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Part1

Introduction




@ Link between signal space and transmitted analog signal through an orthogonal basis of signals

J.-C. Belfiore - Lattices for Communication Engineers

3741



TELECOM
ParisTech

The transmission problem

@ Link between signal space and transmitted analog signal through an orthogonal basis of signals
Standard serial transmission
Transmitted signal is
x(0) =Y xph(t—kT)
k
where x; are the transmitted complex sym-

bols and {h(t— kT)} is a family of orthogonal
signals (% is a Nyquist root).
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The transmission problem

@ Link between signal space and transmitted analog signal through an orthogonal basis of signals

Standard serial transmission
Transmitted signal is

x(0) =Y xph(t—kT)
k
where x; are the transmitted complex sym-

bols and {h(t— kT)} is a family of orthogonal
signals (% is a Nyquist root).

OFDM transmission
Transmitted signal is

Nr2  2nk
X0=Y Y xpghlt-kD)JINTAR
k g=—NI2

where xj, 4 are the transmitted complex symbols and
21k
{h (t—kD)é' Nrr A } is a doubly indexed family of

k.q
orthogonal signals (for instance,

h(t) = rectr(t)

with Af = 4).
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as a vector living in a m—dimensional complex space or a n—dimensional real space (n=2m).
@ Complex symbols used in practice are QAM symbols, components of vector x.

@ We need to introduce coding — structure the QAM symbols.

e © o o (0 o o o
2 € 64 QAM
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Lattices

Definition and properties

Definition
A Euclidean Z-lattice is a discrete additive subgroup with rank p, p < n of the Euclidean
space R". We restrict to the case p = nin the sequel.
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Lattices

Definition and properties

Definition
A Euclidean Z-lattice is a discrete additive subgroup with rank p, p < n of the Euclidean
space R". We restrict to the case p = nin the sequel.

@ Alattice A is a Z-module generated by vectors vy, vy, ..., vp of R™.

@ Anelement vof A can be written as :

v=ayv +apvy +...+apvp, a,as,...,an€”Z
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Lattices

Definition and properties

Definition
A Euclidean Z-lattice is a discrete additive subgroup with rank p, p < n of the Euclidean
space R". We restrict to the case p = nin the sequel.

@ Alattice A is a Z-module generated by vectors vy, vy, ..., vp of R™.

@ Anelement vof A can be written as :

v=ayv +apvy +...+apvp, a,as,...,an€”Z

@ The lattice A can be defined as :

n
A:{Zaivilaiez}
i=1
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Lattices : Generator matrix

@ The set of vectors vy, vo,..., vy, is a lattice basis.

Definition
Matrix M whose columns are vectors vy, vy, ...,V is a generator matrix of the lattice
denoted Apy.
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Lattices : Generator matrix

@ The set of vectors vy, vo,..., vy, is a lattice basis.

Definition
Matrix M whose columns are vectors vy, vy, ...,V is a generator matrix of the lattice
denoted Apy.

@ Eachvectorx = (x1,Xy,...,X;) | in Apy, can be written as,
x=M-z
where z= (21,2,...,2n) | € Z™.

@ Lattice Ay may be seen as the result of a linear transform applied to lattice Z" (cubic lattice).
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© Let Qe ./, (R), such that Q" - Q= I, be an isometry. The two lattices Ay and A .y are said
equivalent.

@ Lattice Aq.p is arotated version of Apy if detQ=1.
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Lattices : Elementary Properties (I)

© Let Qe ./, (R), such that Q" - Q= I, be an isometry. The two lattices Ay and A .y are said
equivalent.

@ Lattice Aq.p is arotated version of Apy if detQ=1.

@ If T e . #y(Z) and detT # +1, then lattice Apy.7 is a sublattice of Apy.

@ We will often consider sublattices of 2.
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Lattices : Elementary Properties (II)

@ The generator matrix M describes the lattice Ay, but it is not unique. All matrices M- T with
T € #n(Z) and detT = +1 are generator matrices of Aps. T is called a unimodular matrix.

