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Abstract—Single-tone frequency shift keying (FSK) modulation
with permutation codes has been found to be useful in addressing
the problem of narrowband noise disturbance in power line
communications. However, this modulation scheme is restrictive
since the number of frequencies used must be at least as large
as the number of symbols in the permutation code. In this
paper, we propose the use of multitone FSK and binary matrix
codes to overcome this restriction. We construct infinite families
of efficiently decodable matrix codes with rates and relative
distances bounded away from zero, that uses only a logarithmic
number of frequencies in the length of the code. Simulation
results show that our multitone modulation scheme outperform
single-tone modulation schemes.

1. INTRODUCTION

Power line communications (PLC) is a technology that
enables transmission of data over electric power lines. It was
started in the 1910’s for voice communication and used in
the 1950’s in the form of ripple control for load and tariff
management in power distribution. With the emergence of the
Internet in the 1990’s, research into broadband PLC gathered
pace as a promising technology for Internet access and lo-
cal area networking, since the electrical grid infrastructure
provides “last mile” connectivity to premises and capillarity
within premises. Recently, there has been a renewed interest
in high-speed narrowband PLC due to applications in smart
grids (see, for instance, [1]).

However, power lines present a difficult communications
environment due to the presence of various types of noise,
including additive white Gaussian noise, fading, permanent
narrowband noise, and impulse noise. Overcoming impulse
noise and permanent narrowband noise remains a challenging
problem [2]–[4]. Vinck [2] addressed this through the use
of a coded modulation scheme, which utilizes permutation
codes and multiple frequency shift keying (FSK) as ingre-
dients. There are some inconsistent uses of various notions of
FSK in the literature on coded modulation for PLC. Before
going further, we clarify this to make clear past and present
contributions.

In FSK systems, each symbol is signalled by an element
from an alphabet of orthogonal sinusoidal waveforms (tones)
tuned to different specific frequencies. Multiple FSK is a
variation of FSK that uses more than two frequencies. FSK
schemes can be either single-tone or multitone.

(i) Single-tone FSK is an FSK scheme where each symbol
is signalled by a single tone.

(ii) Multitone FSK is an FSK scheme where each symbol is
signalled by a combination of (one or more) tones.

Vinck’s scheme is based on single-tone (multiple) FSK,
where channel state information is assumed to be unknown
to the receiver and a noncoherent demodulator is used. The
number of available frequencies must be at least as large as
the size of the alphabet over which the code is defined, since
the FSK used is single-tone. The use of permutation codes
implies that the block length of the code must be equal to
the alphabet size. To overcome this restriction, Chee et al. [5]
extended Vinck’s analysis to more general codes and proposed
the use of equitable symbol weight codes in conjunction with
single-tone FSK for correcting permanent narrowband noise.

Unfortunately, while this more general coded modulation
scheme using block codes gives better flexibility and per-
formance, it involves the use of codebooks, which require
large storage and do not have efficient decoding algorithms.
Coded modulation schemes with low decoding complexity
are possible if the size of the code is small enough so that
exhaustive search can be performed, or if the codes have
sufficient structure such that efficient decoding algorithms can
be implemented. Some families of codes with low decoding
complexity are given by:

(i) distance preserving maps from the Hamming space to
the permutation space (see [6]–[10]),

(ii) permutation trellis codes [11],
(iii) permutation group codes (see [12]), and
(iv) cosets of Reed-Solomon codes with low symbol weight

(see [13], [14]).
The lengths of the families of codes mentioned above are con-
strained by the number of frequencies, which is at least as large
the alphabet size of the code. In particular, the length is at most
as large as the number of frequencies. In addition, while the
first three families of codes have efficient decoding algorithms,
they do not simultaneously achieve positive relative distance
and positive rate, with increasing code length.

In this paper, our primary goal is to determine code families
with the following (simultaneous) properties:

(i) positive relative distance,
(ii) positive rate,

(iii) have efficient decoding algorithms, and
(iv) without restriction that the length of the codes is at most

the size of the alphabet,
that can be used to combat permanent narrowband noise in
PLC. We achieve this by adopting a modification to Vinck’s
coded modulation scheme that frees up the constraint on code
length by alphabet size. Single-tone FSK in Vinck’s scheme
is replaced by multitone FSK. Luo et al. [15] analyzed and
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compared the performance of multitone FSK and single-tone
FSK schemes in which the signal energy is peaky both in
time and frequency. Their results show that both single-tone
FSK and multitone FSK, with simple hard-decision decoding,
have comparable error performance, and furthermore, both
approach the wideband capacity limit at large but finite
bandwidths. Verdu [16] also showed that in order to achieve
the capacity of a wideband noncoherent fading channel, the
signalling must be peaky. Oshinomi et al. [17] studied a
specific implementation of multitone FSK to demonstrate the
spectral efficiency of the model. These results are encouraging
with respect to the use of multitone FSK for narrowband PLC.
We adopt the use of multitone FSK modulation scheme with
the understanding that the energy is concentrated on only a
small fraction of the available frequencies.

