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If is desirable to have schemes with homomorphic properties whose
shares are small in comparison with the secret
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A is qualified if H(E0|EA) = H(E0|(Ei )pi∈A) = 0

A is forbidden if H(E0|EA) = H(E0)

The access structure of Σ is the pair Γ = (A,B) where

B is the family of authorized subsets

A is the family of forbidden subsets

Σ is perfect if A = B (wedefineA = P(P) \ A).
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∗, which are made public.

The dealer chooses a polynomial in K[x ] at random:
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It is perfect.
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If S is defined from Σ, then Γp0(S) is the access structure of Σ.
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For every scheme Σ, the value

σ(Σ) = max
i∈P

h({i})

is a measure of the efficiency of the scheme

Lemma

If Σ is a perfect scheme, then h({i}) ≥ 1 for every i ∈ P.
In particular, σ(Σ) ≥ 1.

The best possible situation for a perfect scheme is that h({i}) = 1 for
every i ∈ P. In this case, we say that Σ is ideal.
Its access structure is called ideal as well.
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Theorem (Brickell and Davenport)

Every ideal perfect secret sharing scheme defines a matroid.

Corollary

Every ideal perfect access structure is a matroid port.

Moreover, in this case the matroid is completely determined from the
access structure.

Theorem

The ports of representable matroids admit ideal secret sharing
schemes.
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For every A ⊆ Q,

if |A| = 1, then h(A) = 1

if |A| = 2, then h(A) = 2

...

if |A| = t , then h(A) = t

if |A| > t , then h(A) = t

This is the uniform matroid of rank t
It can also be determined from the access structure.

Every threshold access structure is the port of a uniform matroid.

Since the uniform matroid is representable, their matroid ports admit
ideal schemes.
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Motivation of this Work

We want to extend the Brickell-Davenport theorem to non-perfect
secret sharing schemes

We want to extend the notion of matroid port to non-perfect schemes

There are some previous works in this direction:

Kurosawa et al’94

Pailier’98
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Utility of Non-Perfect Secret Sharing Schemes

Advantage: the shares are k times smaller than the secret.
Disadvantage: some subsets may have partial information about the
secret

There are situations in which efficiency is more important than
perfectness

Example:
Some protocols in multiparty computation need:

efficient schemes

sets of size less than t are forbidden

big sets are authorized

a solution: ramp schemes and other non-perfect schemes
(Chen, Cramer, de Haan, Cascudo’08)
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Generalized Matroid Ports

Definition

Let M = (P ∪ R, h) be a matroid. The generalized port of the matroid
M at the set R is the access structure ΓR(M) = (A,B), where

A ∈ A iff h(A ∪ R) = h(A) + h(R)

A ∈ B iff h(A ∪ R) = h(A)

If |R| = 1, then it is a matroid port.

The access structure of the ramp scheme is a generalized matroid
port:

Consider the uniform matroid M of dimension t on P ∪ R, with
|R| = k

The access structure coincides with ΓR(M)
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Bounds on the Complexity(I)

Lemma

Let Σ be an secret sharing scheme with access structure Γ = (A,B).
Let

k = min{|B \ A| : B ∈ B,A ∈ A,A ⊆ B}

Then

σ(Σ) ≥
1
k

There exist access structures with schemes satisfying σ(Σ) = 1/k
that are not generalized ports of matroids.
Hence, this condition is not strong enough to imply the matroid
connection.

We need additional conditions
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Bounds on the Complexity (II)

Define h(A|B) = h(A ∪ B)− h(B) for every A,B ⊆ Q

For every scheme polymatroid S = (Q, h) with access structure
Γp0(S) = (A,B), we define

β(S) = min{h({p0}|C) : C ∈ B},

α(S) = min{h({p0})− h({p0}|C) : C ∈ A}.

If S is the polymatroid defined by a secret sharing scheme, we say
that β(S) and α(S) are the secrecy and co-secrecy of the scheme.

Proposition

Let S be defined by Σ. Then h({x}) ≥ max{α(S), β(S)}

In a perfect scheme, α(S) = β(S) = h({p0}).

Definition

A scheme is ideal if α(S) = β(S) = maxx∈P h({x}).
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Extension of Brickell-Davenport Theorem (II)

Theorem (Extension of Brickell-Davenport Theorem)

Let S = (Q, h) be a polymatroid with h({p0}) > 0 such that

h({x}) = α(S) = β(S) = 1

for every x ∈ P, then there is a matroid M = (P ∪ R, r) with
|R| = h({p0}) such that ΓR(M) = Γp0(S).

The theorem is of combinatorial nature. It uses

Brickell-Davenport theorem

Csirmaz’98 results

Duality

It provides a new combinatorial tool for the study of non-perfect
schemes.

It improves the connection found by Kurosawa et al’94. Our result is
more general
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Extension of Brickell-Davenport Theorem (III)

Corollary

Every ideal secret sharing scheme defines a matroid such that the
access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

In an access structure is ideal, we can determine uniquely its
associated matroid.

Corollary

Every ideal scheme satisfies
σ(Σ) = 1/min{|B \ A| : B ∈ B,A ∈ A,A ⊆ B}.

Theorem

The generalized ports of representable matroids are ideal access
structures



Open Problems and Future Work

We already have used this result to characterize some families of
ideal non-perfect access structures.

Some open problems and interesting topics are

construction of ideal non-perfect schemes with homomorphic
properties

construction of efficient schemes for interesting access
structures

characterization of ideal non-perfect access structures

bounds on the complexity of generalized matroid ports



Thank you
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