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Introduction

Background:
graduation (association schemes) & Ph.D. (modulation codes)
from Eindhoven Technical University, the Netherlands,
supervisor Jack van Lint (and Paul Siegel)

1982-1985:
CNET (Centre National d’Études des Télécommunications),
Issy-les-Moulineaux (Paris), France

Main work:
FFT (Fast Fourier Transforms)
NTT (Number Theoretic Transforms)

Co-inventor (with Pierre Duhamel) of split-radix FFT.



1985-2009:
Philips Research Laboratories, Eindhoven, the Netherlands
(1999-2009: Principal Scientist)

Responsible for Discrete Mathematics within Philips Research

Consultancy and research in Discrete Mathematics, Coding Theory,
Cryptography, Information Theory, and Digital Signal Processing.

2010-:
• Eindhoven University of Technology, the Netherlands
• Own math consultancy firm



1. Recurrence relations, recurring sequences, and
q-polynomials

q = pr , p prime

σ0, σ1, . . . , σm−1 ∈ Fq, σ0 6= 0

recurrence relation (of order m)

uk = σm−1uk−1 + · · ·+ σ1uk−m+1 + σ0uk−m (1)

with characteristic polynomial

f (x) = xm − σm−1xm−1 − · · · − σ1x − σ0 (2)

u = u(u0, u1, . . . , um−1) sequence generated by (1) from
u0, . . . , um−1.



The smallest period per(u) is smallest M ≥ 1 for which
uM+k = uk ∀k.

The order ord(f ) is smallest N ≥ 1 for which f (x)|xN − 1.

Fact 1: per(u)|ord(f )

Fact 2: f irreducible over Fq with zeroes ξ, ξq . . . , ξq
m−1 ∈ Fqm ,

then

I per(u) = ord(f ) iff (u0, . . . , um−1) 6= 0;

I uk = L0ξ
k + L1ξ

qk · · ·+ Lm−1ξ
qm−1k = L(ξk) for all k

L(x) = L0x + L1xq · · ·+ Lm−1xqm−1
, L1, . . . , Lm−1 ∈ Fqm

will be referred to as a q-polynomial over Fqm of q-degree m.

(linearized polynomial).

Fact: 1-1 with Fq-linear maps on Fqm .



Brison, Nogueira (2003)

A multiplicative subgroup K ⊆ F∗, with Fq ⊆ F, is called
f -subgroup if ∃u0, . . . , um−1 such that

K = {u0, u1, . . . , un−1}, |K | = n = ord(u)

I wlog u0 = 1

I F∗ cyclic , so K uniquely determined by |K|
I ξ zero of f , then 〈ξ〉 is f -subgroup (take ui = ξi )

I f irreducible over Fq with zero ξ, then 〈ξ〉 is only f -subgroup
(since ord(u) = ord(f ) = ord(ξ)).

f not mentioned: K is linear recurring sequence subgroup

Question: Is an f -subgroup always of the form 〈ξ〉, for a zero ξ
of f ?



From now on, f is irreducible over Fq, of degree m, with zero ξ ∈ Fqm

〈ξ〉 is called non-standard f -subgroup if

〈ξ〉 = {u0 = 1, u1, . . . , un−1}, n = |〈ξ〉| = ord(ξ)

with (u0, . . . , um−1) 6= (1, ξq
j
, ξ2q

j
, . . . , ξ(m−1)q

j
) for all j

(Brison and Nogueira)



I ξ is called non-standard, of degree m over Fq and order n, if
its minimal polynomial f over Fq has degree m, with 〈ξ〉
non-standard f -subgroup, of order (size) n

I A q-polynomial L(x) = L0x + L1xq · · ·+ Lm−1xqm−1
is called

non-standard, of q-degree m over Fqm , if L0, . . . , Lm−1 ∈ Fqm

and L(x) 6= cxqj for all c ∈ Fqm and all j = 0, . . . ,m − 1.