@ G=M" -Mis the Gram matrix of the lattice . M is also a generator matrix of the dual of Apy.
8

@ We define then gemetric parameters.
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Lattices : Elementary Properties (II)

@ The generator matrix M describes the lattice Apy, but it is not unique. All matrices M- T with
T € #n(Z) and detT = +1 are generator matrices of Aps. T is called a unimodular matrix.

@ G=M" -Misthe Gram matrix of the lattice . M is also a generator matrix of the dual of Apy.
@ We define then gemetric parameters.

Definitions
@ The fundamental parallelotope of Ay, is the region,

P ={xeR" ix=ayv) +apvp +...+ apvp, 0<a;<1, i=1...n}
@ The fundamental volume is the volume of the fundamental parallelotope. It is denoted
vol(Apy)-

@ The fundamental volume of the lattice is vol (Aps) = [det(M)|, which is v/det(G) either.
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Lattices : Elementary Properties (III)

Definition
The Voronoi cell of a point u belonging to the lattice A is the region

Vp) ={xeR"||x—ul < |x-y|, yeA}

@ All Voronoi cells of a lattice are translated versions of the Voronoi cell of the zero point. This cell is
called Voronoi cell of the lattice.

@ The fundamental volume of a lattice is equal to the volume of its Voronoi cell.
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o
S T
72 lattice
° Lattice Point
(v1,v2) Lattice Basis

Fundamental Parallelotope

Voronoi region
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Lattices

The A, lattice

The A, lattice

° Lattice point
(1, v2) Lattice basis
Fundamental parallelotope
Voronoi region

C. Belfiore - Lattices for Communication Engineers

11/41



TELECOM Lattices

onstruction A (binary)

Construction A for a Z—lattice
Let g be an integer. Then,
Ziqz
is a finite field if g is a prime and a finite ring otherwise. For a linear code ¥ of length n
defined on Z/qZ, lattice A is given by

A=qz"+¢2 | (q2"+%).
XEC
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" Construction A (binary)

Construction A for a Z-lattice
Let g be an integer. Then,
Ziqz

is a finite field if g is a prime and a finite ring otherwise. For a linear code ¥ of length n
defined on Z/qZ, lattice A is given by

A=qz"+¢2 | (q2"+%).
XEC

Construction of Dy
D, is obtained as

Dy =2Z" + (4,3)f,

where (4, 3)F, is a binary parity-check code.
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" Construction A (binary)

Construction A for a Z-lattice
Let g be an integer. Then,
Ziqz

is a finite field if g is a prime and a finite ring otherwise. For a linear code ¥ of length n
defined on Z/qZ, lattice A is given by

A=qz"+¢= | (q2"+x).

XEC
Construction of Dy Construction of Eg
Dy is obtained as Eg is obtained as
Dy =2Z" + (4,3)f, 2B =27%+ (8,4,
where (4, 3)F, is a binary parity-check code. where (8,9)F, is the extended binary Hamming
code (7,4).
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onstruction A (quaternary)

Construction A of the Leech lattice
The Leech lattice can be obtained as

2024 =277 +(24,12)7,

where (24,12)7, is the quaternary self-dual code obtained by extending the quaternary
cyclic Golay code over Z4.
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Construction A (quaternary)

Construction A of the Leech lattice
The Leech lattice can be obtained as

2024 =277 +(24,12)7,

where (24,12)7, is the quaternary self-dual code obtained by extending the quaternary
cyclic Golay code over Z4.

