Extending Brickell-Davenport Theorem to Non-Perfect Secret Sharing Schemes

Oriol Farràs
Universitat Rovira i Virgili, Spain

a joint work with
Carles Padró

April 18, 2010
(1) Introduction to Secret Sharing
(2) Secret Sharing Schemes and Polymatroids
(3) Brickell-Davenport Theorem

4 Non-Perfect Secret Sharing Schemes
(5) Extension of Brickell-Davenport Theorem
(9) Introduction to Secret Sharing
(2) Secret Sharing Schemes and Polymatroids
(3) Brickell-Davenport Theorem
(4) Non-Perfect Secret Sharing Schemes
5. Extension of Brickell-Davenport Theorem

Secret Sharing Scheme

A method to protect a secret

Secret Sharing Scheme

A method to protect a secret

Secret Sharing Scheme

A method to protect a secret

Secret Sharing Scheme

A method to protect a secret

Secret Sharing Schemes: Overview

- Unconditionally secure

Secret Sharing Schemes: Overview

- Unconditionally secure
- Shamir ('79) and Blakley ('79)
- Unconditionally secure
- Shamir ('79) and Blakley ('79)

Cryptographic primitive with many applications

- Electronic elections
- Electronic biddings
- Distributed signatures
- Network Coding
- Database access
- Database computation

Multiparty computation protocols

- Unconditionally secure
- Shamir ('79) and Blakley ('79)

Cryptographic primitive with many applications

- Electronic elections
- Electronic biddings
- Distributed signatures
- Network Coding
- Database access
- Database computation

Multiparty computation protocols

If is desirable to have schemes with homomorphic properties whose shares are small in comparison with the secret

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\begin{aligned}
\Pi: & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\begin{aligned}
\Pi: & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\begin{aligned}
\Pi: & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\text { П: } \begin{aligned}
E & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

For every $A \subseteq P$,

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\begin{aligned}
\Pi: E & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

For every $A \subseteq P$,

- A is qualified if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0} \mid\left(E_{i}\right)_{p_{i} \in A}\right)=0$

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\begin{aligned}
\Pi: E & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

For every $A \subseteq P$,

- A is qualified if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0} \mid\left(E_{i}\right)_{p_{i} \in A}\right)=0$
- A is forbidden if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0}\right)$

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\begin{aligned}
\Pi: & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

For every $A \subseteq P$,

- A is qualified if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0} \mid\left(E_{i}\right)_{p_{i} \in A}\right)=0$
- A is forbidden if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0}\right)$

The access structure of Σ is the pair $\Gamma=(\mathcal{A}, \mathcal{B})$ where

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\begin{aligned}
\Pi: & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

For every $A \subseteq P$,

- A is qualified if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0} \mid\left(E_{i}\right)_{p_{i} \in A}\right)=0$
- A is forbidden if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0}\right)$

The access structure of Σ is the pair $\Gamma=(\mathcal{A}, \mathcal{B})$ where

- \mathcal{B} is the family of authorized subsets

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\text { П: } \begin{aligned}
E & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

For every $A \subseteq P$,

- A is qualified if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0} \mid\left(E_{i}\right)_{p_{i} \in A}\right)=0$
- A is forbidden if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0}\right)$

The access structure of Σ is the pair $\Gamma=(\mathcal{A}, \mathcal{B})$ where

- \mathcal{B} is the family of authorized subsets
- \mathcal{A} is the family of forbidden subsets

Definition of a Secret Sharing Scheme

A secret sharing scheme on the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of participants is a mapping

$$
\text { П: } \begin{aligned}
E & \rightarrow E_{0} \times E_{1} \times \cdots \times E_{n} \\
x & \mapsto\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)
\end{aligned}
$$

together with a probability distribution on E where

- $\pi_{0}(x) \in E_{0}$ is the secret value
- $\pi_{i}(x) \in E_{i}$ is the share for the player p_{i}

For every $A \subseteq P$,

- A is qualified if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0} \mid\left(E_{i}\right)_{p_{i} \in A}\right)=0$
- A is forbidden if $H\left(E_{0} \mid E_{A}\right)=H\left(E_{0}\right)$

The access structure of Σ is the pair $\Gamma=(\mathcal{A}, \mathcal{B})$ where

- \mathcal{B} is the family of authorized subsets
- \mathcal{A} is the family of forbidden subsets
Σ is perfect if $\overline{\mathcal{A}}=\mathcal{B}$ (wedefine $\overline{\mathcal{A}}=\mathcal{P}(P) \backslash \mathcal{A})$.