Consequence: ξ is non-standard of degree m over Fq if and only if
there exists a non-standard q-polynomial L of q-degree m over Fqm

such that
L(〈ξ〉) = 〈ξ〉.



ξ is called non-standard of degree m over Fq if

I Fqm is smallest extension of Fq containing ξ, and

I if ∃ Fq-linear map L on Fqm , not of the form L(x) = cxqj , for
which L(〈ξ〉) = 〈ξ〉.



2. Two basic non-standard examples

ξ ∈ Fqm , degree m over Fq, order n = ord(ξ)

Obviously no non-standard examples for m = 1. (uk = σ0uk−1,
u0 = 1 =⇒ uk = σ0

k)

No non-standard examples with n ≤ 4: If m > 1, then n ≥ 3; if
n = 3, then 〈ξ〉 = {1, ξ, ξq}; if n = 4, then ξ2 = −1 and ξq = −ξ.

Example 1: n = qm − 1, that is, ξ primitive in Fqm , i.e., 〈ξ〉 = F∗qm .
Then ξ non-standard iff m ≥ 2 and qm > 4 (i.e., n > 4).

Proof:
m ×m Fq-matrix L↔ q-polynomial L of q-degree m over Fqm .

Straightforward counting of non-singular matrices =⇒
not all from standard q-polynomials cxqj if m ≥ 2 and qm > 4.

�



Example 2: ξ has minimal polynomial f (x) = xm − η over Fq.
Then ξ non-standard over Fq iff m > 1 and n > 4.

Proof: 〈ξ〉 = 〈η〉.{1, ξ, . . . , ξm−1}.

Hence for i = 0, . . . ,m − 1:
L(ξi ) = ηiξ

τ(i),
with ηi ∈ 〈η〉, and τ permutation on {0, . . . ,m − 1}.

L(1) = 1 iff η0 = 1 and τ(0) = 0.

Extend by Fq-linearity =⇒ L(〈ξ〉) ⊆ 〈ξ〉 and non-singular on Fqm .

e = ord(η), then e > 1 (since xm − 1 not irreducible for m > 1).

# choices em−1(m − 1)! > m (= # “forbidden” choices

L(x) = xqj )
iff (e = 2 and m ≥ 3) or (e ≥ 3 and m ≥ 2), that is [m, e > 1], iff
n = me > 4.

�

=⇒ Examples with m = 2, n = 2e ≥ 6, if both q, (q − 1)/e odd.



3. Permutation automorphisms of (linear) cyclic codes

(n, q) = 1

Cyclic code of length n over Fq is Fq-subspace C ⊆ Fn
q such that

c = (c0, c1, . . . , cn−1) ∈ C =⇒ cσ := (cn−1, c0, c1, . . . , cn−2) ∈ C .

Ideal in R = Fq[x ] mod xn − 1, hence if n|qm − 1 (m > 0), then
∃Z ⊆ F∗qm , all n-th roots of 1, such that
C = {c(x) ∈ R | c(β) = 0 ∀β ∈ Z}.

Definition: π ∈ Sn (permutations on {0, 1, , . . . , n − 1}), then

cπ = (cπ(0), cπ(1), . . . , cπ(n−1)).



Permutation automorphisms PermAut(C ):

All π ∈ Sn such that c ∈ C =⇒ cπ ∈ C .

I σ ∈ PermAut(C )

I ψ : i 7→ qi mod n, then ψ ∈ PermAut(C )
Frobenius automorphism, cψ(x) = c(xq).

So < σ,ψ >⊆ PermAut(C ).

Question: When is there more?



Theorem
C cyclic code, length n, over Fq, with defining zero ξ, of degree m
over Fq, and of order n. Then C has more permutation
automorphisms if and only if ξ non-standard over Fq.

Proof:
a) Suppose L q-polynomial of q-degree m and

L(ξi ) = ξπ(i), π ∈ Sn.