Other constructions

Construction A can be generalized. Constructions B or D for instance. But one can show
that all these constructions are equivalent to construction A with a suitable alphabet (for
the code).
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onstruction D: Barnes-Wall

Barnes-Wall Lattices
Constructed as Z[i]— lattices,

m—1
BWu=(1+0"Z[02" + Y. (1+)"RM(m,n
r=0

where RM (m, 1) is a Reed-Miiller code (binary) of length n=2", dimension k = Z;:o (’7]
and minimum Hamming distance d = 2™~". BW,, is a Z—lattice of dimension 21,
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onstruction D: Barnes-Wall

Barnes-Wall Lattices
Constructed as Z[i]— lattices,

m—1
BWu=(1+0"Z[02" + Y. (1+)"RM(m,n
r=0
where RM (m, 1) is a Reed-Miiller code (binary) of length n=2", dimension k = Z;:o (’7]
and minimum Hamming distance d = 2™~". BW,, is a Z—lattice of dimension 21,
Another construction of Eg

We have
2B =1+ )2Z[I*+ 1+ (4,3,2) + (4,1,4)

which can also be considered as a construction A on the ring % = F» + u-F», u? = 0 by
using the linear code of generator matrix

J.-C. Belfiore - Lattices for Communication Engineers )




Part II

Coding for the Gaussian Channel
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What are Lattice Codes? An example

Toy example: the 4-QAM
A code with 4 codewords

A O A | O A O
Fe========== hems==q=s==stosscsasaa== |
'x olx|o0 ' x o
A O A | O A O
'x olx|o % o]
A O A | O A O

Figure: The 4 codewords are in red. Structure is 72 /272.
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What are Lattice Codes? An example

Toy example: the 4-QAM
A code with 4 codewords

A O A | O A O
Fe========== hems==q=s==stosscsasaa== |
'x olx|o0 ' x o
A O A | O A O
'x olx|o % o]
A O A | O A O

Figure: The 4 codewords are in red. Structure is 72 /272.
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What are Lattice Codes? The general case

@ Take alattice A¢ and a sublattice As < A of finite index M.

@ Each point x€ A¢ + ¢ can be written as
X=Xs+Xg+c

where x5 € As and x4 is the representative of x in A¢/Ag, of smallest Euclidean norm. ¢ is a constant
vector which ensures that the overall finite constellation has zero mean.

Jommunication Engineers
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ain and Shaping Gain

What are Lattice Codes? The general case

@ Take alattice A¢ and a sublattice As < A of finite index M.

@ Each point x€ A¢ + ¢ can be written as
X=Xs+Xg+c

where x5 € As and x4 is the representative of x in A¢/Ag, of smallest Euclidean norm. ¢ is a constant
vector which ensures that the overall finite constellation has zero mean.
Lattice Codes

Lattice codes are the representatives of the quotient group A./As, with smallest Eu-
clidean norm, shifted so that the overall constellation has zero mean.
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What are Lattice Codes? The general case

@ Take alattice A¢ and a sublattice As < A of finite index M.

@ Each point x€ A+ ¢ can be written as
X=Xs+Xg+c

where x5 € As and x4 is the representative of x in A¢/Ag, of smallest Euclidean norm. ¢ is a constant
vector which ensures that the overall finite constellation has zero mean.
Lattice Codes
Lattice codes are the representatives of the quotient group A./As, with smallest Eu-
clidean norm, shifted so that the overall constellation has zero mean.
Performance of lattice codes
Lattice codes will be compared to the uncoded 2""— QAM constellation which is
m
7122 7", Vector cis the all-1/2 vector.

J.-C. Belfiore - Lattices for Communication Engineers
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The Coding Lattice A
We want to characterize the performance of A.. Suppose that As is a scaled version of
Z" (separation). On the Gaussian channel, error probability is dominated by minimum
pairwise error probability

max P(x— t) = max Q

( llx— ] _ (minx,te% llx—ll
X6 X, €€

2v Ny
where Q(x) is the error function

2

oo q
= e 7 d
Q) /x \/27[6 u

and Ny is the power spectrum density of the noise.
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Coding: Minimum distance of A,

The Coding Lattice A
We want to characterize the performance of A.. Suppose that As is a scaled version of
Z" (separation). On the Gaussian channel, error probability is dominated by minimum
pairwise error probability

(le— tl ] _ (minx,te% lle— 2l
2v Ny

max P(x— t) = max Q
X, €6 X,te6

where Q(x) is the error function

2

"+00 1 _ue
Q) = /x o e 2du
and Ny is the power spectrum density of the noise.
Minimum distance

We define the minimum distance of the lattice A as

dmin (A) = min ||x
min (A) L (B4

J.-C. Belfiore - Lattices for Communication Engineers
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TELECOM Separation: Codin and Shaping Gain
h

Energetic considerations

No

where Ej, is the required energy to transmit one bit and N is the power spectrum density of the
noise.

@ Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same
number of points)=aZ” with a carefully chosen a.
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Energetic considerations

No
where Ej, is the required energy to transmit one bit and N is the power spectrum density of the
noise.
@ Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same
number of points)=aZ” with a carefully chosen a.

@ Dominant term of the error probability is

ming e x—12l ) A Ep
2/No Es Ny

a2
mbeing the spectral efficiency and E; the energy per symbol. Compare 12 of the lattice code with

Es
the one of az™.
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Energetic considerations
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where Ej, is the required energy to transmit one bit and N is the power spectrum density of the
noise.

@ Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same
number of points)=aZ” with a carefully chosen a.

@ Dominant term of the error probability is

2v/Ng Es Ny

. 2 -
(mlnx,te’€ [lx— 2l ) -0 mdmin . Ep

2
mbeing the spectral efficiency and E; the energy per symbol. Compare 212 of the lattice code with

Es
the one of az™.

Fundamental Volume and coding gain
The obtained gain (called the “Coding Gain”) is

2

&
Yelh) = —

vol(A) 7
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Coding Gain: Examples

Dimension 4
The checkerboard lattice D4 has generator matrix

=1 =1 @®
1 -1 0 0
Mp, = 0 1 -1 o0
0 0 1 -1

with det(Mp, ) =2 and d?

min

= 2. Coding gain is

d? .
YolDy=—min_ -2 _ /5
3 V2
vol (Dy) 2

J.-C. Belfiore - Lattices for Communication Engineers
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TELECOM Separation: Coding Gain and Shaping Gain

" Coding Gain: Examples

Dimension 8
The Gosset lattice Eg has generator matrix

(=R =l R R S
[ = N = i)
— -0 ocCc oo
— o oo oo o
oSO oo oo oo

V2 12 12 Y2 Y2 12 12 1/2

with det(Mg,) =1and d% . = 2. Coding gain is
2 .
min =2.

Yc(Eg) = 1
vol (Eg) 4

J.-C. Belfiore - Lattices for Communication Engineers
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Normalized Second Order Moment

Energy

Performance of A is related to the energy minimization of the lattice code. All points of
the lattice code are in the Voronoi region of 0 of As. For high rates, we assume points of
A¢ uniformly distributed in the Voronoi region, so the energy per dimension of the lattice

code becomes . ) .
E=—E(llxI?) = 7/ Il? dx
n n 7/As (0) vol (AS)
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o Normalized Second Order Moment

Energy

Performance of A is related to the energy minimization of the lattice code. All points of
the lattice code are in the Voronoi region of 0 of As. For high rates, we assume points of
A¢ uniformly distributed in the Voronoi region, so the energy per dimension of the lattice

code becomes . . .
E=—(Ix?) = 7/ ) dx
n n 7//\5 (0) vol (AS)

Normalized Second Order Moment
The parameter

1 Jyy 0 11 dx

2
1(A)~ 7
n vol (A) vol(a) =

G(A) :(

is called the normalized second order moment of the lattice. It has to be minimized.
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Normalized Second Order Moment

Energy

Performance of A is related to the energy minimization of the lattice code. All points of
the lattice code are in the Voronoi region of 0 of As. For high rates, we assume points of
A¢ uniformly distributed in the Voronoi region, so the energy per dimension of the lattice

code becomes . . .
E:fdmﬂ:f/ I dx
n n 7//\5 (0) vol (AS)

