then gemetric parameters.


## Definitions

- The fundamental parallelotope of $\Lambda_{\boldsymbol{M}}$ is the region,

$$
\mathscr{P}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{x}=a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{\nu}_{2}+\ldots+a_{n} \boldsymbol{v}_{n}, 0 \leq a_{i}<1, i=1 \ldots n\right\}
$$

- The fundamental volume is the volume of the fundamental parallelotope. It is denoted $\operatorname{vol}\left(\Lambda_{\boldsymbol{M}}\right)$.
- The fundamental volume of the lattice is $\operatorname{vol}\left(\Lambda_{\boldsymbol{M}}\right)=|\operatorname{det}(\boldsymbol{M})|$, which is $\sqrt{\operatorname{det}(\boldsymbol{G})}$ either.


## Lattices : Elementary Properties (III)

## Definition

The Voronoï cell of a point $u$ belonging to the lattice $\Lambda$ is the region

$$
V_{\Lambda}(\boldsymbol{u})=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\|\boldsymbol{x}-\boldsymbol{u}\| \leq\|\boldsymbol{x}-\boldsymbol{y}\|, \quad \boldsymbol{y} \in \Lambda\right\}
$$

- All Voronoï cells of a lattice are translated versions of the Voronoï cell of the zero point. This cell is called Voronoï cell of the lattice.
- The fundamental volume of a lattice is equal to the volume of its Voronoï cell.


| $\bullet$ | Lattice Point |
| :--- | :--- |
| $\left(v_{1}, v_{2}\right)$ | Lattice Basis |
| Fundamental Parallelotope |  |
| Voronoi region |  |

- A QAM constellation is a finite part of $\mathbb{Z}^{2}$.


## The $A_{2}$ lattice

## 



- An HEX constellation is a finite part of $A_{2}$, the hexagonal lattice.


## Construction $A$ for a $\mathbb{Z}$-lattice

Let $q$ be an integer. Then,

$$
\mathbb{Z} \mid q \mathbb{Z}
$$

is a finite field if $q$ is a prime and a finite ring otherwise. For a linear code $\mathscr{C}$ of length $n$ defined on $\mathbb{Z} / q \mathbb{Z}$, lattice $\Lambda$ is given by

$$
\Lambda=q \mathbb{Z}^{n}+\mathscr{C} \triangleq \bigcup_{x \in \mathscr{C}}\left(q \mathbb{Z}^{n}+\boldsymbol{x}\right) .
$$

## Construction $A$ (binary)

## 

## Construction $A$ for $\mathbf{a} \mathbb{Z}$-lattice

Let $q$ be an integer. Then,

$$
\mathbb{Z} \mid q \mathbb{Z}
$$

is a finite field if $q$ is a prime and a finite ring otherwise. For a linear code $\mathscr{C}$ of length $n$ defined on $\mathbb{Z} / q \mathbb{Z}$, lattice $\Lambda$ is given by

$$
\Lambda=q \mathbb{Z}^{n}+\mathscr{C} \triangleq \bigcup_{x \in \mathscr{C}}\left(q \mathbb{Z}^{n}+x\right) .
$$

## Construction of $D_{4}$

$D_{4}$ is obtained as

$$
D_{4}=2 \mathbb{Z}^{4}+(4,3)_{\mathbb{F}_{2}}
$$

where $(4,3)_{\mathbb{F}_{2}}$ is a binary parity-check code.

## Construction A (binary)

## 

Construction $A$ for a $\mathbb{Z}$-lattice
Let $q$ be an integer. Then,

$$
\mathbb{Z} \mid q \mathbb{Z}
$$

is a finite field if $q$ is a prime and a finite ring otherwise. For a linear code $\mathscr{C}$ of length $n$ defined on $\mathbb{Z} / q \mathbb{Z}$, lattice $\Lambda$ is given by

$$
\Lambda=q \mathbb{Z}^{n}+\mathscr{C} \triangleq \bigcup_{x \in \mathscr{C}}\left(q \mathbb{Z}^{n}+x\right)
$$

## Construction of $D_{4}$

$D_{4}$ is obtained as

$$
D_{4}=2 \mathbb{Z}^{4}+(4,3)_{\mathbb{F}_{2}}
$$

where $(4,3)_{\mathbb{F}_{2}}$ is a binary parity-check code.

## Construction of $E_{8}$

$E_{8}$ is obtained as

$$
2 E_{8}=2 \mathbb{Z}^{8}+(8,4)_{\mathbb{F}_{2}}
$$

where $(8,4)_{F_{2}}$ is the extended binary Hamming code (7,4).

## Construction $A$ of the Leech lattice

The Leech lattice can be obtained as

$$
2 \Lambda_{24}=2 \mathbb{Z}^{24}+(24,12)_{\mathbb{Z}_{4}}
$$

where $(24,12)_{\mathbb{Z}_{4}}$ is the quaternary self-dual code obtained by extending the quaternary cyclic Golay code over $\mathbb{Z}_{4}$.

## Construction $A$ (quaternary)

## 

## Construction $A$ of the Leech lattice

The Leech lattice can be obtained as

$$
2 \Lambda_{24}=2 \mathbb{Z}^{24}+(24,12)_{\mathbb{Z}_{4}}
$$

where $(24,12)_{\mathbb{Z}_{4}}$ is the quaternary self-dual code obtained by extending the quaternary cyclic Golay code over $\mathbb{Z}_{4}$.

## Other constructions

Construction $A$ can be generalized. Constructions $B$ or $D$ for instance. But one can show that all these constructions are equivalent to construction $A$ with a suitable alphabet (for the code).

## TELECOM

## Construction D: Barnes-Wall

## 

- A family of lattices of dimension $2^{m+1}, m \geq 2$ can be constructed by construction $D$.