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}^{*}$, which are made public.

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}^{*}$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=s+a_{1} x+\cdots+a_{t} x^{t-1}
$$

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}^{*}$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=s+a_{1} x+\cdots+a_{t} x^{t-1}
$$

- and sends privately $f\left(x_{i}\right)$ to the i-th participant.

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}^{*}$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=s+a_{1} x+\cdots+a_{t} x^{t-1}
$$

- and sends privately $f\left(x_{i}\right)$ to the i-th participant.
- 「 $=(\mathcal{A}, \mathcal{B})$, where

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}^{*}$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=s+a_{1} x+\cdots+a_{t} x^{t-1}
$$

- and sends privately $f\left(x_{i}\right)$ to the i-th participant.
- 「 $=(\mathcal{A}, \mathcal{B})$, where
- $\mathcal{A}=\{A \subseteq P:|A| \leq t-1\}$

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}^{*}$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=s+a_{1} x+\cdots+a_{t} x^{t-1}
$$

- and sends privately $f\left(x_{i}\right)$ to the i-th participant.
- 「 $=(\mathcal{A}, \mathcal{B})$, where
- $\mathcal{A}=\{A \subseteq P:|A| \leq t-1\}$
- $\mathcal{B}=\{A \subseteq P:|A| \geq t\}$

Example:Shamir Secret Sharing Scheme (I)

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}^{*}$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=s+a_{1} x+\cdots+a_{t} x^{t-1}
$$

- and sends privately $f\left(x_{i}\right)$ to the i-th participant.
- 「 $=(\mathcal{A}, \mathcal{B})$, where
- $\mathcal{A}=\{A \subseteq P:|A| \leq t-1\}$
- $\mathcal{B}=\{A \subseteq P:|A| \geq t\}$

It is perfect.

(1) Introduction to Secret Sharing

2 Secret Sharing Schemes and Polymatroids
(3) Brickell-Davenport Theorem

4 Non-Perfect Secret Sharing Schemes
(5) Extension of Brickell-Davenport Theorem

Secret Sharing Schemes and Polymatroids (I)

Given a scheme Σ on P, we can define the function $h: \mathcal{P}(Q) \rightarrow \mathbb{R}$ with $Q=P \cup\left\{p_{0}\right\}$ as

$$
h(A)=\frac{H\left(E_{A}\right)}{H\left(E_{p_{0}}\right)} .
$$

This function satisfies that

- $h(A) \leq h(B)$ for every $A \subseteq B$

Given a scheme Σ on P, we can define the function $h: \mathcal{P}(Q) \rightarrow \mathbb{R}$ with $Q=P \cup\left\{p_{0}\right\}$ as

$$
h(A)=\frac{H\left(E_{A}\right)}{H\left(E_{p_{0}}\right)} .
$$

This function satisfies that

- $h(A) \leq h(B)$ for every $A \subseteq B$
- $h(A \cap B)+h(A \cup B) \leq h(A)+h(B)$ for every A, B

Given a scheme Σ on P, we can define the function $h: \mathcal{P}(Q) \rightarrow \mathbb{R}$ with $Q=P \cup\left\{p_{0}\right\}$ as

$$
h(A)=\frac{H\left(E_{A}\right)}{H\left(E_{p_{0}}\right)} .
$$

This function satisfies that

- $h(A) \leq h(B)$ for every $A \subseteq B$
- $h(A \cap B)+h(A \cup B) \leq h(A)+h(B)$ for every A, B

Hence the pair $\mathcal{S}=(Q, h)$ is a polymatroid (Fujishige'78, Csirmaz'97).

Given a scheme Σ on P, we can define the function $h: \mathcal{P}(Q) \rightarrow \mathbb{R}$ with $Q=P \cup\left\{p_{0}\right\}$ as

$$
h(A)=\frac{H\left(E_{A}\right)}{H\left(E_{p_{0}}\right)} .
$$

This function satisfies that

- $h(A) \leq h(B)$ for every $A \subseteq B$
- $h(A \cap B)+h(A \cup B) \leq h(A)+h(B)$ for every A, B

Hence the pair $\mathcal{S}=(Q, h)$ is a polymatroid (Fujishige'78, Csirmaz'97).