The use of multitone FSK with only a small number of
frequencies at any particular time step corresponds to the use
of a bounded weight binary code. We consider a special case
of this construction by using a constant weight code, in which
the weight of every codeword is fixed at some constant, say
w. This corresponds to using a combination of exactly w
frequencies at any time instance. Each individual codeword in
this constant weight code is considered to correspond uniquely
to a q-ary symbol. The “outer code”, which consists of vectors
defined over a q-ary alphabet, is used to determine the block
length n, transmitted over n time intervals. This is exactly the
definition of a concatenated code [18], [19] with a constant
weight code as the inner code and a q-ary code as the outer
code. Thus, to determine the set of frequencies to transmit, we
use binary matrices as codewords, instead of q-ary vectors.
Since these binary matrices are required to have the same
number of ones in each column, we are unable to employ
general burst-error correcting codes such as array codes [20]
or rank-metric codes [21]. Instead, we construct matrix codes
meeting our requirements through concatenation. As a result,
we establish an infinite family of efficiently decodable codes
whose rate and relative distance are bounded away from zero,
and uses a logarithmic number of frequencies in the length of
the code. Simulation results show our multitone modulation
scheme outperform single-tone modulation schemes.

The current proposals for communication of narrowband
power line channels include the use of orthogonal frequency
division multiplexing (OFDM), which also uses multiple tones
during transmission [22]. The transmission of the data can also
be adaptively modulated depending on the channel character-
istics. We do not assume that the channel state information
is known to the transmitter or the receiver. Comparisons of
the current work with OFDM, and other extensions to include
coherent demodulation and adaptive modulation techniques is
an interesting avenue for future research.

The rest of this article is organized as follows. In Section 2,
we introduce the basic notation and definitions. In Section 4
we look at the worst-case error performance, and the existence
of concatenated codes with constant weight inner codes. In this
work, we concentrate on using Reed-Solomon codes as outer
codes, which provides us with efficient decoding algorithms

for the outer codes. Finally, Section 6 contains simulations of
these concatenated codes, assuming hard decision decoding.
The concatenated codes are shown to correct more errors than
symbol-weight codes of similar rates.

2. PRELIMINARIES AND NOTATIONS

Denote the ring of integers and the finite field of order q
by Z and Fq , respectively. For a positive integer k, the set
{1, 2, . . . , k} is denoted by [k]. Given a finite set X , the set
of all k-subsets of X is denoted by

(
X
k

)
, The weight of a

vector u is the number of nonzero components in u.
Let Σ be a set of q symbols. A q-ary code C of length n

over the alphabet Σ is a subset of Σn. Elements of C are
called codewords. For i ∈ [n], denote the ith coordinate of a
codeword u by ui. Endow the space Σn with the Hamming
distance metric. A code C ⊆ Σn is said to have distance d if
the (Hamming) distance between any two distinct codewords
of C is at least d. A q-ary code of length n and distance d is
called an (n, d)q-code. An (n, d)q-code whose codewords are
all of weight w is called an (n, d, w)q-constant weight code,
and is denoted by CW(n, d, w)q .

A. Binary Matrix Codes

Let m,n be positive integers and let Fm×n2 denote the set
of m×n matrices over F2. Let M ∈ Fm×n2 . We index the rows
of M by [m], the columns by [n], and let Mi,j be the (i, j)-th
entry of M. We denote the ith row by Mi,∗ and the jth column
by M∗,j . A binary (m× n)-matrix code C is hence a subset
of Fm×n2 . The code C is said to have constant column weight
w if each column of a matrix in C has weight w.

B. Concatenated Codes

Let B be an (n, dB)q-code over Σ and A be an (m, dA)2-
code with |A| ≥ q. Let ψ : Σ→ A be any injective mapping
and we write ψ(σ) as a binary column vector of length m.
Then the concatenated code A ◦ B defined by inner code A,
outer code B and mapping ψ is the following set of m × n
matrices over F2:

A ◦B = {M : M∗,j = ψ(uj), j ∈ [n], u ∈ B}.