If c ∈ C , then

0 = L(0) = L(
n−1∑
i=0

ciξ
i )

=
n−1∑
i=0

ciL(ξi )

=
n−1∑
i=0

ciξ
π(i) =

n−1∑
j=0

cπ−1(j)ξ
j ,

hence cπ
−1(i) ∈ C . So π−1 ∈ PermAut(C ).



b) Let π−1 ∈ PermAut(C ). Define a q-polynomial L on Fqm by

L(ξj) = ξπ(j), j = 0, . . . ,m − 1, (3)

and extend by Fq-linearity.

For j ≥ m, let

ξj = a0 + a1ξ + · · ·+ am−1ξ
m−1.

Then

c = (a0, a1, . . . , am−1, 0, . . . , 0,−1, 0, . . . , 0) ∈ C ,

(−1 in position j), hence also cπ
−1 ∈ C , so that

0 =
n−1∑
i=0

cπ
−1

i ξi =
n−1∑
i=0

cπ−1(i)ξi =
n−1∑
k=0

ckξ
π(k)

= a0ξ
π(0) + a1ξ

π(1) + · · · am−1ξπ(m−1) − ξπ(j)

= L(ξj)− ξπ(j).

So (3) holds for all j , that is, L(ξi ) = ξπ(i), π ∈ Sn.
�



Fact: σ ↔ L(x) = ξx and ψ−1 ↔ L(x) = xq.

So PermAut(C ) is bigger than < σ,ψ > iff there are non-standard
L fixing 〈ξ〉.

Conclusion: full classification is a difficult problem!

New examples:

Example 3: (Binary Golay code) Let q = 2, n = 23, and m = 11;

let α primitive in F211 and ξ = α(211−1)/23.
ξ is defining zero for the length-23 binary Golay code, and is
non-standard of order n = 23 and degree m = 11 over F2.

Example 4: (Ternary Golay) Let q = 3, n = 11, and m = 5; let α

primitive in F35 and ξ = α(25−1)/11.
ξ is defining zero for the length-11 ternary Golay code, and is
non-standard of order n = 1 and degree m = 5 over F3.

Further examples rare: only “non-standard” binary QR- codes of
length < 4000 are the (7, 4, 3) Hamming and the binary Golay.



4. Extening and lifting

Important definition: q-order ordq(ξ): smallest d ≥ 1 for which

ξd ∈ Fq. (Restricted period of f .)

Lemma
(i) d = ordq(ξ) = n/(n, q − 1)
(ii) n = de, with e = (n, q − 1) and (d , q−1e ) = 1

Proof: e = (n, q − 1), then
ξd ∈ Fq iff ξd(q−1) = 1 iff n|d(q − 1) iff n

e |d .
�

Theorem
d = ordq(ξ), then m ≤ d, d |q

m−1
q−1 , and m = d iff f (x) = xd − ξd .

Proof: ξ ∈ Fqm =⇒ ξ
qm−1
q−1 ∈ Fq;

f (x) minimal polynomial of ξ over Fq =⇒ f (x)|xd − ξd .
�



Theorem (Extension)

Let φ non-standard of degree m over Fq, with order ord(φ) = n
and q-order d = ordq(φ). If ξ in F∗q〈φ〉 with 〈φ〉 ⊆ 〈ξ〉, then ξ also
non-standard of degree m over Fq, with same q-order and same
non-standard q-polynomials.

Proof:
Let 〈φ〉 ⊆ 〈ξ〉 ⊆ F∗q〈φ〉.
I Obviously, ξ and φ have the same degree over Fq.

I ordq(ξ) = ordq(φ) = d :
Let e = (n, q − 1) and write f = (q − 1)/e.
Then n = de, (d , f ) = 1, and
|F∗q〈φ〉| = |F∗q{1, φ, . . . , φd−1}| = (q − 1)d = nf .
So N = ord(〈ξ〉) = nk with k|f .
Then (N, q − 1) = (dek , ef ) = ek(d , f /k) = ek , hence
ordq(ξ) = N/ek = d .