For every polymatroid $\mathcal{S}=(Q, h)$ with $h\left(\left\{p_{0}\right\}\right)>0$ we define
$\Gamma_{p_{0}}(\mathcal{S})=(\mathcal{A}, \mathcal{B})$ as the access structure with:

- $A \in \mathcal{A}$ iff $h\left(A \cup\left\{p_{0}\right\}\right)=h(A)+h\left(\left\{p_{0}\right\}\right)$
- $A \in \mathcal{B}$ iff $h\left(A \cup\left\{p_{0}\right\}\right)=h(A)$

Given a scheme Σ on P, we can define the function $h: \mathcal{P}(Q) \rightarrow \mathbb{R}$ with $Q=P \cup\left\{p_{0}\right\}$ as

$$
h(A)=\frac{H\left(E_{A}\right)}{H\left(E_{p_{0}}\right)} .
$$

This function satisfies that

- $h(A) \leq h(B)$ for every $A \subseteq B$
- $h(A \cap B)+h(A \cup B) \leq h(A)+h(B)$ for every A, B

Hence the pair $\mathcal{S}=(Q, h)$ is a polymatroid (Fujishige'78, Csirmaz'97).

For every polymatroid $\mathcal{S}=(Q, h)$ with $h\left(\left\{p_{0}\right\}\right)>0$ we define
$\Gamma_{p_{0}}(\mathcal{S})=(\mathcal{A}, \mathcal{B})$ as the access structure with:

- $A \in \mathcal{A}$ iff $h\left(A \cup\left\{p_{0}\right\}\right)=h(A)+h\left(\left\{p_{0}\right\}\right)$
- $A \in \mathcal{B}$ iff $h\left(A \cup\left\{p_{0}\right\}\right)=h(A)$

If \mathcal{S} is defined from Σ, then $\Gamma_{p_{0}}(\mathcal{S})$ is the access structure of Σ.

Schemes and Polymatroids (II)

For every scheme Σ, the value

$$
\sigma(\Sigma)=\max _{i \in P} h(\{i\})
$$

is a measure of the efficiency of the scheme

For every scheme Σ, the value

$$
\sigma(\Sigma)=\max _{i \in P} h(\{i\})
$$

is a measure of the efficiency of the scheme

Lemma

If Σ is a perfect scheme, then $h(\{i\}) \geq 1$ for every $i \in P$. In particular, $\sigma(\Sigma) \geq 1$.

For every scheme Σ, the value

$$
\sigma(\Sigma)=\max _{i \in P} h(\{i\})
$$

is a measure of the efficiency of the scheme

Lemma

If Σ is a perfect scheme, then $h(\{i\}) \geq 1$ for every $i \in P$. In particular, $\sigma(\Sigma) \geq 1$.

The best possible situation for a perfect scheme is that $h(\{i\})=1$ for every $i \in P$. In this case, we say that Σ is ideal. Its access structure is called ideal as well.
(1) Introduction to Secret Sharing
(2) Secret Sharing Schemes and Polymatroids

3 Brickell-Davenport Theorem
(4) Non-Perfect Secret Sharing Schemes
(5) Extension of Brickell-Davenport Theorem

Ideal Schemes and Matroids

A matroid $M=(Q, h)$ is a polymatroid in which

- h is integer valued, and
- $h(A) \leq|A|$ for every $A \subseteq Q$

An access structure Γ is matroid port if there exists a matroid M such that $\Gamma=\Gamma_{p_{0}}(M)$

Ideal Schemes and Matroids

A matroid $M=(Q, h)$ is a polymatroid in which

- h is integer valued, and
- $h(A) \leq|A|$ for every $A \subseteq Q$

An access structure Γ is matroid port if there exists a matroid M such that $\Gamma=\Gamma_{p_{0}}(M)$

Theorem (Brickell and Davenport)

Every ideal perfect secret sharing scheme defines a matroid.

Theorem (Brickell and Davenport)
Every ideal perfect secret sharing scheme defines a matroid.

Theorem (Brickell and Davenport)

Every ideal perfect secret sharing scheme defines a matroid.

Corollary

Every ideal perfect access structure is a matroid port.

Theorem (Brickell and Davenport)

Every ideal perfect secret sharing scheme defines a matroid.

Corollary

Every ideal perfect access structure is a matroid port.