Normalized Second Order Moment

The parameter
2
1 7 o %1% dx 2
G =|=2A9 " T ol (a)
n vol (A)
is called the normalized second order moment of the lattice. It has to be minimized.
Shaping Gain
The ratio
=320 LG
WG T2

is called the shaping gain of A. Its value is upperbounded by the shaping gain of the
n—dimensional sphere which tends to %‘ when n — co.
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Coding Gain and Shaping Gain

Dominant term of the Error Probability
The error probability of a lattice code using A, as the coding lattice and A as the shaping
lattice is dominated by the term

3mE,
(\/ﬂ “Ye (M) - ys(Ag)

J.-C. Belfiore - Lattices for Communication Engineers
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Part II1

Nested Lattices and the Secrecy Gain




Figure: The Gaussian Wiretap Channel model
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z4 and a channel Alice—Eve that outputs

y=x+2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.

J.-C. Belfiore - Lattices for Communication Engineers
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z4 and a channel Alice—Eve that outputs

y=x+2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.
Symbol to Bits Labelling

x=2by + by

Bit by experiences error probability 1/2 while bit by experiences error probability 0.

J.-C. Belfiore - Lattices for Communication Engineers R
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z4 and a channel Alice—Eve that outputs

y=x+2
with probability 1/2 and x with same probability. The symbol error probability is 1/2.

Symbol to Bits Labelling

x=2by + by
Bit by experiences error probability 1/2 while bit by experiences error probability 0.

Confidential data must be encoded through b;. On by, put random bits.

J.-C. Belfiore - Lattices for Communication Engineers )
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Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data + pseudo—-random bits

—0—0—0 00 0 0 0 06 ¢ 06 0 o

/4

Transmitted point

Figure: Constellation corrupted by uniform noise




Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with pseudo—random bits

———6©0 & @& 0 —

/4

Transmitted point

Figure: Points can be decoded error free: label with pseudo-random symbols




Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data

/4

Transmitted point

Figure: Points are not distinguishable: label with data
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Uniform Noise

Label points with data

/4

Transmitted point

Label points with pseudo—random bits

———————0 ——————0& — & @& —

/4

Transmitted point
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Uniform Noise

Error Probability

Pseudo-random symbols are perfectly decoded by Eve when data error probability will
be high.

@ unfortunately not valid for Gaussian noise.

Label points with data

/4

Transmitted point

Label points with pseudo—random bits

——————0 ——————0& —— & @& —

/4

Transmitted point

J.-C. Belfiore - Lattices for Communication Engineers
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Coset Coding with Integers

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 o o o o o o

/4

Transmitted point

Figure: Constellation corrupted by uniform noise
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Example

@ Suppose that points x are in Z.

@ Euclidean division

x=3q+r

@ ¢ carries the pseudo-random symbols while r carries the data or “pseudo-random symbols
label points in 3Z while data label elements of Z/3Z".

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 & o o o o o

/4

Transmitted point

Figure: Constellation corrupted by uniform noise

J.-C. Belfiore - Lattices for Communication Engineers R
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Lattice Coset Coding

Gaussian noise is not bounded: it needs a n—dimensional approach (then let n — oo for

sphere hardening).
1-dimensional n—dimensional
Transmitted lattice z Fine lattice Aj,
Pseudo-random symbols mZcZ Coarse lattice Ap c Ay,
Data ZlmZ Cosets Ap/Ae

Table: From the example to the general scheme

J.-C. Belfiore - Lattices for Communication Engineers
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Figure: Example of coset coding

sphere hardening).




Part IV

The Secrecy Gain
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Eve’s Probability of Correct Decision (data)
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Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding
another coset representative
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Can Eve decode the data?

Figure: Eve correctly decodes when finding
another coset representative

Pee = (

where

2
o =Y "% g=¢",

is the theta series of A.
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Can Eve decode the data?

Figure: Eve correctly decodes when finding
another coset representative

Pee = (

where

2
O m =Y ¢ g=e, y>o0

xXeEA

is the theta series of A.