The inner distance of A ◦ B is dA and its outer distance is
dB . The size of A ◦ B is |B|. Note that elements of A ◦ B
are binary m× n matrices, so A ◦B is a binary matrix code.
If in addition, A is a constant weight code of weight w, then
A ◦ B has constant column weight w and A ◦ B is called
an (m × n, dA, dB , w)-concatenated constant column weight
code, and is denoted by CCW(m× n, dA, dB , w).

3. CODED MODULATION WITH MULTITONE FSK
We modify Vinck’s coded modulation scheme to use a

binary matrix code in conjunction with multitone FSK, where
each symbol is signalled by a combination of w different tones
from an alphabet of m tones. We call such a multitone FSK
an
(
m
w

)
-FSK. An

(
m
1

)
-FSK corresponds to the single-tone FSK

used by Vinck.
Consider a binary (m × n)-matrix code C with constant

column weight w. Each codeword in C corresponds to a
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message. We use an
(
m
w

)
-FSK with alphabet {f1, f2, . . . , fm}.

To transmit a message corresponding to M ∈ C, we transmit
n symbols, each of which is signalled by a combination of
w tones, {fi : i ∈ [m],Mi,j = 1}, j ∈ [n], over n discrete
time steps. We can therefore think of each codeword in C as
having rows indexed by tones and columns indexed by time
steps. The rate of this code C is

R(C) =
log |C|
n log

(
m
w

) .
We remark that this definition of the rate captures the size of
the “space” when we use w frequencies in n time instances.
This differs from the definition in [10], [11] where the rate is
defined as the number of bits transmitted per channel use.

Example 3.1. The message corresponding to the codeword

M =


0 0 0 1 1
0 1 1 0 0
1 0 1 0 1
1 1 0 1 0


is transmitted via the sets of tones {f3, f4}, {f2, f4}, {f2, f3},
{f1, f4}, and {f1, f3} over five discrete time steps.

Assuming a hard-decision threshold detector, the received
signal (which may contain errors caused by noise) is demodu-
lated to an output N ∈ Fm×n2 . The burst errors that arise from
the different types of noises in the PLC channel (see [23, pp.
222–223]) have the following effects on the detector output.

(i) A narrowband noise introduces a tone at all time instances
of the transmitted signals. If e ∈ [m] and e narrowband
noise errors occur, then there is a set Γ ∈

(
[m]
e

)
of e rows,

such that Ni,j = 1 for i ∈ Γ, j ∈ [n].
(ii) Impulse noise results in the entire set of tones being

received at a certain time instance. If e ∈ [n] and e
impulse noise errors occur, then there is a set Π ∈

(
[n]
e

)
of e columns such that Ni,j = 1 for i ∈ [m], j ∈ Π.

(iii) A channel fade event erases a particular tone. If e ∈ [m],
and e fades occur then there is a set Γ ∈

(
[m]
e

)
of e rows

such that Ni,j = 0 for all j ∈ [n].
(iv) Background noise flips the value of the bit at a particular

tone and time instance. If e background noise occurs then
there exists a set Ω ∈

(
[n]×[m]

e

)
such that Ni,j = Mi,j+1,

for all (i, j) ∈ Ω.

More simply, a narrowband noise turns an entire row of N to
ones, an impulse noise turns an entire column of N to ones,
a channel fade event turns an entire row of N to zeros, and a
background noise flips an entry of N .

Example 3.2. Continuing Example 3.1, if one narrowband
noise error occur at frequency 1 and one impulse noise occur
at time instance 2, the resulting demodulated matrix is

N =

 1 1 1 1 1
0 1 1 0 0
1 1 1 0 1
1 1 0 1 0

 .

The next section describes a decoding algorithm for our
coded modulation scheme.

Algorithm 1: decoder for concatenated codes
Input: detector output N ∈ Fm×n

2

Output: N′ ∈ A ◦B
1 for j ∈ [n] do
2 if Ni,j = 1 for all i ∈ [m] then
3 vj ← ?
4 else
5 decode N∗,j to cj ∈ A
6 vj ← ψ−1(cj)
7 end
8 end
9 decode v to u ∈ B

10 for j ∈ [n] do
11 N′∗,j ← ψ(uj)
12 end
13 return N′

4. DECODING

We follow the usual method of decoding concatenated codes
by decoding the inner code first, followed by decoding the
outer code. Below, we present the sufficient conditions under
which correct decoding can be performed.