Moreover, in this case the matroid is completely determined from the access structure.

Theorem (Brickell and Davenport)

Every ideal perfect secret sharing scheme defines a matroid.

Corollary

Every ideal perfect access structure is a matroid port.

Moreover, in this case the matroid is completely determined from the access structure.

Theorem

The ports of representable matroids admit ideal secret sharing schemes.

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$
- if $|A|=2$, then $h(A)=2$

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$
- if $|A|=2$, then $h(A)=2$
- ...

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$
- if $|A|=2$, then $h(A)=2$
- ...
- if $|A|=t$, then $h(A)=t$

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$
- if $|A|=2$, then $h(A)=2$
- ...
- if $|A|=t$, then $h(A)=t$
- if $|A|>t$, then $h(A)=t$

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$
- if $|A|=2$, then $h(A)=2$
- ...
- if $|A|=t$, then $h(A)=t$
- if $|A|>t$, then $h(A)=t$

This is the uniform matroid of rank t
It can also be determined from the access structure.

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$
- if $|A|=2$, then $h(A)=2$
- ...
- if $|A|=t$, then $h(A)=t$
- if $|A|>t$, then $h(A)=t$

This is the uniform matroid of rank t
It can also be determined from the access structure.

Every threshold access structure is the port of a uniform matroid.

Example:Shamir Secret Sharing Scheme

For every $A \subseteq Q$,

- if $|A|=1$, then $h(A)=1$
- if $|A|=2$, then $h(A)=2$
- ...
- if $|A|=t$, then $h(A)=t$
- if $|A|>t$, then $h(A)=t$

This is the uniform matroid of rank t
It can also be determined from the access structure.

Every threshold access structure is the port of a uniform matroid.

Since the uniform matroid is representable, their matroid ports admit ideal schemes.

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)
- ideal weighted threshold secret sharing schemes (Beimel, Weinreb, Tassa'08)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)
- ideal weighted threshold secret sharing schemes (Beimel, Weinreb, Tassa'08)
- ideal hierarchical secret sharing schemes (Farràs, Padró'10)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)
- ideal weighted threshold secret sharing schemes (Beimel, Weinreb, Tassa'08)
- ideal hierarchical secret sharing schemes (Farràs, Padró'10)

We want to extend the Brickell-Davenport theorem to non-perfect secret sharing schemes

We want to extend the Brickell-Davenport theorem to non-perfect secret sharing schemes

We want to extend the notion of matroid port to non-perfect schemes

We want to extend the Brickell-Davenport theorem to non-perfect secret sharing schemes

We want to extend the notion of matroid port to non-perfect schemes

There are some previous works in this direction:

- Kurosawa et al'94
- Pailier'98
(1) Introduction to Secret Sharing
(2) Secret Sharing Schemes and Polymatroids
(3) Brickell-Davenport Theorem

4 Non-Perfect Secret Sharing Schemes
(5) Extension of Brickell-Davenport Theorem

Example: Shamir-based Non-perfect Secret Sharing

 SchemeIt is called ramp scheme:

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathbb{K}^{k}$, a finite field.

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathbb{K}^{k}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathbb{K}^{k}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}$, which are made public

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathbb{K}^{k}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t-1}
$$

satisfying that $f\left(y_{i}\right)=s_{i}$ for $i=1, \ldots, k$

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathbb{K}^{k}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t-1}
$$

satisfying that $f\left(y_{i}\right)=s_{i}$ for $i=1, \ldots, k$

- The dealer sends privately $f\left(x_{i}\right)$ to the i-th participant.

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathbb{K}^{k}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t-1}
$$

satisfying that $f\left(y_{i}\right)=s_{i}$ for $i=1, \ldots, k$

- The dealer sends privately $f\left(x_{i}\right)$ to the i-th participant.
- $\Gamma=(\mathcal{A}, \mathcal{B})$, where $\mathcal{A}=\{A \subseteq P:|A| \leq t-k\}$ and $\mathcal{B}=\{A \subseteq P:|A| \geq t\}$

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathbb{K}^{k}$, a finite field.
- Set of participants $P=\{1, \ldots, n\}$.
- The dealer chooses $\left\{y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{n}\right\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t-1}
$$

satisfying that $f\left(y_{i}\right)=s_{i}$ for $i=1, \ldots, k$

- The dealer sends privately $f\left(x_{i}\right)$ to the i-th participant.
- $\Gamma=(\mathcal{A}, \mathcal{B})$, where $\mathcal{A}=\{A \subseteq P:|A| \leq t-k\}$ and $\mathcal{B}=\{A \subseteq P:|A| \geq t\}$

Advantage: the shares are k times smaller than the secret.