## Barnes-Wall Lattices

Constructed as $\mathbb{Z}[i]-$ lattices,

$$
\mathrm{BW}_{m}=(1+i)^{m} \mathbb{Z}[i]^{2^{m}}+\sum_{r=0}^{m-1}(1+i)^{r} \mathrm{RM}(m, r)
$$

where $\mathrm{RM}(m, r)$ is a Reed-Müller code (binary) of length $n=2^{m}$, dimension $k=\sum_{l=0}^{r}\binom{m}{l}$ and minimum Hamming distance $d=2^{m-r}$. BW $m$ is a $\mathbb{Z}$-lattice of dimension $2^{m+1}$.

## TELECOM

## Construction D: Barnes-Wall

## 

- A family of lattices of dimension $2^{m+1}, m \geq 2$ can be constructed by construction $D$.


## Barnes-Wall Lattices

Constructed as $\mathbb{Z}[i]-$ lattices,

$$
\mathrm{BW}_{m}=(1+i)^{m} \mathbb{Z}[i]^{2^{m}}+\sum_{r=0}^{m-1}(1+i)^{r} \mathrm{RM}(m, r)
$$

where $\mathrm{RM}(m, r)$ is a Reed-Müller code (binary) of length $n=2^{m}$, dimension $k=\sum_{l=0}^{r}\binom{m}{l}$ and minimum Hamming distance $d=2^{m-r}$. BW ${ }_{m}$ is a $\mathbb{Z}$-lattice of dimension $2^{m+1}$.

## Another construction of $E_{8}$

We have

$$
2 E_{8}=(1+i)^{2} \mathbb{Z}[i]^{4}+(1+i)(4,3,2)+(4,1,4)
$$

which can also be considered as a construction $A$ on the ring $\mathscr{R}=\mathbb{F}_{2}+u \cdot \mathbb{F}_{2}, u^{2}=0$ by using the linear code of generator matrix

$$
G=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & u & 0 & u \\
0 & 0 & u & u
\end{array}\right]
$$

## Part II

Coding for the Gaussian Channel

## What are Lattice Codes? An example

## 

Toy example: the 4-QAM
A code with 4 codewords


Figure: The 4 codewords are in red. Structure is $\mathbb{Z}^{2} / 2 \mathbb{Z}^{2}$.

## What are Lattice Codes? An example

## 

Toy example: the 4-QAM
A code with 4 codewords


Figure: The 4 codewords are in red. Structure is $\mathbb{Z}^{2} / 2 \mathbb{Z}^{2}$.

- Centers of the squares are shifted points of a sublattice.


## What are Lattice Codes? The general case

- Take a lattice $\Lambda_{c}$ and a sublattice $\Lambda_{s} \subset \Lambda_{c}$ of finite index $M$.
- Each point $\boldsymbol{x} \in \Lambda_{c}+\boldsymbol{c}$ can be written as

$$
x=x_{s}+x_{q}+c
$$

where $\boldsymbol{x}_{s} \in \Lambda_{s}$ and $\boldsymbol{x}_{q}$ is the representative of $\boldsymbol{x}$ in $\Lambda_{c} / \Lambda_{s}$, of smallest Euclidean norm. $\boldsymbol{c}$ is a constant vector which ensures that the overall finite constellation has zero mean.

## What are Lattice Codes? The general case

## 

- Take a lattice $\Lambda_{c}$ and a sublattice $\Lambda_{s} \subset \Lambda_{c}$ of finite index $M$.
- Each point $\boldsymbol{x} \in \Lambda_{c}+\boldsymbol{c}$ can be written as

$$
x=x_{s}+x_{q}+c
$$

where $\boldsymbol{x}_{s} \in \Lambda_{s}$ and $\boldsymbol{x}_{q}$ is the representative of $\boldsymbol{x}$ in $\Lambda_{c} / \Lambda_{s}$, of smallest Euclidean norm. $\boldsymbol{c}$ is a constant vector which ensures that the overall finite constellation has zero mean.

## Lattice Codes

Lattice codes are the representatives of the quotient group $\Lambda_{c} / \Lambda_{s}$, with smallest Euclidean norm, shifted so that the overall constellation has zero mean.

## What are Lattice Codes? The general case

- Take a lattice $\Lambda_{c}$ and a sublattice $\Lambda_{s} \subset \Lambda_{c}$ of finite index $M$.
- Each point $\boldsymbol{x} \in \Lambda_{c}+\boldsymbol{c}$ can be written as

$$
x=x_{s}+x_{q}+c
$$

where $x_{s} \in \Lambda_{s}$ and $x_{q}$ is the representative of $\boldsymbol{x}$ in $\Lambda_{c} / \Lambda_{s}$, of smallest Euclidean norm. $\boldsymbol{c}$ is a constant vector which ensures that the overall finite constellation has zero mean.

## Lattice Codes

Lattice codes are the representatives of the quotient group $\Lambda_{c} / \Lambda_{s}$, with smallest Euclidean norm, shifted so that the overall constellation has zero mean.

Performance of lattice codes
Lattice codes will be compared to the uncoded $2^{m}$ - QAM constellation which is $\mathbb{Z}^{n} / 2^{\frac{m}{2}} \mathbb{Z}^{n}$. Vector $\boldsymbol{c}$ is the all- $1 / 2$ vector.

## TELECOM

## Coding: Minimum distance of $\Lambda_{c}$

## 

## The Coding Lattice $\Lambda_{c}$

We want to characterize the performance of $\Lambda_{c}$. Suppose that $\Lambda_{s}$ is a scaled version of $\mathbb{Z}^{n}$ (separation). On the Gaussian channel, error probability is dominated by minimum pairwise error probability

$$
\max _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}} P(\boldsymbol{x} \rightarrow \boldsymbol{t})=\max _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}} Q\left(\frac{\|\boldsymbol{x}-\boldsymbol{t}\|}{2 \sqrt{N_{0}}}\right)=Q\left(\frac{\min _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2 \sqrt{N_{0}}}\right)
$$

where $Q(x)$ is the error function

$$
Q(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u
$$

and $N_{0}$ is the power spectrum density of the noise.

