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1. Recurrence relations, recurring sequences, and
g-polynomials

| g=p",  pprime]

00,01,--+,0m-1 € Fg, o9 #0

recurrence relation (of order m)

Uy = Om—1Ug—1+ + O1Uk—m+1 + O0Uk—m

with characteristic polynomial

F(x)=x"—om 1 X" = —o1x — 0

u= u(ug, u1,...,un—1) sequence generated by (1) from
ug, ..y Um—1.



The smallest period per(u) is smallest M > 1 for which
Upmtk = ug Vk.

The order ord(f) is smallest N > 1 for which f(x)[xN — 1.
Fact 1: per(u)|ord(f)

Fact 2: f irreducible over F, with zeroes £,£9...,69" " € Fgm,
then

» per(u) = ord(f) iff (ug,...,um-1) #0;
> up = Lok + L1€%% oo [y €97k = L(€K) for all k

m—1

L(x) = Lox + Lix9 -+ Lp_1x9 Li,...,Lm—1 € Fgm
will be referred to as a g-polynomial over Fgm of g-degree m.
(linearized polynomial).

Fact: 1-1 with Fg-linear maps on Fgm.



Brison, Nogueira (2003)

A multiplicative subgroup K C F*, with F; C F, is called

f-subgroup if dug, ..., un—_1 such that
K:{uo,ul,...,un,l}, ’K| :n:ord(u)
> wlog ug =1

v

F* cyclic, so K uniquely determined by |K]|
€ zero of f, then (&) is f-subgroup (take u; = ¢/)

f irreducible over F, with zero £, then (&) is only f-subgroup
(since ord(u) = ord(f) = ord(¢)).

v

v

f not mentioned: K is linear recurring sequence subgroup

Question: Is an f-subgroup always of the form (&), for a zero £
of f7




’ From now on, f is irreducible over F, of degree m, with zero £ € Fgm ‘

(&) is called non-standard f-subgroup if

&) ={w=1u1,...,up-1}, n=1[(&)| = ord(§)

with (ug, ..., um_1) # (1,€7, 829 . ¢(m=D@) for all j
(Brison and Nogueira)



» ¢ is called non-standard, of degree m over F, and order n, if
its minimal polynomial f over F, has degree m, with (&)
non-standard f-subgroup, of order (size) n

» A g-polynomial L(x) = Lox + Lix9--- + L 1x9" " is called
non-standard, of g-degree m over Fym, if Lo,...,Lp_1 € Fgm
and L(x) # x? forall c € Fgnandall j=0,...,m—1.

Consequence: £ is non-standard of degree m over F, if and only if
there exists a non-standard g-polynomial L of g-degree m over Fgm
such that



¢ is called non-standard of degree m over Fg if

> Fgm is smallest extension of Fg containing &, and

» if 3 Fg-linear map L on Fgm, not of the form L(x) = cx"i, for

which L((£)) = (£).




2. Two basic non-standard examples

’{ € Fym, degree m over Fg, order n = ord({)‘

Obviously no non-standard examples for m = 1. (ux = oguk_1,
u=1— uk:Uok)

No non-standard examples with n < 4: If m > 1, then n > 3; if
n =3, then (&) = {1,£,£9}; if n =4, then €2 = —1 and &9 = —¢.

Example 1: n = g™ — 1, that is, { primitive in Fgm, i.e., (§) = Fgm.
Then & non-standard iff m > 2 and ¢™ > 4 (i.e.,, n > 4).

Proof:
m x m Fg-matrix L« g-polynomial L of g-degree m over Fgnm.

Straightforward counting of non-singular matrices —-

not all from standard g-polynomials ex? if m> 2 and qm > 4.

0



Example 2: ¢ has minimal polynomial f(x) = x™ — 7 over Fg.
Then £ non-standard over Fg iff m > 1 and n > 4.

Proof: () = (n).{L,¢,....,¢" 1}

Hen_ce fori;O,...,m—l:

L(E) = meg™D,

with n; € (n), and 7 permutation on {0,...,m — 1},

L(1) =1iff no =1 and 7(0) = 0.

Extend by Fg-linearity = L((¢)) C (&) and non-singular on Fgm.
e = ord(n), then e > 1 (since x™ — 1 not irreducible for m > 1).
# choices e™~1(m — 1)! > m (= # “forbidden” choices

L(x) = x%)

iff (e=2and m>3) or (e >3 and m > 2), that is [m, e > 1], iff

n= me > 4.
O

—> Examples with m =2, n =2e > 6, if both g, (¢ — 1)/e odd.



