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Cold Boot

Usenix 2008 - Halderman et al. noted that DRAMs retain
their contents for a while after power is lost.
Bits in memory can be extracted, but they will have errors.
0 bits will always flip with very low probability (<1%), but 1
bits will flip with much higher probability which increases
with time.
For example

Original memory: 11000101101101001 . . .

Noisy memory: 11100001100100001 . . .
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Cold Boot Attacks

Why is this a problem?
Secrets may be stored in memory.

The Big Question
Given a noisy RSA key obtained from a cold boot attack, how

can we recover the original key?
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Heninger & Shacham (HS) Algorithm (Crypto 2009)

A PKCS #1 RSA key has the form
(N, e, p, q, d , dp, dq, q

−1
p ).

The HS algorithm assumes a noisy PKCS # 1 RSA key
has been obtained and some bits of the RSA key are
known to be correct.
The HS algorithm uses algebraic relations between the bits
of sk = (p, q, d , dp, dq) to generate possible solutions for
the next set of bits of the original key.

p[i] + q[i] = c1 mod 2
d [i + τ(k)] + p[i] + q[i] = c2 mod 2

dp[i + τ(kp)] + p[i] = c3 mod 2
dq[i + τ(kq)] + q[i] = c4 mod 2,
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HS Expansion Phase
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Given enough time the algorithm always recovers the
original key.
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HS Algorithm

From our perspective, the HS algorithm considers a key
degraded according to an erasure channel:
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If ρ < 0.73 the algorithm is provably efficient with high
probability.
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Henecka, May & Meurer (HMM) Algorithm
(Crypto 2010)

HMM assume that each bit of sk can flip with probability δ.
The HMM algorithm considers 2t sets of candidate
solutions on 5t bits obtained by solving the HS equations
on t consecutive positions.
For each candidate solution on 5t bits the HMM algorithm
counts the number of bit matches with the noisy RSA key
and discards a candidate if there are less than C matches.
The expansion and pruning phases are iterated on
remaining candidates until we have recovered solutions
across all bits of the RSA key.
Asymptotically, when δ < 0.237 the algorithm is provably
efficient and recovers sk with reasonable success
probability.
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The Three (Implicit) Models
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HS: ρ < 0.73.
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HMM: δ < 0.237.

These channels are not appropriate for cold boot!
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Cold Boot: α � β.
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Questions We Address

Questions
HS is provably efficient when ρ < 0.73 and HMM is
provably efficient when bits flip with probability δ < 0.237.
Is there an underlying explanation for these constants?
Can the results be improved further, and are there ultimate
noise limits which no algorithm can handle?
Can we design an algorithm that is applicable to the
motivating cold boot scenario?
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Our Perspective

We view the situation as a problem in coding theory.
We consider the set {si}i∈I of partial candidates as a code.
One of these si is the correct RSA key which is degraded
when retrieved via a cold boot attack.
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Our Perspective

If we have obtained r via a cold boot attack, we wish to
decode and identify the key sj that was degraded.
We are able to use standard results such as Shannon’s
noisy channel coding theorem to derive bounds on
efficiency.
This perspective enables us to analyse realistic cold boot
attacks.
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Erasure Channel

The HS algorithm is concerned with the erasure channel.
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The capacity of this channel is 1 − ρ.
The rate of the code is 0.2.
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Erasure Channel

The converse to Shannon’s noisy channel coding theorem
says that no algorithm that outputs a single codeword can
reliably decode r when 1 − ρ ≤ 0.2.
Hence, for reliable decoding we must have ρ < 0.8.
By contrast, HS managed ρ < 0.73.

Key Result
For list decoding it can be shown that, on average, an

exponential list of candidates will need to be considered when
the code rate exceeds capacity.
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Binary Symmetric Channel

The algorithm of HMM is a decoding procedure for the
binary symmetric channel.

1

0

1

0
1 − δ

δ

1 − δ
δ
�
�
�
�
��✒❅

❅
❅
❅
❅❅❘✲

✲

The capacity is C = 1 − H2(δ).
The code rate is at least 0.2.
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Binary Symmetric Channel

Applying Shannon’s theorem, an algorithm that outputs a
single codeword cannot reliably decode when
1 − H2(δ) ≤ 0.2.
Hence, only δ < 0.243 is feasible.
Note that HMM can handle δ < 0.237.

Key Result
When δ ≥ 0.243 it can be shown that no algorithm can list

decode using a polynomially-sized list.
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Z-channel

An idealised version of a cold boot attack can be modelled
by a Z-channel.
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The HS analysis can be applied to this channel to show
that an algorithm keeping all ‘correct solutions’ will be
efficient when ρ < 0.46.
The capacity bound on ρ for this channel is approximately
0.666.
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Our New Algorithm

From all the candidate solutions {si}i∈I we wish to find

max
i

P(si | r),

where r is the noisy RSA key.
Using Bayes’ theorem and the assumption that P(si) is
equal for all i , this is equivalent to finding

max
i

P(r | si).

This can be calculated as

max
i

�
(1 − α)ni

00αni

01(1 − β)ni

11βni

10

�
.

We keep the L candidates with the greatest likelihood.
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Experiments

We will shortly see our experimental results for the
Z-channel, the cold boot channel and the binary symmetric
channel.

For each experiment we degraded 100 RSA keys (where
each modulus length is 1024 bits) according to the relevant
channel.

We then used our maximum-likelihood algorithm to attempt
to recover the noisy RSA keys.
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Idealised Cold Boot

The capacity bound for ρ is 0.666.

ρ 0.3 0.4 0.46 0.5 0.55 0.6 0.63
Success 1 0.98 0.87 0.81 0.43 0.13 0.03
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Cold Boot Scenario

For these experiments we set α = 0.001. The capacity
bound for this channel is β = 0.658.

β 0.2 0.3 0.4 0.5 0.55 0.6 0.61
Success 1 0.97 0.97 0.66 0.31 0.09 0.04
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Henecka, May & Meurer Setting

The capacity bound for δ is 0.243.

δ 0.08 0.12 0.16 0.2 0.21 0.22
HMM 0.5 0.5 0.35 0.21 - -

Us 1 0.93 0.84 0.20 0.08 0.04
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Conclusions

We have considered a more general setting than HS and
HMM, which allows us to model true cold boot attacks.
We have presented a new algorithm that, for practical RSA
key sizes, outperforms the HS and HMM algorithms and is
applicable to the true cold boot setting.
We have explored the connections between the cold boot
problem and coding theory, using the connections to give
bounds on performance and to inspire our new algorithm.
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