## Coding: Minimum distance of $\Lambda_{c}$

## 

## The Coding Lattice $\Lambda_{C}$

We want to characterize the performance of $\Lambda_{c}$. Suppose that $\Lambda_{s}$ is a scaled version of $\mathbb{Z}^{n}$ (separation). On the Gaussian channel, error probability is dominated by minimum pairwise error probability

$$
\max _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}} P(\boldsymbol{x} \rightarrow \boldsymbol{t})=\max _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}} Q\left(\frac{\|\boldsymbol{x}-\boldsymbol{t}\|}{2 \sqrt{N_{0}}}\right)=Q\left(\frac{\min _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2 \sqrt{N_{0}}}\right)
$$

where $Q(x)$ is the error function

$$
Q(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u
$$

and $N_{0}$ is the power spectrum density of the noise.

## Minimum distance

We define the minimum distance of the lattice $\Lambda$ as

$$
d_{\min }(\Lambda)=\min _{\boldsymbol{x} \in \Lambda \backslash\{0\}}\|\boldsymbol{x}\|
$$

## Energetic considerations

- Communication engineers express error probability as a function of

$$
\frac{E_{b}}{N_{0}}
$$

where $E_{b}$ is the required energy to transmit one bit and $N_{0}$ is the power spectrum density of the noise.

- Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points) $\Rightarrow \alpha \mathbb{Z}^{n}$ with a carefully chosen $\alpha$.


## Energetic considerations

## 

- Communication engineers express error probability as a function of

$$
\frac{E_{b}}{N_{0}}
$$

where $E_{b}$ is the required energy to transmit one bit and $N_{0}$ is the power spectrum density of the noise.

- Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points) $\Rightarrow \alpha \mathbb{Z}^{n}$ with a carefully chosen $\alpha$.
- Dominant term of the error probability is

$$
Q\left(\frac{\min _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2 \sqrt{N_{0}}}\right)=Q\left(\sqrt{m \frac{d_{\min }^{2}}{E_{s}} \cdot \frac{E_{b}}{N_{0}}}\right)
$$

$m$ being the spectral efficiency and $E_{S}$ the energy per symbol. Compare $\frac{d_{\min }^{2}}{E_{S}}$ of the lattice code with the one of $\alpha \mathbb{Z}^{n}$.

## Energetic considerations

## 

- Communication engineers express error probability as a function of

$$
\frac{E_{b}}{N_{0}}
$$

where $E_{b}$ is the required energy to transmit one bit and $N_{0}$ is the power spectrum density of the noise.

- Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points) $\Rightarrow \alpha \mathbb{Z}^{n}$ with a carefully chosen $\alpha$.
- Dominant term of the error probability is

$$
Q\left(\frac{\min _{\boldsymbol{x}, \boldsymbol{t} \in \mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2 \sqrt{N_{0}}}\right)=Q\left(\sqrt{m \frac{d_{\min }^{2}}{E_{s}} \cdot \frac{E_{b}}{N_{0}}}\right)
$$

$m$ being the spectral efficiency and $E_{S}$ the energy per symbol. Compare $\frac{d_{\min }^{2}}{E_{S}}$ of the lattice code with the one of $\alpha \mathbb{Z}^{n}$.

## Fundamental Volume and coding gain

The obtained gain (called the "Coding Gain") is

$$
\gamma_{c}(\Lambda)=\frac{d_{\min }^{2}}{\operatorname{vol}(\Lambda)^{\frac{2}{n}}}
$$

## Dimension 4

The checkerboard lattice $D_{4}$ has generator matrix

$$
M_{D_{4}}=\left[\begin{array}{rrrr}
-1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

with $\operatorname{det}\left(M_{D_{4}}\right)=2$ and $d_{\text {min }}^{2}=2$. Coding gain is

$$
\gamma_{c}\left(D_{4}\right)=\frac{d_{\min }^{2}}{\operatorname{vol}\left(D_{4}\right)^{\frac{1}{2}}}=\frac{2}{\sqrt{2}}=\sqrt{2}
$$

## Coding Gain: Examples

## 

## Dimension 8

The Gosset lattice $E_{8}$ has generator matrix

$$
M_{E_{8}}=\left[\begin{array}{rrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]
$$

with $\operatorname{det}\left(M_{E_{8}}\right)=1$ and $d_{\min }^{2}=2$. Coding gain is

$$
\gamma_{c}\left(E_{8}\right)=\frac{d_{\min }^{2}}{\operatorname{vol}\left(E_{8}\right)^{\frac{1}{4}}}=2 .
$$

## TELECOM

## Normalized Second Order Moment

## 

## Energy

Performance of $\Lambda_{s}$ is related to the energy minimization of the lattice code. All points of the lattice code are in the Voronoï region of 0 of $\Lambda_{s}$. For high rates, we assume points of $\Lambda_{c}$ uniformly distributed in the Voronoï region, so the energy per dimension of the lattice code becomes

$$
E=\frac{1}{n} \mathbb{E}\left(\|\boldsymbol{x}\|^{2}\right)=\frac{1}{n} \int_{V_{\Lambda_{S}(\mathbf{0})}} \frac{1}{\operatorname{vol}\left(\Lambda_{S}\right)}\|\boldsymbol{x}\|^{2} d \boldsymbol{x}
$$

## TELECOM

## Normalized Second Order Moment

## 

## Energy

Performance of $\Lambda_{s}$ is related to the energy minimization of the lattice code. All points of the lattice code are in the Voronoï region of 0 of $\Lambda_{s}$. For high rates, we assume points of $\Lambda_{c}$ uniformly distributed in the Voronoï region, so the energy per dimension of the lattice code becomes

$$
E=\frac{1}{n} \mathbb{E}\left(\|\boldsymbol{x}\|^{2}\right)=\frac{1}{n} \int_{V_{\Lambda_{s}(\mathbf{0})}} \frac{1}{\operatorname{vol}\left(\Lambda_{s}\right)}\|\boldsymbol{x}\|^{2} d \boldsymbol{x}
$$

## Normalized Second Order Moment

The parameter

$$
G(\Lambda)=\left(\frac{1}{n} \frac{\int_{\Upsilon_{\Lambda}(\mathbf{0})}\|\boldsymbol{x}\|^{2} d \boldsymbol{x}}{\operatorname{vol}(\Lambda)}\right) \operatorname{vol}(\Lambda)^{-\frac{2}{n}}
$$

is called the normalized second order moment of the lattice. It has to be minimized.