3. Permutation automorphisms of (linear) cyclic codes

(na q) =1

Cyclic code of length n over F is Fg-subspace C C Fg such that

c=(c,c1,...,¢cn-1) € C = ¢? :=(cp—1, 0, C1,...,Cn2) € C.
Ideal in R = F4[x] mod x" — 1, hence if n|g™ — 1 (m > 0), then
37 C F:;m, all n-th roots of 1, such that
C={c(x)eR|c(B)=0 VB e Z}.

Definition: 7 € S, (permutations on {0,1,,...,n— 1}), then

"= (C7r(0)7 Cr(1)s- -+ C7r(n—1))'



Permutation automorphisms PermAut(C):

All 7 € S, such that ce C = ¢™ € C.

» o € PermAut(C)

» 1) : i~ gi mod n, then ¢ € PermAut(C)
Frobenius automorphism, c¥(x) = c(x9).

So < 0,19 >C PermAut(C).

Question: When is there more?‘




Theorem

C cyclic code, length n, over F,, with defining zero £, of degree m
over Fg, and of order n. Then C has more permutation
automorphisms if and only if { non-standard over F.

Proof:
a) Suppose L g-polynomial of g-degree m and

LE)=¢0,  res,
If c € C, then

n—1

0=1(0) = L )

i=0
n—1
= > al()
i=0

n—1

n—1
= > 6™ =>"cpd,
j=0

i=0

hence ¢™ ') € C. So 7! € PermAut(C).



b) Let 7~ € PermAut(C). Define a g-polynomial L on Fgm by

LE=¢v,  j=0,....m—1, (3)
and extend by Fg-linearity.
For j > m, let
g=ay+al+ - +am1&™
Then

c=(a0,31,---,am-1,0,...,0,-1,0,...,0) € C,

(=1 in position j), hence also c™ ' € C, so that

n—1 n—1 n—1
0 = Y d=> ()= ag®
i=0 i=0 k=0
= aof™O) 4 g 4.5, 1™ (M=) _ ¢m()
L) —¢m0).

So (3) holds for all j, that is, L(¢)) =¢7(), 1 €S,
O



Fact: |0+ L(x) = &x and 71 < L(x) = x9.

So PermAut(C) is bigger than < o, > iff there are non-standard
L fixing (&).

Conclusion: full classification is a difficult problem!

New examples:

Example 3: (Binary Golay code) Let ¢ =2, n =23, and m = 11,
21-1)/23

let o primitive in Fyu and & = af
& is defining zero for the length-23 binary Golay code, and is
non-standard of order n = 23 and degree m = 11 over F;.

Example 4: (Ternary Golay) Let ¢ =3, n=11, and m=5; let «
primitive in F3s and ¢ = (2~ 1/11,
& is defining zero for the length-11 ternary Golay code, and is

non-standard of order n =1 and degree m =5 over Fs3.

Further examples rare: only “non-standard” binary QR- codes of
length < 4000 are the (7,4,3) Hamming and the binary Golay.



4. Extening and lifting

Important definition: g-order ordgy(&): smallest d > 1 for which
¢9 € F,. (Restricted period of f.)

Lemma

(i) d = ordg(§) = n/(n,q — 1)
(ii) n = de, with e = (n,q — 1) and (d, qTfl) =1

Proof: e = (n,q —1), then
¢d € Fq iff ¢4(971) = 1 iff n|d(q — 1) iff 2|d.
g

Theorem

d = ordg(¢), then m < d, d| L, and m = d iff f(x) = x* — 2.

m_1
Proof: { € Fgn — 5% € Fg;
f(x) minimal polynomial of ¢ over Fy = f(x)|x9 — ¢9.
g



Theorem (Extension)

Let ¢ non-standard of degree m over Fg, with order ord(¢) = n
and q-order d = ordgy(¢). If & in Fy(¢) with (¢) C (&), then £ also
non-standard of degree m over F,, with same q-order and same
non-standard g-polynomials.

Proof:
Let (¢) C (£) C Fy(9).

» Obviously, £ and ¢ have the same degree over Fg.

> ordg(&) = ordg(¢) = d:
Let e=(n,qg — 1) and write f = (¢ — 1) /e.
Then n=de, (d,f) =1, and
F2()] = [FA{1, 6,07 1] = (g — 1)d = nf.
So N = 0rd(< )) = nk with k|f.
Then (N,qg—1) = (dek, ef) = ek(d, f/k) = ek, hence
ordg(§) = N/ek =



» L g-polynomial of g-degree m over Fym, L bijection on (¢),
then L also bijection on F7(¢):

a,B € Fgand L(ag') = L(BY)) = |
a1 = L(#)/L(#) € (8) and L(af " 6) = L(¢V) —
afte' = ¢, or ag’ = .
Finally, (¢) C (§) <= (§) = H(¢) with H subgroup of F; =
L((£)) C (&), so L bijection on (£).