Utility of Non-Perfect Secret Sharing Schemes

Advantage: the shares are k times smaller than the secret.
Disadvantage: some subsets may have partial information about the secret

Advantage: the shares are k times smaller than the secret.
Disadvantage: some subsets may have partial information about the secret

There are situations in which efficiency is more important than perfectness

Utility of Non-Perfect Secret Sharing Schemes

Advantage: the shares are k times smaller than the secret.
Disadvantage: some subsets may have partial information about the secret

There are situations in which efficiency is more important than perfectness

Example:
Some protocols in multiparty computation need:

- efficient schemes
- sets of size less than t are forbidden
- big sets are authorized
- a solution: ramp schemes and other non-perfect schemes (Chen, Cramer, de Haan, Cascudo'08)

Definition

Let $M=(P \cup R, h)$ be a matroid. The generalized port of the matroid M at the set R is the access structure $\Gamma_{R}(M)=(\mathcal{A}, \mathcal{B})$, where

- $A \in \mathcal{A}$ iff $h(A \cup R)=h(A)+h(R)$
- $A \in \mathcal{B}$ iff $h(A \cup R)=h(A)$

Definition

Let $M=(P \cup R, h)$ be a matroid. The generalized port of the matroid M at the set R is the access structure $\Gamma_{R}(M)=(\mathcal{A}, \mathcal{B})$, where

- $A \in \mathcal{A}$ iff $h(A \cup R)=h(A)+h(R)$
- $A \in \mathcal{B}$ iff $h(A \cup R)=h(A)$

If $|R|=1$, then it is a matroid port.

Definition

Let $M=(P \cup R, h)$ be a matroid. The generalized port of the matroid M at the set R is the access structure $\Gamma_{R}(M)=(\mathcal{A}, \mathcal{B})$, where

- $A \in \mathcal{A}$ iff $h(A \cup R)=h(A)+h(R)$
- $A \in \mathcal{B}$ iff $h(A \cup R)=h(A)$

If $|R|=1$, then it is a matroid port.

The access structure of the ramp scheme is a generalized matroid port:

- Consider the uniform matroid M of dimension t on $P \cup R$, with $|R|=k$
- The access structure coincides with $\Gamma_{R}(M)$

Bounds on the Complexity(I)

Lemma

Let Σ be an secret sharing scheme with access structure $\Gamma=(\mathcal{A}, \mathcal{B})$. Let

$$
k=\min \{|B \backslash A|: B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}
$$

Then

$$
\sigma(\Sigma) \geq \frac{1}{k}
$$

Lemma
Let Σ be an secret sharing scheme with access structure $\Gamma=(\mathcal{A}, \mathcal{B})$. Let

$$
k=\min \{|B \backslash A|: B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}
$$

Then

$$
\sigma(\Sigma) \geq \frac{1}{k}
$$

There exist access structures with schemes satisfying $\sigma(\Sigma)=1 / k$ that are not generalized ports of matroids.
Hence, this condition is not strong enough to imply the matroid connection.

Lemma
Let Σ be an secret sharing scheme with access structure $\Gamma=(\mathcal{A}, \mathcal{B})$. Let

$$
k=\min \{|B \backslash A|: B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}
$$

Then

$$
\sigma(\Sigma) \geq \frac{1}{k}
$$

There exist access structures with schemes satisfying $\sigma(\Sigma)=1 / k$ that are not generalized ports of matroids.
Hence, this condition is not strong enough to imply the matroid connection.

We need additional conditions

Define $h(A \mid B)=h(A \cup B)-h(B)$ for every $A, B \subseteq Q$

Define $h(A \mid B)=h(A \cup B)-h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid $\mathcal{S}=(Q, h)$ with access structure $\Gamma_{p_{0}}(\mathcal{S})=(\mathcal{A}, \mathcal{B})$, we define

- $\beta(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{B}}\right\}$,
- $\alpha(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\}\right)-h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{A}}\right\}$.

If \mathcal{S} is the polymatroid defined by a secret sharing scheme, we say that $\beta(\mathcal{S})$ and $\alpha(\mathcal{S})$ are the secrecy and co-secrecy of the scheme.