Problem
Minimize

for some y.
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The secrecy gain

Secrecy function

Definition
Let A be a n—dimensional lattice with volume A”. Its secrecy function is defined as,

_nVE
- ¥ é @Azn(y) _ ﬁgl(e g J’)
A o0 B

where 93(q) = X122 o q”2 (Jacobi theta function) and y > 0.
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Secrecy function

Definition
Let A be a n—dimensional lattice with volume A”. Its secrecy function is defined as,

.
= ( 2 @Azn(y) _ ﬁgl (e g J’)
- NG NG

where 93(q) = X122 o q”2 (Jacobi theta function) and y > 0.

Examples

\.;5 ‘w / \

Lis

()

(%
—
| —

En

105 15

100 F———rT T 10

¥(dB) ¥ (@B)

Figure: Secrecy functions of Eg and Apg
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Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

X ZsupZE, ()
y>0
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Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

X ZsupZE, ()
y>0

Definition

For a lattice A equivalent to its dual and of determinant d(A) (determinant of the Gram
matrix), we define the weak secrecy gain,

[>

XA

Ty (d(A)‘%)

J.-C. Belfiore - Lattices for Communication Engineers
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Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

X ZsupZE, ()
y>0

Definition

For a lattice A equivalent to its dual and of determinant d(A) (determinant of the Gram
matrix), we define the weak secrecy gain,

[>

X225 (da) )

1
@ Alattice equivalent to its dual has a theta series with a multiplicative symmetry point at d(A)™ 7
(Poisson-Jacobi’s formula),

J.-C. Belfiore - Lattices for Communication Engineers —




gain

First conjecture

Conjecture

If A is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.
Corollary

The strong secrecy gain of a unimodular lattice A is

Th =EAQ)

J.-C. Belfiore - Lattices for Communication Engineers —
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First conjecture

Conjecture
If A is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

Corollary
The strong secrecy gain of a unimodular lattice A is

Th =EAQ)
Calculation of Eg secrecy gain
From Ejg theta series,
1 302068+ 83678 + 04(e™)?)
En@ ¥ O3(e~)8
92 (e7™) 4(e” 1
_ 3 e 22(7) _fale™) 1,
4 93(e™) O3 V2

4
sowe get| yg, = Eg (1) = 30

J.-C. Belfiore - Lattices for Communication Engineers
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Question
How does the optimal secrecy gain behaves when n — oo ?
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symptotic behavior for unimodular lattices

Question

How does the optimal secrecy gain behaves when n — oo ?
First answer

Apply the Siegel-Weil formula,

O, (q)
————— = My E
AED, |Aut(A)] ! k(qz)

where
1

My = —_—
" AGS, IAut()]

and Ey is the Eisenstein series with weight k = %’ Qy is the set of all inequivalent

n—dimensional, even unimodular lattices. We get

G)l’l.Opt (e_”) = Ek (9_2”)

J.-C. Belfiore - Lattices for Communication Engineers -



Maximal Secrecy gain

For a given dimension 7, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

f)g (e7™)
A
= B (e?m)

1
T2
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Maximal Secrecy gain

For a given dimension 7, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

1‘)? (e7™)
5™
= B (e?m)

N | =
=
—

Behavior of Eisenstein Series
We have
2k +o© mk—l

Ek(e‘z”) =1+ Bl 2, T

By, being the Bernoulli numbers. For k a mul-
tiple of 4, then Ey (¢~2") fastly converges to 2
(k— 00).
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Maximal Secrecy gain

For a given dimension 7, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

1‘)? (e7™)
5™
= B (e?m)

N | =
=
—

Behavior of Eisenstein Series
We have
2k +o© mk—l

Ek(e‘z”] =14 B e

By being the Bernoulli numbers. For k a mul-
tiple of 4, then Ey (¢~2") fastly converges to 2
(k— 00).