Let A ◦B be an (m× n, dA, dB , w)-concatenated constant
column weight code. Let Σ be the alphabet for B and ψ :
Σ→ A be the injective map defining A ◦B. For the code B
we use a bounded distance decoder that corrects both errors
and erasures, and for the code A we use a minimum distance
decoder which also corrects both errors and erasures. Suppose
the detector output is N ∈ Fm×n2 . We decode N to N′ ∈ A◦B
in two steps. First, we decode N to a codeword v ∈ (Σ∪{?})n,
where ? is the erasure symbol. For j ∈ [n], if the column
N∗,j is an all-one vector, we set the vj to be ?. Otherwise,
we decode the column N∗,j to a codeword in A, and using
ψ, convert this codeword to vj ∈ Σ. Next, we decode v to a
codeword u ∈ B. Using ψ again, we represent the codeword
u as a matrix N′ ∈ A ◦B. See Algorithm 1 for details.

The conditions for correct decoding are given in the fol-
lowing proposition. For simplicity, consider the case where
only narrowband noise and impulse noise are present. The
sufficient conditions can be readily extended to the case when
background noise and fading are also present.

Proposition 4.1. Let A ◦ B be an (m × n, dA, dB , w)-
concatenated constant column weight code. A ◦ B is able to
correct eNB narrowband noise errors and eIM impulse noise
errors if 2eNB < dA, eNB + w < m, and eIM < dB .

The inequality eNB + w < m captures the situation where
a column of all ones is not introduced by the presence of
narrowband noise errors.

5. CODE CONSTRUCTION

We are after concatenated codes with relative outer and/or
inner distances bounded away from zero (to guarantee good
error-correcting capabilities implied by Proposition 4.1), have
efficient decoding algorithms for decoding of outer and inner
codes, and have rates bounded away from zero. To achieve this,
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we use Reed-Solomon codes as outer codes. Denote a q-ary
Reed-Solomon code of length n, dimension k and minimum
distance d by RS[n, k, d]q . The following theorem gives a
general construction of an efficiently decodable concatenated
constant column weight code.

Theorem 5.1. Let n+1 be a prime power with n+1 ≤ |A|. Let
the outer code B be an RS[n, n − dB + 1, dB ]n+1 and inner
code A be a CW(m, dA, w)2. Then A ◦ B is a CCW(m ×
n, dA, dB , w) of rate (1 − (dB − 1)/n)(log n/ log

(
m
w

)
) and

decoding complexity O(n2) + O(n|A|).

We specialize Theorem 5.1 in two ways to give two families
of asymptotically good codes.
A. Codes from Block Designs

Our first specialization of Theorem 5.1 comes from ap-
plication of combinatorial designs. An (m,w, 1)-BIBD (bal-
anced incomplete block design) is a pair (X,B) such that
|X| = m and B is a set of w-subsets of X , called blocks,
with the property that every 2-subset of X is contained in
exactly one block. Wilson [24] showed that for every fixed
w, there exists an (m,w, 1)-BIBD for all sufficiently large
m satisfying the congruences m(m − 1) ≡ 0 mod w(w − 1)
and m − 1 ≡ 0 mod w − 1. The blocks of an (m,w, 1)-
BIBD form the supports of a CW(m, 2(w − 1), w)2 of size
m(m− 1)/(w(w − 1)).

Corollary 5.1 (Block Design Construction). Fix w ≥ 2 and
let 0 < δB < 1. Then there exists a CCW(m× n, dA, dB , w)
Cm, for all sufficiently large m satisfying m(m − 1) ≡
0 mod w(w − 1) and m− 1 ≡ 0 mod w − 1, where
(i) n = Θ(m2), (ii) dA = 2(w − 1), (iii) dB = dδBne.
Furthermore, this code family has the property that
limm→∞R(Cm) ≥ 2(1− δB)/w.

Proof: For sufficiently large m satisfying m(m − 1) ≡
0 mod w(w − 1) and m − 1 ≡ 0 mod w − 1, take a
CW(m, 2(w − 1), w)2 of size m(m − 1)/(w(w − 1)) as
inner code A. Let n + 1 be a prime power such that
m(m−1)/(2w(w−1)) ≤ n+1 ≤ m(m−1)/(w(w−1)), and
let dn = dδBne. Take an RS[n, n − dB + 1, dB ]n+1 as outer
code B. Then A ◦B is the desired CCW(m× n, dA, dB , w).

Conditions (i)–(iii) are immediate. The asymptotic rate of
the code family can be verified as follows:

lim
m→∞

(
1− dB − 1

n

)
log n

log
(
m
w

)
≥ (1− δB) lim

m→∞

log(m2/(2w(w − 1)))

logmw
≥ 2

(1− δB)

w
.