## 

## Normalized Second Order Moment

## Energy

Performance of $\Lambda_{s}$ is related to the energy minimization of the lattice code. All points of the lattice code are in the Voronoï region of 0 of $\Lambda_{s}$. For high rates, we assume points of $\Lambda_{c}$ uniformly distributed in the Voronoï region, so the energy per dimension of the lattice code becomes

$$
E=\frac{1}{n} \mathbb{E}\left(\|\boldsymbol{x}\|^{2}\right)=\frac{1}{n} \int_{V_{\Lambda_{S}}(\mathbf{0})} \frac{1}{\operatorname{vol}\left(\Lambda_{S}\right)}\|\boldsymbol{x}\|^{2} d \boldsymbol{x}
$$

## Normalized Second Order Moment

The parameter

$$
G(\Lambda)=\left(\frac{1}{n} \frac{\int_{V_{\Lambda}(\mathbf{0})}\|\boldsymbol{x}\|^{2} d \boldsymbol{x}}{\operatorname{vol}(\Lambda)}\right) \operatorname{vol}(\Lambda)^{-\frac{2}{n}}
$$

is called the normalized second order moment of the lattice. It has to be minimized.

## Shaping Gain

The ratio

$$
\gamma_{s}(\Lambda)=\frac{G\left(\mathbb{Z}^{n}\right)}{G(\Lambda)}=\frac{1}{12} G(\Lambda)^{-1}
$$

is called the shaping gain of $\Lambda$. Its value is upperbounded by the shaping gain of the $n$-dimensional sphere which tends to $\frac{\pi e}{6}$ when $n \rightarrow \infty$.

## Coding Gain and Shaping Gain

## Dominant term of the Error Probability

The error probability of a lattice code using $\Lambda_{c}$ as the coding lattice and $\Lambda_{s}$ as the shaping lattice is dominated by the term

$$
Q\left(\sqrt{\frac{3 m E_{b}}{N_{0}} \cdot \gamma_{c}\left(\Lambda_{c}\right) \cdot \gamma_{s}\left(\Lambda_{s}\right)}\right)
$$

## Part III

Nested Lattices and the Secrecy Gain

## The Gaussian Wiretap Channel

## 



Figure: The Gaussian Wiretap Channel model

## Encoder Design

- The problem of Wiretap is a problem of labelling transmitted symbols with data bits


## TELECOM Paristech <br>  <br> Encoder Design

- The problem of Wiretap is a problem of labelling transmitted symbols with data bits
$+2 \bmod (4)$ Channel
We suppose the alphabet $\mathbb{Z}_{4}$ and a channel Alice $\hookrightarrow$ Eve that outputs

$$
y=x+2
$$

with probability $1 / 2$ and $x$ with same probability. The symbol error probability is $1 / 2$.

## TELECOM ParisTech <br> 

## Encoder Design

- The problem of Wiretap is a problem of labelling transmitted symbols with data bits


## $+2 \bmod (4)$ Channel

We suppose the alphabet $\mathbb{Z}_{4}$ and a channel Alice $\hookrightarrow$ Eve that outputs

$$
y=x+2
$$

with probability $1 / 2$ and $x$ with same probability. The symbol error probability is $1 / 2$.
Symbol to Bits Labelling

$$
x=2 b_{1}+b_{0}
$$

Bit $b_{1}$ experiences error probability $1 / 2$ while bit $b_{0}$ experiences error probability 0 .

## TELECOM ParisTech <br> 

## Encoder Design

- The problem of Wiretap is a problem of labelling transmitted symbols with data bits


## $+2 \bmod$ (4) Channel

We suppose the alphabet $\mathbb{Z}_{4}$ and a channel Alice $\hookrightarrow$ Eve that outputs

$$
y=x+2
$$

with probability $1 / 2$ and $x$ with same probability. The symbol error probability is $1 / 2$.
Symbol to Bits Labelling

$$
x=2 b_{1}+b_{0}
$$

Bit $b_{1}$ experiences error probability $1 / 2$ while bit $b_{0}$ experiences error probability 0 .
Confidential data must be encoded through $b_{1}$. On $b_{0}$, put random bits.

## TELECOM Paristech  <br> Uniform Noise

Assume that Alice $\rightarrow$ Eve channel is corrupted by an additive uniform noise

Label points with data + pseudo-random bits


Figure: Constellation corrupted by uniform noise

## TELECOM Paristech <br>  <br> Uniform Noise

Assume that Alice $\rightarrow$ Eve channel is corrupted by an additive uniform noise

Label points with pseudo-random bits


Figure: Points can be decoded error free: label with pseudo-random symbols

## TELECOM Paristech  <br> Uniform Noise

Assume that Alice $\rightarrow$ Eve channel is corrupted by an additive uniform noise

Label points with data


Figure: Points are not distinguishable: label with data

## Uniform Noise




Figure: Constellation corrupted by uniform noise

## TELECOM Paristech

## 

## Uniform Noise

## Error Probability

Pseudo-random symbols are perfectly decoded by Eve when data error probability will be high.

- unfortunately not valid for Gaussian noise.

Label points with data


Figure: Constellation corrupted by uniform noise

## TELECOM ParisTech <br>  <br> Coset Coding with Integers



Figure: Constellation corrupted by uniform noise

## 

## Coset Coding with Integers

## Example

- Suppose that points $x$ are in $\mathbb{Z}$.
- Euclidean division

$$
x=3 q+r
$$

- $q$ carries the pseudo-random symbols while $r$ carries the data or "pseudo-random symbols label points in $3 \mathbb{Z}$ while data label elements of $\mathbb{Z} / 3 \mathbb{Z}$ ".