In fact, H = F, N (&) = (£9), of size ke since ¢ € H.
O



Remarkl: (¢) C (§) iff n = ord(¢)|ord(§).

Remark2: ¢ non-standard of degree m over F,
€ € (¢), and (&) = (¢), then & also non-standard.

Remark 3: Apllies to ternary Golay —>
non-standard element in F3s, of of order 22 and degree 5 over F3.



Let [go = p° and g = ¢§ |

Theorem (Lifting)

& non-standard of degree m over Fq, and (m,t) =1, then & also
non-standard of degree m over Fq, with ordqy(§) = ordg,(§).

Proof:

» g-order: n|qf’ — 1, hence

(n,q—l):(n,qg’—l,qé—l):(n,qo—l).

> degree and non-standard:

Now

§,€%,...,

£

k mod m

= §q0

m—1 .. m
€%  distinct, g =¢.

and

{0,t,2¢t,...,(m—1)t} ={0,1,...,m—1} mod m,
s0 {€,€%,....67" "} = {£,6%,... 6%}, and

same minimal polynomial & same recursion.

O



Conclusion: If

» ¢ non-standard of degree m over F;, with order ny = dep and
qgo-order d, so ey|qo — 1 and (d, "OTTI) =1;

» q = g with (t,m) = 1, then ( )
3 £ non-standard of degree m over F, with order n = de and

g-order d whenever
eole[q — 1.

Example 1 (primitive element) — Example 1%, with

q7—1 qr—-1 .
d= g n=4a-rte with qgo—1lelg—1]|,

for m> 2 and qj" > 4.



“Classical” examples for m = 2, f(x) = x> — o1x — 0 over F:

» 01 =0; g-order d = m = 2, well understood

» 01 #0;
» d = 3 not possible

» d=qo+1, g = gt with t odd, qo > 2,

n=1(go+ 1)e with go — 1] e|g — 1 by
a primitive element.

Aim: Show that we can reverse this construction.
So & non-standard of degree m and g-order d over F, then

» First task: d = go + 1, where g = g§ with t odd;

> Then: ¢ obtained from ¢, with (¢) = (§) N F, by extension
and lifting.

» Finally: show that ¢ primitive.



5. A subgroup in PGL(m, q)

» ¢ € Fgm non-standard of degree m over F;

order n, g-order d; put |n = £9|.

» characteristic polynomial of £ over Fg is

f(x)=x"— Omo1Xx™ L — . = g1x — 0.

T - Ei — gi-i-l;
L:&— e (mes,).
Both F,-linear maps on Fgm fixing set (§).

Note that T9 = ¢9/ = g1,



Consider T and L as maps on PG(m—1,q) - T and L

So identify § and A§ VAinFy,.

Consequence: T has order d.

G = (T, T) subgroup of PGL(m, g) fixing set C = {1,¢,..., &%}
of size d in PG(m —1,q).



6. The case m = 2: subgroups of PGL(2, q)
From now on, [m =2],  f(x) = x® — o1x — 0¢.

L1)=1, L) =w+ve

(1 w (0 o9
(o) =)

normalisation: \ = 0'0/0'%, é: ¢/oq zero of X2 —x— )\
O =wlo1, L(§) =&+ vE,

€
L—>F:( > T—>/\:<(1)i\).

w.r.t. basis (1,€).
O ={1,A1)=¢,...,A7 (1)} = €971} C PG(1, q) is an orbit of
subgroup G = (A,T') of PGL(2, q), of size d.

O =
X &



Theorem (Dickson, around 1900)
Let g = p" with p prime.

(i) If g #id in PGL(2, q) has order k, with f fixed points, then all
orbits of size > 1 have size k, and one of:

f=0,k|lg+1; f=1k=np; f=2klg—1.



Theorem (continued)
(ii) The subgroups of PGL(2, q) are as follows:

1.

Cyclic subgroups Cy, of order k = 2 (if p is odd),
or of order k > 2 with k|q £ 1.

. Dihedral subgroups D,y of order 2k, with k = 2 (if p is odd),

or with k > 2 and k|q £ 1.

3. Elementary abelian subgroups E,, of order pk (0<k<r)

4. A semidirect product E.x x C; of an elementary subgroup E,

1 < k <r, and a cyclic group C;, where £|q — 1 and £|p* — 1.
Subgroups isomorphic to Ay = PSL(2,3), Ss 2 PGL(2,3), or
As = PSL(2, 4).