I L q-polynomial of q-degree m over Fqm , L bijection on 〈φ〉,
then L also bijection on F∗q〈φ〉:

α, β ∈ Fq and L(αφi ) = L(βφj) =⇒
αβ−1 = L(φj)/L(φi ) ∈ 〈φ〉 and L(αβ−1φi ) = L(φj) =⇒
αβ−1φi = φj , or αφi = βφj .

Finally, 〈φ〉 ⊆ 〈ξ〉 ⇐⇒ 〈ξ〉 = H〈φ〉 with H subgroup of F∗q =⇒
L(〈ξ〉) ⊆ 〈ξ〉, so L bijection on 〈ξ〉.

In fact, H = Fq ∩ 〈ξ〉 = 〈ξd〉, of size ke since φd ∈ H.
�



Remark1: 〈φ〉 ⊆ 〈ξ〉 iff n = ord(φ)|ord(ξ).

Remark2: φ non-standard of degree m over Fq,
ξ ∈ 〈φ〉, and 〈ξ〉 = 〈φ〉, then ξ also non-standard.

Remark 3: Apllies to ternary Golay =⇒
non-standard element in F35 , of of order 22 and degree 5 over F3.



Let q0 = ps and q = qt
0 .

Theorem (Lifting)

ξ non-standard of degree m over Fq0 and (m, t) = 1, then ξ also
non-standard of degree m over Fq, with ordq(ξ) = ordq0(ξ).

Proof:

I q-order: n|qm
0 − 1, hence

(n, q − 1) = (n, qm
0 − 1, qt

0 − 1) = (n, q0 − 1).

I degree and non-standard:

ξ, ξq0 , . . . , ξq
m−1
0 distinct, ξq

m
0 = ξ.

Now ξq
k
0 = ξq

k mod m
0 and

{0, t, 2t, . . . , (m − 1)t} ≡ {0, 1, . . . ,m − 1} mod m,

so {ξ, ξq, . . . , ξqm−1} = {ξ, ξq0 , . . . , ξq
m−1
0 }, and

same minimal polynomial & same recursion.
�



Conclusion: If

I φ non-standard of degree m over Fq0 , with order n0 = de0 and
q0-order d , so e0|q0 − 1 and (d , q0−1e0

) = 1;

I q = qt
0 with (t,m) = 1, then (first lift, then extend)

∃ ξ non-standard of degree m over Fq, with order n = de and
q-order d whenever

e0|e|q − 1.

Example 1 (primitive element) −→ Example 1∗, with

d =
qm0 −1
q0−1 , n =

qm0 −1
q0−1 e, with q0 − 1| e |q − 1 ,

for m ≥ 2 and qm
0 > 4.



“Classical” examples for m = 2, f (x) = x2 − σ1x − σ0 over Fq:

I σ1 = 0; q-order d = m = 2, well understood

I σ1 6= 0;
I d = 3 not possible
I d = q0 + 1, q = qt

0 with t odd, q0 > 2,
n = (q0 + 1)e with q0 − 1| e |q − 1 by
extension and lifting a primitive element.

Aim: Show that we can reverse this construction.

So ξ non-standard of degree m and q-order d over Fq, then

I First task: d = q0 + 1, where q = qt
0 with t odd;

I Then: ξ obtained from φ, with 〈φ〉 = 〈ξ〉 ∩ Fq20
, by extension

and lifting.

I Finally: show that φ primitive.



5. A subgroup in PGL(m, q)

I ξ ∈ Fqm non-standard of degree m over Fq;

order n, q-order d ; put η = ξd .

I characteristic polynomial of ξ over Fq is

f (x) = xm − σm−1xm−1 − · · · − σ1x − σ0.

T : ξi 7→ ξi+1;
L : ξi 7→ ξπ(i), (π ∈ Sn).
Both Fq-linear maps on Fqm fixing set 〈ξ〉.

Note that T d = ξd I = ηI ,



Consider T and L as maps on PG(m − 1, q) → T̃ and L̃

So identify ξ and λξ ∀λinF∗q.

Consequence: T̃ has order d .