Label points with data + pseudo-random bits


Transmitted point

Figure: Constellation corrupted by uniform noise

## TELECOM Paristech <br> 

## Lattice Coset Coding

Gaussian noise is not bounded: it needs a $n$-dimensional approach (then let $n \rightarrow \infty$ for sphere hardening).

|  | 1 -dimensional | $n$-dimensional |
| :---: | :---: | :---: |
| Transmitted lattice | $\mathbb{Z}$ | Fine lattice $\Lambda_{b}$ |
| Pseudo-random symbols | $m \mathbb{Z} \subset \mathbb{Z}$ | Coarse lattice $\Lambda_{e} \subset \Lambda_{b}$ |
| Data | $\mathbb{Z} / m \mathbb{Z}$ | Cosets $\Lambda_{b} / \Lambda_{e}$ |

Table: From the example to the general scheme

## TELECOM Paristech

## 

## Lattice Coset Coding

Gaussian noise is not bounded: it needs a $n$-dimensional approach (then let $n \rightarrow \infty$ for sphere hardening).


Figure: Example of coset coding

Part IV

The Secrecy Gain

## TELECOM Paristech  <br> Eve＇s Probability of Correct Decision（data）

Can Eve decode the data？

| ■ ■ ■ ■ | ■ ■ ■ ■ | －■ ■ ■ | －■ ■ ■ |
| :---: | :---: | :---: | :---: |
| ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ |
| －■ ■ ■ ■ | －■ mim | －■ ■ ■ | －■ ■ ■ |
| ■ ■ | －■ ■ | ■ ■ ■ ■ ■ | －■ |
| ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | －1ヵ1ヵ口 |
|  | －■ ■ ■ | －■－■ | －■ ■ ■ |
|  | ■ ■ ■ ■ | ■：■ ■ ■ | ■ ■ ■ ■ |
| － ■ |  | ■ ■ ■ ■ ■ | ■ ■ $\quad$ ■ |
| ■ ■ ■ ■ | －■ ■ ■ | ■ ■ ■ п | ■i■ ■ ■ ■ |
|  | －！－■ | －■ ■ ■ | －■ ■ ■ |
| ■ ■ ■ ■ | ■：■！■ | ■ ■ ■ ■ | －1回回 |
| ■ ■ $\quad$ ¢ | ■ ■ ■ ■ | －■ ■－ | ■ ■ ■ ■ ■ |

Figure：Eve correctly decodes when finding another coset representative

## TELECOM Paristech  <br> Eve's Probability of Correct Decision (data)

Can Eve decode the data?

| ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | - ■ ■ ■ |
| :---: | :---: | :---: | :---: |
| ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | - ■ ■ ■ |
| - ■ ■ ■ | - ■ ■ ■ | - ■ ■ ■ | - ■ m ■ |
| ■ ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ ■ | - ■ ■ ■ ■ |
| ■ ■ $\quad$ ■ ■ | - ■ ■ ■ | ■ ■ ■ ■ ■ | - ■ ■ ■ |
| - ■ ■ ■ ■ | - | - ■ ■ ■ | ■ ■ ■ ■ ■ |
| - ■ ■ ■ |  | ■ ■ ■ ■ | - ■ ■ ■ ■ |
|  |  | ■ ■ ■ ■ ■ | ■ ■ ■ ■ ■ |
| - ■ ■ ■ | - ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ |
| - ■ ■ ■ | - $\quad$ - | - ■ ■ ■ | - ■ ■ - ■ |
| ■ ■ ■ ■ | ■ ■ ■ ■ | - ■ ■ ■ | ■ ■ ■ ■ |
|  | - ■ ■ - - | ■ ■ ■ ■ | - ■ $\quad$ ■ $\quad$ ■ |

Figure: Eve correctly decodes when finding another coset representative

## Eve's Probability of correct decision

$$
\begin{aligned}
P_{c, e} & \simeq\left(\frac{1}{\sqrt{2 \pi N_{1}}}\right)^{n} \operatorname{Vol}\left(\Lambda_{b}\right) \sum_{\mathbf{r} \in \Lambda_{e}} e^{-\frac{\|\mathbf{r}\|^{2}}{2 N_{1}}} \\
& \simeq\left(\frac{1}{\sqrt{2 \pi N_{1}}}\right)^{n} \operatorname{Vol}\left(\Lambda_{b}\right) \Theta_{\Lambda_{e}}\left(\frac{1}{2 \pi N_{1}}\right)
\end{aligned}
$$

where

$$
\Theta_{\Lambda}(y)=\sum_{x \in \Lambda} q^{\|x\|^{2}}, q=e^{-\pi y}, \quad y>0
$$

is the theta series of $\Lambda$.

## TELECOM Paristech  <br> Eve's Probability of Correct Decision (data)

Can Eve decode the data?

| ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ |
| :---: | :---: | :---: | :---: |
| ■ ■ ¢ ■ ■ | - ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ¢ ■ |
| ■ ■ ■ ■ | - ■ ■ ■ | - ■ ■ ■ | - ■ ■ ■ |
| ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ ■ |
| - ■ m a | - ■ ■ ■ | ■ ■ ■ m | ■ ■ ■ ■ |
|  | - ■ ! ! m | - ■ - ■ | - ■ - m m |
| ■ ■ ■ ■ | - ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ |
| ■ ■ ■ ■ ■ | - ■ ■ ■ | - ■ ■ ■ | ■ ■ ■ ■ |
| ■ ■ ■ ■ | ■i■i■im | ■!■:■ ■ | - ■ ■ ■ ■ |
|  | - ■!■! |  | - ■ - m |
| - ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ |
| ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ | ■ ■ ■ ■ ■ |

Figure: Eve correctly decodes when finding another coset representative

## Eve's Probability of correct decision

$$
\begin{aligned}
P_{c, e} & \simeq\left(\frac{1}{\sqrt{2 \pi N_{1}}}\right)^{n} \operatorname{Vol}\left(\Lambda_{b}\right) \sum_{\mathbf{r} \in \Lambda_{e}} e^{-\frac{\|\mathbf{r}\|^{2}}{2 N_{1}}} \\
& \simeq\left(\frac{1}{\sqrt{2 \pi N_{1}}}\right)^{n} \operatorname{Vol}\left(\Lambda_{b}\right) \Theta_{\Lambda_{e}}\left(\frac{1}{2 \pi N_{1}}\right)
\end{aligned}
$$

where

$$
\Theta_{\Lambda}(y)=\sum_{x \in \Lambda} q^{\|x\|^{2}}, q=e^{-\pi y}, \quad y>0
$$

is the theta series of $\Lambda$.