Bound from Siegel-Weil Formula vs. Extremal lattices
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Figure: Lower bound of the minimal secrecy gain as a function of

n from Siegel-Weil formula.
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PartV

Wireless Channels - Other Lattices
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Design Criterion

@ Assume Rayleigh fadings and 2 codewords X and T such that

X1 X1z Xin 1 he2 - AOn

X1 X2 Xop 1 I o Bp
X= . . . T=

g Xq v Xqn gt lgn
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TELECOM, Block Fading Channel

ParisTech . . .
Design Criterion

during n channel uses.
@ Assume Rayleigh fadings and 2 codewords X and T such that

X1 X2t Xip 1 he2 - AOn

X211 X2t Xp 1 B 0 B
X= T=

Xgl X2t Xgn Iyl lgn

Pairwise Error Probability
Error probability will be dominated by

maxp ¢~ = ma [ 1] 2 ()
XT _X,aTXi:1 U 4

where I' is the average signal to noise ratio and x; (resp. t;) is the ith row of X (resp. T).
This equality is valid if, for any i, x; # ¢;. Hence, one has to find a code which maximizes

q
g R 2
minp (X, 1) = r)%l;lg [l - ]
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Block Fadin

Lattice formulation over number fields

Control the product in y (X, T)

The product H?:l [|xi - t,-||2 which becomes p(X) = H?:l ||x,'||2 by linearity can be con-
troled by introducing the algebraic norm in a well-chosen algebraic Galois extension K
of degree q.

@ Let(01,09,...,04) be the Galois group of . Use the canonical embedding so that

o1(x1) o1(x) - 01(xn)

o2(x1)  o2(x2) - 02(xn)
X=

ogx1)  oqlx2) - 0glxn)

J.-C. Belfiore - Lattices for Communication Engineers

38 /41



TELECOM B
ParisTech

Lattice formulation over number fields

Control the product in y (X T)

The product H?:l [|xi - t,-|| which becomes p(X) = Hq La ||x,|| by linearity can be con-
troled by introducing the algebraic norm in a well- chosen algebraic Galois extension K
of degree q.

@ Let(01,09,...,04) be the Galois group of . Use the canonical embedding so that

o1(x1) o1(x) - 01(xn)

o2(x1)  o2(x2) - 02(xn)
X=

ogx1)  oqlx2) - 0glxn)

Metric and Norm
Then metric p(X) can be written as

RO =N(lx?) = ( xf)

H M;

where N is for the algebraic norm and x = (x1, X2, ..., X).
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k Fading Channel

Construction of Oy —lattices

O —lattice is a O —module.
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TELECOM Block Fading Channel

ParisTech . -
onstruction of Oy —lattices

Oy -lattice is a G —module.
Construction A (binary) over Oy
Take, forinstance g =2, K = Q (\/ﬂ So, we have Gy = Z[v/2]. Consider the principal ideal

F=V2-Z1V2).
As N(.#) =2, then Z[v2] /.# =F,. So, we can construct O —lattices in that way,
A=I"+€

where % is a binary linear code of length 7.
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TELECOM Block Fading Channel

ParisTech . -
onstruction of Oy —lattices

Oy -lattice is a G —module.
Construction A (binary) over Oy
Take, forinstance g =2, K = Q (\/ﬂ So, we have Gy = Z[v/2]. Consider the principal ideal

F=V2-Z1V2).
As N(.#) =2, then Z[v2] /.# =F,. So, we can construct O —lattices in that way,
A=I"+€

where % is a binary linear code of length 7.

Construction A (quaternary) over O
Here, take g =2, K = Q(V/5). So, we have O = Z[¢] where ¢ = # Consider the ideal
# =2-Z[\/¢). As N(.#) =4 and . is prime, then Z[\/¢] /.# =F4. So, we have

A=I"+%€

where € is a linear code of length n over F4.
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Perspec

Perspectives

@ O-lattices where O is a maximal order of some division algebra for the MIMO case
@ Nested lattices for other applications in which 2 or more data streams must be constructed
© Han and Kobayashi

@ Wyner-Ziv
o ..

@ Nested “exotic” lattices on other Dedekind domains?
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Thank You !!
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