Extending Brickell-Davenport Theorem to Non-Perfect Secret Sharing Schemes

Oriol Farràs Universitat Rovira i Virgili, Spain

a joint work with Carles Padró

April 18, 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Program

Introduction to Secret Sharing

- Secret Sharing Schemes and Polymatroids
- Brickell-Davenport Theorem
- Mon-Perfect Secret Sharing Schemes
- 5 Extension of Brickell-Davenport Theorem

Unconditionally secure

▲□▶▲□▼▲□▼▲□▼ ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Unconditionally secure
- Shamir ('79) and Blakley ('79)

- Unconditionally secure
- Shamir ('79) and Blakley ('79)

Cryptographic primitive with many applications

- Electronic elections
- Electronic biddings
- Distributed signatures
- Network Coding
- Database access
- Database computation
- ...

Multiparty computation protocols

- Unconditionally secure
- Shamir ('79) and Blakley ('79)

Cryptographic primitive with many applications

- Electronic elections
- Electronic biddings
- Distributed signatures
- Network Coding
- Database access
- Database computation
- ...

Multiparty computation protocols

If is desirable to have schemes with homomorphic properties whose shares are small in comparison with the secret

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

1:
$$E \rightarrow E_0 \times E_1 \times \cdots \times E_n$$

 $x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

together with a probability distribution on E where

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

1:
$$E \rightarrow E_0 \times E_1 \times \cdots \times E_n$$

 $x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$

together with a probability distribution on E where

• $\pi_0(x) \in E_0$ is the secret value

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

$$\exists : E \to E_0 \times E_1 \times \cdots \times E_n \\ x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

1:
$$E \rightarrow E_0 \times E_1 \times \cdots \times E_n$$

 $x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

For every $A \subseteq P$,

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

$$\exists : E \to E_0 \times E_1 \times \cdots \times E_n \\ x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

For every $A \subseteq P$,

• A is qualified if $H(E_0|E_A) = H(E_0|(E_i)_{p_i \in A}) = 0$

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

$$\exists : E \to E_0 \times E_1 \times \cdots \times E_n \\ x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

For every $A \subseteq P$,

- A is qualified if $H(E_0|E_A) = H(E_0|(E_i)_{p_i \in A}) = 0$
- A is forbidden if $H(E_0|E_A) = H(E_0)$

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

$$\exists : E \to E_0 \times E_1 \times \cdots \times E_n \\ x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

For every $A \subseteq P$,

- A is qualified if $H(E_0|E_A) = H(E_0|(E_i)_{p_i \in A}) = 0$
- A is forbidden if $H(E_0|E_A) = H(E_0)$

The access structure of Σ is the pair $\Gamma = (\mathcal{A}, \mathcal{B})$ where

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

$$\exists: E \to E_0 \times E_1 \times \cdots \times E_n \\ x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

For every $A \subseteq P$,

- A is qualified if $H(E_0|E_A) = H(E_0|(E_i)_{p_i \in A}) = 0$
- A is forbidden if $H(E_0|E_A) = H(E_0)$

The access structure of Σ is the pair $\Gamma = (\mathcal{A}, \mathcal{B})$ where

• B is the family of authorized subsets

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

$$\exists : E \to E_0 \times E_1 \times \cdots \times E_n \\ x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

For every $A \subseteq P$,

- A is qualified if $H(E_0|E_A) = H(E_0|(E_i)_{p_i \in A}) = 0$
- A is forbidden if $H(E_0|E_A) = H(E_0)$

The access structure of Σ is the pair $\Gamma = (\mathcal{A}, \mathcal{B})$ where

- B is the family of authorized subsets
- A is the family of forbidden subsets

A secret sharing scheme on the set $P = \{p_1, ..., p_n\}$ of participants is a mapping

$$\exists: E \to E_0 \times E_1 \times \cdots \times E_n \\ x \mapsto (\pi_0(x), \pi_1(x), \dots, \pi_n(x))$$

together with a probability distribution on E where

- $\pi_0(x) \in E_0$ is the secret value
- $\pi_i(x) \in E_i$ is the share for the player p_i