One conjugacy class of subgroups isomorphic to PSL(2, p¥),
where k|r.

One conjugacy class of subgroups isomorphic to PGL(2, p),
where k|r.



Analysis of A and T
A: € — €1 has order d and no fixed points, so d|g+1.

L(x) =x & r=1, v=1, O =0;

L(x) = x9 & v=—1, =1



Theorem
The group G = (\,T') is one of the following.

» A cyclic group, when L(x) = x;
> a dihedral group, when L(x) = x9;

» a conjugate of PSL(2, qo) or PGL(2, qo), in the nonstandard
case, with d = qo+1 > 3 and q = qf, with t odd.



Proof:
1. G cyclic = TA=AI = A= (case L(x) = x);
2. G dihedral = A2 = (AN? = v=-1,0=1,1L(x) = x5,
3. G # Ex with k > 2: note d|g+ 1, so (p,d) = 1;
4. G # Epx G, llg—1, f\pk —1:
note (d, p) =1, so d|¢; then d|g+1 = d|2 (no, d > 3).
5. If G ~ A4, Sa, As, then d € {3,4,5}.
Separate argument:
d = 3 impossible;
d=4 = p=3, d=5 = p=2
6,7 G ~PSL(2, q0), PGL(2, qo), with qo = p°, g = p", s|r.
Orbitsizes qo + 1, g3 — qo, Go(g3 — 1) and (d,p) =1, so
d=qo+1|lg+1, hence t = r/s odd.
Il



Theorem
A\ v, & € Fgy, hence G = PSL(2, qo) or G = PGL(2, qo).

Proof:
Step 1: M € PGL(2,q), g = q§.
then M € PGL(2, qo) iff M(%) = ¢M Fycp., where

a b (qo) a(QO) b(qO)
(c d> :<C(CIO) d(qo)>'

[Idea: iff x — 2425 fixes F{ = Fg, U {00} setwise,
(qo)
: ax+b __ ax+b
so iff (255)" = 2B v

So second-degree polynomial in x is zero, so all coefficients are
zero.]



Consequence: If AMA™! € PGL(2, qo),
then (AMA~1)(®) = )AMA~, so

det(M)%~1 = ¢2, Tr(M) =0 or ¢ = Tr(M)%~1]

Now det(A) = =, Tr(A) =1, so

¢=1, (=A)®~1 =1, hence A € F}, .

Step 2: d = qo+1, so (A)(1) = {1,¢,...,

hence T fixes PG(1, qo), so v, & € Fg,.

gqo} = PG(1> qO)y

g



7. Reversing the construction

Theorem
Ifd =qo+12>4, then § € F 2\ Fy obtained from some
¢ € Fqg \ Fq,, with qo-order qo + 1 again, by lifting and extension.

Proof:
We want (4) C () C F3(0) and (6) C Fia.

So consider
(p) := FZS N (&) (cyclic).
L(]-) = ]., L(g) = I/g—i—CD’ V,(:L') c qu;
EE Fqg \ Fg, since zero of x? — x — \ (irreducible), A € Froi

hence L(F,2) C Fgz. so that

2
0

| L bijection on (¢) |




n=ord(§) = (qo + 1)e, e=(nqg-1), g = q§ (t odd).
By “definition”, ¢ = &%, where

do = n/(n, g5 — 1)
is g3-order of .
Put ep = (e, go — 1); now , so
no = ord(¢) = (qo + 1)eo.
d=q+1: (d,%1)=1% (g—1)/eodd = (qo—1)/eo odd.

Hence gp-order

do = no/(no,qo—1)
= (g0 +1)/(q0 +1,

qo—1
e )
0

so|dy = ordg(¢) =qo+1 ‘




Last step: Done if

§eFy()|

Now n = ¢+l € F, p=¢¢/0 | so
Fy () > (n) (o)
contains all €K with

k=1i(qo+ 1)+ je/eo mod n=(qo + 1)e.

So ok if‘(qo +1,e/e) = 1.‘

Follows from e/eg odd. (Details...)



8. Conclusions

¢ non-standard of degree 2 over Fg, with n = ord(¢) and g-order

d = ordg(§): either (well-understood) or d > 4 of form
, where g = qé, t odd, and obtainable from
non-standard ¢ of degree 2 over Fg, with gg-order go + 1 again, by
first lifting ¢ to Fg, nad then extension to &.

Now use theorem (Brison, Nogueira):

If ¢ non-standard of degree 2 over Fq; with go-order go + 1, then ¢
primitive.



9. Further problems

» m > 37 Subgroups of PGL(3, q)?

» Other cyclic codes?