## Problem

Minimize

$$
\Theta_{\Lambda}(y)
$$

for some $y$.

## TELECOM

## 

## Definition

Let $\Lambda$ be a $n$-dimensional lattice with volume $\lambda^{n}$. Its secrecy function is defined as,

$$
\Xi_{\Lambda}(y) \triangleq \frac{\Theta_{\lambda \mathbb{Z}^{n}(y)}}{\Theta_{\Lambda}(y)}=\frac{\vartheta_{3}^{n}\left(e^{-\pi \sqrt{\lambda} y}\right)}{\Theta_{\Lambda}(y)}
$$

where $\vartheta_{3}(q)=\sum_{n=-\infty}^{+\infty} q^{n^{2}}$ (Jacobi theta function) and $y>0$.

## Secrecy function

## 

## Definition

Let $\Lambda$ be a $n$-dimensional lattice with volume $\lambda^{n}$. Its secrecy function is defined as,

$$
\Xi_{\Lambda}(y) \triangleq \frac{\Theta_{\lambda \mathbb{Z}^{n}(y)}}{\Theta_{\Lambda}(y)}=\frac{\vartheta_{3}^{n}\left(e^{-\pi \sqrt{\lambda} y}\right)}{\Theta_{\Lambda}(y)}
$$

where $\vartheta_{3}(q)=\sum_{n=-\infty}^{+\infty} q^{n^{2}}$ (Jacobi theta function) and $y>0$.

## Examples




Figure: Secrecy functions of $E_{8}$ and $\Lambda_{24}$

## Definition

The strong secrecy gain of a lattice $\Lambda$ is

$$
\chi_{\Lambda}^{s} \triangleq \sup _{y>0} \Xi_{\Lambda}(y)
$$

## Secrecy Gain

## 

## Definition

The strong secrecy gain of a lattice $\Lambda$ is

$$
\chi_{\Lambda}^{s} \triangleq \sup _{y>0} \Xi_{\Lambda}(y)
$$

## Definition

For a lattice $\Lambda$ equivalent to its dual and of determinant $d(\Lambda)$ (determinant of the Gram matrix), we define the weak secrecy gain,

$$
\chi_{\Lambda} \triangleq \Xi_{\Lambda}\left(d(\Lambda)^{-\frac{1}{n}}\right)
$$

## Secrecy Gain

## 

## Definition

The strong secrecy gain of a lattice $\Lambda$ is

$$
\chi_{\Lambda}^{s} \triangleq \sup _{y>0} \Xi_{\Lambda}(y)
$$

## Definition

For a lattice $\Lambda$ equivalent to its dual and of determinant $d(\Lambda)$ (determinant of the Gram matrix), we define the weak secrecy gain,

$$
\chi_{\Lambda} \triangleq \Xi_{\Lambda}\left(d(\Lambda)^{-\frac{1}{n}}\right)
$$

- A lattice equivalent to its dual has a theta series with a multiplicative symmetry point at $d(\Lambda)^{-\frac{1}{n}}$ (Poisson-Jacobi's formula),

$$
\Xi_{\Lambda}\left(d(\Lambda)^{-\frac{1}{n}} y\right)=\Xi_{\Lambda}\left(\frac{d(\Lambda)^{-\frac{1}{n}}}{y}\right)
$$

## TELECOM

## First conjecture

## Conjecture

If $\Lambda$ is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

## Corollary

The strong secrecy gain of a unimodular lattice $\Lambda$ is

$$
\chi_{\Lambda}^{s} \triangleq \Xi_{\Lambda}(1)
$$

## First conjecture

## 

## Conjecture

If $\Lambda$ is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

## Corollary

The strong secrecy gain of a unimodular lattice $\Lambda$ is

$$
\chi_{\Lambda}^{s} \triangleq \Xi_{\Lambda}(1)
$$

## Calculation of $E_{8}$ secrecy gain

From $E_{8}$ theta series,

$$
\begin{aligned}
\frac{1}{\Xi_{E_{8}}(1)} & =\frac{\frac{1}{2}\left(\vartheta_{2}\left(e^{-\pi}\right)^{8}+\vartheta_{3}\left(e^{-\pi}\right)^{8}+\vartheta_{4}\left(e^{-\pi}\right)^{8}\right)}{\vartheta_{3}\left(e^{-\pi}\right)^{8}} \\
& =\frac{3}{4} \quad\left(\text { since } \frac{\vartheta_{2}\left(e^{-\pi}\right)}{\vartheta_{3}\left(e^{-\pi}\right)}=\frac{\vartheta_{4}\left(e^{-\pi}\right)}{\vartheta_{3}\left(e^{-\pi}\right)}=\frac{1}{\sqrt[4]{2}}\right)
\end{aligned}
$$

so we get $\chi_{E_{8}}=\Xi_{E_{8}}(1)=\frac{4}{3}$

- Want to study the behavior of even unimodular lattices when $n \rightarrow \infty$.


## Question

How does the optimal secrecy gain behaves when $n \rightarrow \infty$ ?

## Asymptotic behavior for unimodular lattices

## 

- Want to study the behavior of even unimodular lattices when $n \rightarrow \infty$.


## Question

How does the optimal secrecy gain behaves when $n \rightarrow \infty$ ?