Define $h(A \mid B)=h(A \cup B)-h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid $\mathcal{S}=(Q, h)$ with access structure $\Gamma_{p_{0}}(\mathcal{S})=(\mathcal{A}, \mathcal{B})$, we define

- $\beta(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{B}}\right\}$,
- $\alpha(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\}\right)-h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{A}}\right\}$.

If \mathcal{S} is the polymatroid defined by a secret sharing scheme, we say that $\beta(\mathcal{S})$ and $\alpha(\mathcal{S})$ are the secrecy and co-secrecy of the scheme.

Proposition

Let \mathcal{S} be defined by Σ. Then $h(\{x\}) \geq \max \{\alpha(\mathcal{S}), \beta(\mathcal{S})\}$

Define $h(A \mid B)=h(A \cup B)-h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid $\mathcal{S}=(Q, h)$ with access structure $\Gamma_{p_{0}}(\mathcal{S})=(\mathcal{A}, \mathcal{B})$, we define

- $\beta(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{B}}\right\}$,
- $\alpha(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\}\right)-h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{A}}\right\}$.

If \mathcal{S} is the polymatroid defined by a secret sharing scheme, we say that $\beta(\mathcal{S})$ and $\alpha(\mathcal{S})$ are the secrecy and co-secrecy of the scheme.

Proposition

Let \mathcal{S} be defined by Σ. Then $h(\{x\}) \geq \max \{\alpha(\mathcal{S}), \beta(\mathcal{S})\}$

- In a perfect scheme, $\alpha(\mathcal{S})=\beta(\mathcal{S})=h\left(\left\{p_{0}\right\}\right)$.

Bounds on the Complexity (II)

Define $h(A \mid B)=h(A \cup B)-h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid $\mathcal{S}=(Q, h)$ with access structure $\Gamma_{p_{0}}(\mathcal{S})=(\mathcal{A}, \mathcal{B})$, we define

- $\beta(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{B}}\right\}$,
- $\alpha(\mathcal{S})=\min \left\{h\left(\left\{p_{0}\right\}\right)-h\left(\left\{p_{0}\right\} \mid C\right): C \in \overline{\mathcal{A}}\right\}$.

If \mathcal{S} is the polymatroid defined by a secret sharing scheme, we say that $\beta(\mathcal{S})$ and $\alpha(\mathcal{S})$ are the secrecy and co-secrecy of the scheme.

Proposition

Let \mathcal{S} be defined by Σ. Then $h(\{x\}) \geq \max \{\alpha(\mathcal{S}), \beta(\mathcal{S})\}$

- In a perfect scheme, $\alpha(\mathcal{S})=\beta(\mathcal{S})=h\left(\left\{p_{0}\right\}\right)$.

Definition

A scheme is ideal if $\alpha(\mathcal{S})=\beta(\mathcal{S})=\max _{x \in P} h(\{x\})$.
(1) Introduction to Secret Sharing
(2) Secret Sharing Schemes and Polymatroids

3 Brickell-Davenport Theorem
(4) Non-Perfect Secret Sharing Schemes
(5) Extension of Brickell-Davenport Theorem

Extension of Brickell-Davenport Theorem

Theorem (Brickell-Davenport)

Let $\mathcal{S}=(Q, h)$ be a polymatroid with $h\left(\left\{p_{0}\right\}\right)=1$ such that $\Gamma_{p_{0}}(\mathcal{S})$ is perfect and

$$
h(\{x\})=1
$$

for every $x \in P$. Then \mathcal{S} is a matroid.

Theorem (Brickell-Davenport)

Let $\mathcal{S}=(Q, h)$ be a polymatroid with $h\left(\left\{p_{0}\right\}\right)=1$ such that $\Gamma_{p_{0}}(\mathcal{S})$ is perfect and

$$
h(\{x\})=1
$$

for every $x \in P$. Then \mathcal{S} is a matroid.

Theorem (Extension of Brickell-Davenport Theorem)

Let $\mathcal{S}=(Q, h)$ be a polymatroid with $h\left(\left\{p_{0}\right\}\right)>1$ such that

$$
h(\{x\})=\alpha(\mathcal{S})=\beta(\mathcal{S})=1
$$

for every $x \in P$. Then there is a matroid $M=(P \cup R, r)$ with $|R|=h\left(\left\{p_{0}\right\}\right)$ such that $\Gamma_{R}(M)=\Gamma_{p_{0}}(\mathcal{S})$.