G̃ = 〈T̃ , L̃〉 subgroup of PGL(m, q) fixing set C = {1, ξ, . . . , ξd−1}
of size d in PG(m − 1, q).



6. The case m = 2: subgroups of PGL(2, q)

From now on, m = 2 , f (x) = x2 − σ1x − σ0.

L(1) = 1, L(ξ) = ω + νξ.

L =

(
1 ω
0 ν

)
, T =

(
0 σ0
1 σ1

)
.

normalisation: λ = σ0/σ
2
1, ξ̃ = ξ/σ1 zero of x2 − x − λ;

ω̃ = ω/σ1, L(ξ̃) = ω̃ + νξ̃,

L→ Γ =

(
1 ω̃
0 ν

)
T → Λ =

(
0 λ
1 1

)
.

w.r.t. basis 〈1, ξ̃〉.

O = {1,Λ(1) = ξ̃, . . . ,Λd−1(1)} = ξ̃d−1} ⊆ PG(1, q) is an orbit of
subgroup G = 〈Λ, Γ〉 of PGL(2, q), of size d .



Theorem (Dickson, around 1900)

Let q = pr with p prime.
(i) If g 6= id in PGL(2, q) has order k, with f fixed points, then all
orbits of size > 1 have size k, and one of:

f = 0, k |q + 1; f = 1, k = p; f = 2, k|q − 1.



Theorem (continued)

(ii) The subgroups of PGL(2, q) are as follows:

1. Cyclic subgroups Ck , of order k = 2 (if p is odd),
or of order k > 2 with k |q ± 1.

2. Dihedral subgroups D2k of order 2k, with k = 2 (if p is odd),
or with k > 2 and k |q ± 1.

3. Elementary abelian subgroups Epk , of order pk (0 ≤ k ≤ r).

4. A semidirect product Epk o C` of an elementary subgroup Epk ,

1 ≤ k ≤ r , and a cyclic group C`, where `|q − 1 and `|pk − 1.

5. Subgroups isomorphic to A4
∼= PSL(2, 3), S4

∼= PGL(2, 3), or
A5
∼= PSL(2, 4).

6. One conjugacy class of subgroups isomorphic to PSL(2, pk),
where k |r .

7. One conjugacy class of subgroups isomorphic to PGL(2, pk),
where k |r .



Analysis of Λ and Γ:

Λ : ξ̃i 7→ ξ̃i+1 has order d and no fixed points, so d |q + 1.

L(x) = x ⇔ Γ = I , ν = 1, ω̃ = 0;

L(x) = xq ⇔ ν = −1, ω̃ = 1.



Theorem
The group G = 〈Λ, Γ〉 is one of the following.

I A cyclic group, when L(x) = x;

I a dihedral group, when L(x) = xq;

I a conjugate of PSL(2, q0) or PGL(2, q0), in the nonstandard
case, with d = q0 + 1 > 3 and q = qt

0, with t odd.



Proof:

1. G cyclic =⇒ ΓΛ = ΛΓ =⇒ Λ = I (case L(x) = x);

2. G dihedral =⇒ Λ2 = (ΛΓ)2 =⇒ ν = −1, ω̃ = 1, L(x) = xq;

3. G 6= Epk with k ≥ 2: note d |q + 1, so (p, d) = 1;

4. G 6= Epk o C`, `|q − 1, `|pk − 1;
note (d , p) = 1, so d |`; then d |q + 1 =⇒ d |2 (no, d ≥ 3).

5. If G ' A4, S4,A5, then d ∈ {3, 4, 5}.
Separate argument:
d = 3 impossible;
d = 4 =⇒ p = 3, d = 5 =⇒ p = 2

6,7 G ' PSL(2, q0),PGL(2, q0), with q0 = ps , q = pr , s|r .
Orbitsizes q0 + 1, q2

0 − q0, q0(q2
0 − 1) and (d , p) = 1, so

d = q0 + 1|q + 1, hence t = r/s odd.
�



Theorem
λ, ν, ω̃ ∈ Fq0 , hence G = PSL(2, q0) or G = PGL(2, q0).