## First answer

Apply the Siegel-Weil formula,

$$
\sum_{\Lambda \in \Omega_{n}} \frac{\Theta_{\Lambda}(q)}{|\operatorname{Aut}(\Lambda)|}=M_{n} \cdot E_{k}\left(q^{2}\right)
$$

where

$$
M_{n}=\sum_{\Lambda \in \Omega_{n}} \frac{1}{|\operatorname{Aut}(\Lambda)|}
$$

and $E_{k}$ is the Eisenstein series with weight $k=\frac{n}{2} . \Omega_{n}$ is the set of all inequivalent $n$-dimensional, even unimodular lattices. We get

$$
\Theta_{n, \text { opt }}\left(e^{-\pi}\right) \leq E_{k}\left(e^{-2 \pi}\right)
$$

## 

## Asymptotic behavior (II)

## Maximal Secrecy gain

For a given dimension $n$, multiple of 8 , there exists an even unimodular lattice whose secrecy gain is

$$
\chi_{n} \geq \frac{\vartheta_{3}^{n}\left(e^{-\pi}\right)}{E_{k}\left(e^{-2 \pi}\right)} \simeq \frac{1}{2}\left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^{n} \simeq \frac{1.086^{n}}{2}
$$

## Asymptotic behavior (II)

## Maximal Secrecy gain

For a given dimension $n$, multiple of 8 , there exists an even unimodular lattice whose secrecy gain is

$$
\chi_{n} \geq \frac{\vartheta_{3}^{n}\left(e^{-\pi}\right)}{E_{k}\left(e^{-2 \pi}\right)} \simeq \frac{1}{2}\left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^{n} \simeq \frac{1.086^{n}}{2}
$$

## Behavior of Eisenstein Series

We have

$$
E_{k}\left(e^{-2 \pi}\right)=1+\frac{2 k}{\left|B_{k}\right|} \sum_{m=1}^{+\infty} \frac{m^{k-1}}{e^{2 \pi m}-1}
$$

$B_{k}$ being the Bernoulli numbers. For $k$ a multiple of 4 , then $E_{k}\left(e^{-2 \pi}\right)$ fastly converges to 2 $(k \rightarrow \infty)$.

## TELECOM Paristech

## Asymptotic behavior (II)

## Maximal Secrecy gain

For a given dimension $n$, multiple of 8 , there exists an even unimodular lattice whose secrecy gain is

$$
\chi_{n} \geq \frac{\vartheta_{3}^{n}\left(e^{-\pi}\right)}{E_{k}\left(e^{-2 \pi}\right)} \simeq \frac{1}{2}\left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^{n} \simeq \frac{1.086^{n}}{2}
$$

## Behavior of Eisenstein Series

We have

$$
E_{k}\left(e^{-2 \pi}\right)=1+\frac{2 k}{\left|B_{k}\right|} \sum_{m=1}^{+\infty} \frac{m^{k-1}}{e^{2 \pi m}-1}
$$

$B_{k}$ being the Bernoulli numbers. For $k$ a multiple of 4, then $E_{k}\left(e^{-2 \pi}\right)$ fastly converges to 2 $(k \rightarrow \infty)$.

Bound from Siegel-Weil Formula vs. Extremal lattices


Figure: Lower bound of the minimal secrecy gain as a function of $n$ from Siegel-Weil formula.

## Part V

Wireless Channels - Other Lattices

## Design Criterion

- Assume a wireless communication system transmitting on $q$ subcarriers sufficiently spaced and during $n$ channel uses.
- Assume Rayleigh fadings and 2 codewords $\boldsymbol{X}$ and $\boldsymbol{T}$ such that

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & & \ddots & \vdots \\
x_{q 1} & x_{q 2} & \cdots & x_{q n}
\end{array}\right] \quad \boldsymbol{T}=\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & & \ddots & \vdots \\
t_{q 1} & t_{q 2} & \cdots & t_{q n}
\end{array}\right] .
$$

## Design Criterion

## 

- Assume a wireless communication system transmitting on $q$ subcarriers sufficiently spaced and during $n$ channel uses.
- Assume Rayleigh fadings and 2 codewords $\boldsymbol{X}$ and $\boldsymbol{T}$ such that

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & & \ddots & \vdots \\
x_{q 1} & x_{q 2} & \cdots & x_{q n}
\end{array}\right] \quad \boldsymbol{T}=\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & & \ddots & \vdots \\
t_{q 1} & t_{q 2} & \cdots & t_{q n}
\end{array}\right] .
$$

## Pairwise Error Probability

Error probability will be dominated by

$$
\max _{\boldsymbol{X}, \boldsymbol{T}} P(\boldsymbol{X} \rightarrow \boldsymbol{T}) \cong \max _{\boldsymbol{X}, \boldsymbol{T}} \prod_{i=1}^{q}\left\|\boldsymbol{x}_{i}-\boldsymbol{t}_{i}\right\|^{-2}\left(\frac{\Gamma}{4}\right)^{-n}
$$

where $\Gamma$ is the average signal to noise ratio and $\boldsymbol{x}_{i}$ (resp. $\boldsymbol{t}_{i}$ ) is the $i^{\text {th }}$ row of $\boldsymbol{X}$ (resp. $\boldsymbol{T}$ ). This equality is valid if, for any $i, \boldsymbol{x}_{i} \neq \boldsymbol{t}_{i}$. Hence, one has to find a code which maximizes

$$
\min _{\boldsymbol{X}, \boldsymbol{T}} \mu(\boldsymbol{X}, \boldsymbol{T})=\min _{\boldsymbol{X}, \boldsymbol{T}} \prod_{i=1}^{q}\left\|\boldsymbol{x}_{i}-\boldsymbol{t}_{i}\right\|^{2}
$$

## TELECOM

## Lattice formulation over number fields

## 

Control the product in $\mu(X, T)$
The product $\Pi_{i=1}^{q}\left\|\boldsymbol{x}_{i}-\boldsymbol{t}_{i}\right\|^{2}$ which becomes $\mu(\boldsymbol{X})=\Pi_{i=1}^{q}\left\|\boldsymbol{x}_{i}\right\|^{2}$ by linearity can be controled by introducing the algebraic norm in a well-chosen algebraic Galois extension $\mathbb{K}$ of degree $q$.