B. Codes via Gilbert-Varshamov Construction

Our second specialization is based on the Gilbert-
Varshamov construction. Levenshteı̆n [25] showed that when
applied to the space of constant weight vectors, the Gilbert-
Varshamov construction gives, for fixed positive δ, κ < 1, a
CW(m, δm, κm)2 of size at least 2m(H(κ)−s(δ,κ)), where

s(δ, κ) = max
0≤σ≤δ/2

κH(σ/κ) + (1− κ)H(σ/(1− κ)).

Corollary 5.2 (Gilbert-Varshamov Construction). Fix 0 <
δA < κ < 1/2, 0 < δB < 1. Then for m sufficiently large,
there exists a CCW(m× n, dA, dB , w) Cm such that
(i) n = Θ

(
2m(H(κ)−s(δA,κ))

)
, (ii) dA = dδAme ,

(iii) dB = dδBne , (iv) w = dκme.
Furthermore, this code family has the property that
limm→∞R(Cm) ≥ (1− δB)(1− s(δA, κ)/H(κ)).

6. SIMULATIONS

We simulate the performance of concatenated constant
column weight codes in the presence of narrowband noise.
The setup is as follows. Let m be the number of tones used,
n be the number of discrete time steps taken to transmit a
symbol, and 0 < p < 1. We simulate a PLC channel with the
following independent error characteristics:

(i) for each i ∈ [m], a narrowband noise error occurs at tone
i with probability p, and is present for a duration of δn,
where δ is chosen uniformly at random from the set [10],

(ii) for each j ∈ [n], an impulse noise error occurs at time
instance j with probability 0.05,

(iii) for each i ∈ [m], a channel fade event occurs at frequency
i with probability 0.05, and

(iv) for each i ∈ [m] and j ∈ [n], a background noise occurs
at frequency i and time instance j with probability 0.05.

We choose 105 random codewords M from each code under
comparison to transmit through the simulated PLC channel. At
the receiver, we decode the detector output N to the codeword
N′ using Algorithm 1. The number of symbols in error when
transmitting a codeword is then |{j ∈ [n] : M∗,j 6= N′∗,j}|,
and the error rate is the fraction of time steps in error.

We compare the performance of concatenated constant
column weight codes with low symbol weight cosets of RS
codes of similar rates. Such symbol weight codes were studied
by Versfeld et al. [13], [14]. A code C over alphabet Σ has
bounded symbol weight r if all symbols in Σ appears at most
r times in all codewords in C. Versfeld et al. [13], [14] showed
that there exists a coset of RS[n, k, n− k+ 1]q with bounded
symbol weight k. Denote such a code by RSC[n, k, n−k+1]q .

Consider an RSC[n, k, n− k+ 1]q . Identify the elements in
Fq with elements in [q] and for codeword u we transmit the
matrix M ∈ Fq×n2 , where

Mi,j =

{
1 if uj = i

0 otherwise.
At the receiver, we decode the detector output N to a codeword
u′ using the algorithm described in [13], [14]. The number of
symbols in error is then d(u, u′) and the error rate is the ratio
of the total number of symbols in error to the total number of
symbols transmitted.

We compare concatenated constant column weight codes
and low weight cosets of Reed-Solomon codes of similar rates.
The parameters of the codes under comparison are given in
Table I and the results of the simulations are given in Fig.
1. Observe that concatenated constant column weight codes
achieve significantly lower error rates as compared to the low
weight cosets of Reed-Solomon codes.
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TABLE I
COMPARING LOW SYMBOL WEIGHT COSETS OF REED-SOLOMON CODES AND CONCATENATED CONSTANT COLUMN WEIGHT CODES

Code Length Number of tones Rate Remarks
RSC[15, 8, 8]16 15 16 8/15 ≈ 0.533 coset of Reed-Solomon code

CW(9, 4, 4)2◦RS[15, 14, 2]16 15 9 (14 log 16)/(15 log 126) ≈ 0.535 concatenated constant column weight code
RSC[15, 5, 11]16 15 16 1/3 ≈ 0.333 coset of Reed-Solomon code

CW(13, 6, 5)2◦RS[15, 14, 2]16 15 13 (14 log 16)/(15 log 1287) ≈ 0.361 concatenated constant column weight code

Fig. 1. Comparing concatenated and Reed Solomon codes of similar rates

7. CONCLUSION

We introduce a coded modulation scheme for PLC based
on multitone FSK and concatenated constant column weight
codes. We construct families of efficiently decodable concate-
nated constant column weight codes for this scheme with rate
and relative distances bounded away from zero. Simulations
show our scheme achieves lower error rates as compared to
Vinck’s scheme based on low symbol weight cosets of Reed-
Solomon codes.
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