Proof:
Step 1: M ∈ PGL(2, q), q = qt

0,

then M ∈ PGL(2, q0) iff M(q0) = φM ∃φ∈F∗
q
, where(

a b
c d

)(q0)

=

(
a(q0) b(q0)

c(q0) d (q0)

)
.

[Idea: iff x 7→ ax+b
cx+d fixes F+

q0 := Fq0 ∪ {∞} setwise,

so iff
(
ax+b
cx+d

)(q0)
= ax+b

cx+d ∀x

So second-degree polynomial in x is zero, so all coefficients are
zero.]



Consequence: If AMA−1 ∈ PGL(2, q0),

then (AMA−1)(q0) = φAMA−1, so

det(M)q0−1 = φ2, Tr(M) = 0 or φ = Tr(M)q0−1 .

Now det(Λ) = −λ, Tr(Λ) = 1, so
φ = 1, (−λ)q0−1 = 1, hence λ ∈ F∗q0 .

Step 2: d = q0 + 1, so 〈Λ〉(1) = {1, ξ̃, . . . , ξ̃q0} = PG(1, q0),
hence Γ fixes PG(1, q0), so ν, ω̃ ∈ Fq0 .

�



7. Reversing the construction

Theorem
If d = q0 + 1 ≥ 4, then ξ ∈ Fq2 \ Fq obtained from some
φ ∈ Fq20

\ Fq0 , with q0-order q0 + 1 again, by lifting and extension.

Proof:
We want 〈φ〉 ⊆ 〈ξ〉 ⊆ F∗q〈φ〉 and 〈φ〉 ⊆ F∗

q20
.

So consider
〈φ〉 := F∗q20

∩ 〈ξ〉 (cyclic).

L(1) = 1, L(ξ̃) = νξ̃ + ω̃, ν, ω̃ ∈ Fq0 ;

ξ̃ ∈ Fq20
\ Fq0 since zero of x2 − x − λ (irreducible), λ ∈ F∗q0 ;

hence L(Fq20
) ⊆ Fq20

, so that

L bijection on 〈φ〉 .



n = ord(ξ) = (q0 + 1)e, e = (n, q − 1), q = qt
0 (t odd).

By “definition”, φ = ξδ0 , where

δ0 = n/(n, q2
0 − 1)

is q2
0-order of ξ.

Put e0 = (e, q0 − 1); now δ0 = e/e0 , so

n0 = ord(φ) = (q0 + 1)e0.

d = q0 + 1: (d , q−1e ) = 1⇔ (q− 1)/e odd =⇒ (q0− 1)/e0 odd.

Hence q0-order

d0 = n0/(n0, q0 − 1)

= (q0 + 1)/(q0 + 1,
q0 − 1

e0
),

so d0 = ordq0(φ) = q0 + 1 .



Last step: Done if

ξ ∈ F∗q〈φ〉 .

Now η = ξq0+1 ∈ Fq, φ = ξe/e0 , so

F∗q〈φ〉 ≥ 〈η〉〈φ〉

contains all ξk with

k = i(q0 + 1) + je/e0 mod n = (q0 + 1)e.

So ok if (q0 + 1, e/e0) = 1.

Follows from e/e0 odd. (Details...)



8. Conclusions

ξ non-standard of degree 2 over Fq, with n = ord(ξ) and q-order

d = ordq(ξ): either d = 2 (well-understood) or d ≥ 4 of form

d = q0 + 1 , where q = qt
0, t odd, and obtainable from

non-standard φ of degree 2 over Fq0 with q0-order q0 + 1 again, by
first lifting φ to Fq, nad then extension to ξ.

Now use theorem (Brison, Nogueira):

If φ non-standard of degree 2 over Fq0 with q0-order q0 + 1, then φ
primitive.



9. Further problems

I m ≥ 3? Subgroups of PGL(3, q)?

I Other cyclic codes?