- Let $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{q}\right)$ be the Galois group of $\mathbb{K}$. Use the canonical embedding so that

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
\sigma_{1}\left(x_{1}\right) & \sigma_{1}\left(x_{2}\right) & \cdots & \sigma_{1}\left(x_{n}\right) \\
\sigma_{2}\left(x_{1}\right) & \sigma_{2}\left(x_{2}\right) & \cdots & \sigma_{2}\left(x_{n}\right) \\
\vdots & & \ddots & \vdots \\
\sigma_{q}\left(x_{1}\right) & \sigma_{q}\left(x_{2}\right) & \cdots & \sigma_{q}\left(x_{n}\right)
\end{array}\right]
$$

## Lattice formulation over number fields

## 

Control the product in $\mu(X, T)$
The product $\prod_{i=1}^{q}\left\|\boldsymbol{x}_{i}-\boldsymbol{t}_{i}\right\|^{2}$ which becomes $\mu(\boldsymbol{X})=\prod_{i=1}^{q}\left\|\boldsymbol{x}_{i}\right\|^{2}$ by linearity can be controled by introducing the algebraic norm in a well-chosen algebraic Galois extension $\mathbb{K}$ of degree $q$.

- Let $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{q}\right)$ be the Galois group of $\mathbb{K}$. Use the canonical embedding so that

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
\sigma_{1}\left(x_{1}\right) & \sigma_{1}\left(x_{2}\right) & \cdots & \sigma_{1}\left(x_{n}\right) \\
\sigma_{2}\left(x_{1}\right) & \sigma_{2}\left(x_{2}\right) & \cdots & \sigma_{2}\left(x_{n}\right) \\
\vdots & & \ddots & \vdots \\
\sigma_{q}\left(x_{1}\right) & \sigma_{q}\left(x_{2}\right) & \cdots & \sigma_{q}\left(x_{n}\right)
\end{array}\right]
$$

## Metric and Norm

Then metric $\mu(\boldsymbol{X})$ can be written as

$$
\mu(\boldsymbol{X})=N\left(\|\boldsymbol{x}\|^{2}\right)=N\left(\sum_{i=1}^{n} x_{i}^{2}\right)
$$

where $N$ is for the algebraic norm and $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- A construction $A$ for $\mathscr{O}_{\mathbb{K}}$-lattices where $\mathscr{O}_{\mathbb{K}}$ is the ring of integers of $\mathbb{K}$ can be given where a $\mathscr{O}_{\mathbb{K}}$-lattice is a $\mathscr{O}_{\mathbb{K}}-$ module.


## Construction of $\mathscr{O}_{\mathrm{K}}$-lattices

## 

- A construction $A$ for $\mathscr{O}_{\mathbb{K}}$-lattices where $\mathscr{O}_{\mathbb{K}}$ is the ring of integers of $\mathbb{K}$ can be given where a $\mathscr{O}_{\mathbb{K}}$-lattice is a $\mathscr{O}_{\mathbb{K}}-$ module.

Construction $A$ (binary) over $\mathscr{O}_{\mathbb{K}}$
Take, for instance $q=2, \mathbb{K}=\mathbb{Q}(\sqrt{2})$. So, we have $\mathscr{O}_{\mathbb{K}}=\mathbb{Z}[\sqrt{2}]$. Consider the principal ideal

$$
\mathscr{I}=\sqrt{2} \cdot \mathbb{Z}[\sqrt{2}]
$$

As $N(\mathscr{I})=2$, then $\mathbb{Z}[\sqrt{2}] / \mathscr{I}=\mathbb{F}_{2}$. So, we can construct $\mathscr{O}_{\mathbb{K}}$-lattices in that way,

$$
\Lambda=\mathscr{I}^{n}+\mathscr{C}
$$

where $\mathscr{C}$ is a binary linear code of length $n$.

## Construction of $\mathscr{Q}_{\mathbb{K}}$-lattices

## 

- A construction $A$ for $\mathscr{O}_{\mathbb{K}}$-lattices where $\mathscr{O}_{\mathbb{K}}$ is the ring of integers of $\mathbb{K}$ can be given where a $\mathscr{O}_{\mathbb{K}}$-lattice is a $\mathscr{O}_{\mathbb{K}}$-module.


## Construction $A$ (binary) over $\mathscr{O}_{\mathbb{K}}$

Take, for instance $q=2, \mathbb{K}=\mathbb{Q}(\sqrt{2})$. So, we have $\mathscr{O}_{\mathbb{K}}=\mathbb{Z}[\sqrt{2}]$. Consider the principal ideal

$$
\mathscr{I}=\sqrt{2} \cdot \mathbb{Z}[\sqrt{2}] .
$$

As $N(\mathscr{I})=2$, then $\mathbb{Z}[\sqrt{2}] / \mathscr{I}=\mathbb{F}_{2}$. So, we can construct $\mathscr{O}_{\mathbb{K}}$-lattices in that way,

$$
\Lambda=\mathscr{I}^{n}+\mathscr{C}
$$

where $\mathscr{C}$ is a binary linear code of length $n$.
Construction $A$ (quaternary) over $\mathscr{O}_{\mathbb{K}}$
Here, take $q=2$, $\mathbb{K}=\mathbb{Q}(\sqrt{5})$. So, we have $\mathscr{O}_{\mathbb{K}}=\mathbb{Z}[\phi]$ where $\phi=\frac{1+\sqrt{5}}{2}$. Consider the ideal $\mathscr{I}=2 \cdot \mathbb{Z}[\sqrt{\phi}]$. As $N(\mathscr{I})=4$ and $\mathscr{I}$ is prime, then $\mathbb{Z}[\sqrt{\phi}] / \mathscr{I}=\mathbb{F}_{4}$. So, we have

$$
\Lambda=\mathscr{I}^{n}+\mathscr{C}
$$

where $\mathscr{C}$ is a linear code of length $n$ over $\mathbb{F}_{4}$.

- $O$-lattices where $O$ is a maximal order of some division algebra for the MIMO case
- Nested lattices for other applications in which 2 or more data streams must be constructed
- Han and Kobayashi
- Wyner-Ziv
- ...
- Nested "exotic" lattices on other Dedekind domains?

Thank You !!