Extension of Brickell-Davenport Theorem (II)

Theorem (Extension of Brickell-Davenport Theorem)

Let $\mathcal{S}=(Q, h)$ be a polymatroid with $h\left(\left\{p_{0}\right\}\right)>0$ such that

$$
h(\{x\})=\alpha(\mathcal{S})=\beta(\mathcal{S})=1
$$

for every $x \in P$, then there is a matroid $M=(P \cup R, r)$ with $|R|=h\left(\left\{p_{0}\right\}\right)$ such that $\Gamma_{R}(M)=\Gamma_{p_{0}}(\mathcal{S})$.

Extension of Brickell-Davenport Theorem (II)

Theorem (Extension of Brickell-Davenport Theorem)

Let $\mathcal{S}=(Q, h)$ be a polymatroid with $h\left(\left\{p_{0}\right\}\right)>0$ such that

$$
h(\{x\})=\alpha(\mathcal{S})=\beta(\mathcal{S})=1
$$

for every $x \in P$, then there is a matroid $M=(P \cup R, r)$ with $|R|=h\left(\left\{p_{0}\right\}\right)$ such that $\Gamma_{R}(M)=\Gamma_{p_{0}}(\mathcal{S})$.

The theorem is of combinatorial nature. It uses

- Brickell-Davenport theorem
- Csirmaz'98 results
- Duality

Extension of Brickell-Davenport Theorem (II)

Theorem (Extension of Brickell-Davenport Theorem)

Let $\mathcal{S}=(Q, h)$ be a polymatroid with $h\left(\left\{p_{0}\right\}\right)>0$ such that

$$
h(\{x\})=\alpha(\mathcal{S})=\beta(\mathcal{S})=1
$$

for every $x \in P$, then there is a matroid $M=(P \cup R, r)$ with $|R|=h\left(\left\{p_{0}\right\}\right)$ such that $\Gamma_{R}(M)=\Gamma_{p_{0}}(\mathcal{S})$.

The theorem is of combinatorial nature. It uses

- Brickell-Davenport theorem
- Csirmaz'98 results
- Duality

It provides a new combinatorial tool for the study of non-perfect schemes.

Extension of Brickell-Davenport Theorem (II)

Theorem (Extension of Brickell-Davenport Theorem)

Let $\mathcal{S}=(Q, h)$ be a polymatroid with $h\left(\left\{p_{0}\right\}\right)>0$ such that

$$
h(\{x\})=\alpha(\mathcal{S})=\beta(\mathcal{S})=1
$$

for every $x \in P$, then there is a matroid $M=(P \cup R, r)$ with $|R|=h\left(\left\{p_{0}\right\}\right)$ such that $\Gamma_{R}(M)=\Gamma_{p_{0}}(\mathcal{S})$.

The theorem is of combinatorial nature. It uses

- Brickell-Davenport theorem
- Csirmaz'98 results
- Duality

It provides a new combinatorial tool for the study of non-perfect schemes.

It improves the connection found by Kurosawa et al'94. Our result is more general

Extension of Brickell-Davenport Theorem (III)

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Extension of Brickell-Davenport Theorem (III)

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

Extension of Brickell-Davenport Theorem (III)

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

In an access structure is ideal, we can determine uniquely its associated matroid.

Extension of Brickell-Davenport Theorem (III)

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

In an access structure is ideal, we can determine uniquely its associated matroid.

Corollary

Every ideal scheme satisfies
$\sigma(\Sigma)=1 / \min \{|B \backslash A|: B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}$.

Extension of Brickell-Davenport Theorem (III)

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

In an access structure is ideal, we can determine uniquely its associated matroid.

Corollary

Every ideal scheme satisfies
$\sigma(\Sigma)=1 / \min \{|B \backslash A|: B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}$.

Theorem

The generalized ports of representable matroids are ideal access structures

Open Problems and Future Work

We already have used this result to characterize some families of ideal non-perfect access structures.

Some open problems and interesting topics are

- construction of ideal non-perfect schemes with homomorphic properties
- construction of efficient schemes for interesting access structures
- characterization of ideal non-perfect access structures
- bounds on the complexity of generalized matroid ports

Thank you