For every $A \subseteq P$,

- A is qualified if $H(E_0|E_A) = H(E_0|(E_i)_{p_i \in A}) = 0$
- A is forbidden if $H(E_0|E_A) = H(E_0)$

The access structure of Σ is the pair $\Gamma = (\mathcal{A}, \mathcal{B})$ where

- B is the family of authorized subsets
- A is the family of forbidden subsets

 Σ is perfect if $\overline{\mathcal{A}} = \mathcal{B}$ (wedefine $\overline{\mathcal{A}} = \mathcal{P}(P) \setminus \mathcal{A}$).

Shamir secret sharing scheme ('79):

Shamir secret sharing scheme ('79):

• Secret value $s \in \mathbb{K}$, a finite field.

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{x_1, \ldots, x_n\} \in \mathbb{K}^*$, which are made public.

(日) (圖) (E) (E) (E) [E]

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{x_1, \ldots, x_n\} \in \mathbb{K}^*$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(\mathbf{x}) = \mathbf{s} + \mathbf{a}_1 \mathbf{x} + \dots + \mathbf{a}_t \mathbf{x}^{t-1}$$

(日) (圖) (E) (E) (E) [E]

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{x_1, \ldots, x_n\} \in \mathbb{K}^*$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(\mathbf{x}) = \mathbf{s} + a_1 \mathbf{x} + \cdots + a_t \mathbf{x}^{t-1}$$

• and sends privately $f(x_i)$ to the *i*-th participant.

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{x_1, \ldots, x_n\} \in \mathbb{K}^*$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = \mathbf{s} + a_1 x + \cdots + a_t x^{t-1}$$

- and sends privately $f(x_i)$ to the *i*-th participant.
- $\Gamma = (\mathcal{A}, \mathcal{B})$, where

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{x_1, \ldots, x_n\} \in \mathbb{K}^*$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = \mathbf{s} + a_1 x + \cdots + a_t x^{t-1}$$

• and sends privately $f(x_i)$ to the *i*-th participant.

•
$$\Gamma = (\mathcal{A}, \mathcal{B})$$
, where

•
$$\mathcal{A} = \{ A \subseteq P : |A| \leq t - 1 \}$$

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{x_1, \ldots, x_n\} \in \mathbb{K}^*$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = \mathbf{s} + a_1 x + \cdots + a_t x^{t-1}$$

• and sends privately $f(x_i)$ to the *i*-th participant.

•
$$\mathcal{A} = \{ A \subseteq P : |A| \le t - 1 \}$$

•
$$\mathcal{B} = \{A \subseteq P : |A| \ge t\}$$

Shamir secret sharing scheme ('79):

- Secret value $s \in \mathbb{K}$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{x_1, \ldots, x_n\} \in \mathbb{K}^*$, which are made public.
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = \mathbf{s} + a_1 x + \cdots + a_t x^{t-1}$$

• and sends privately $f(x_i)$ to the *i*-th participant.

•
$$\Gamma = (\mathcal{A}, \mathcal{B})$$
, where

•
$$\mathcal{A} = \{ A \subseteq P : |A| \le t - 1 \}$$

•
$$\mathcal{B} = \{ A \subseteq P : |A| \ge t \}$$

It is perfect.

- 2 Secret Sharing Schemes and Polymatroids
- 3 Brickell-Davenport Theorem
- Non-Perfect Secret Sharing Schemes
- 5 Extension of Brickell-Davenport Theorem

Given a scheme Σ on P, we can define the function $h : \mathcal{P}(Q) \to \mathbb{R}$ with $Q = P \cup \{p_0\}$ as

$$h(A) = rac{H(E_A)}{H(E_{
ho_0})}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

This function satisfies that

• $h(A) \leq h(B)$ for every $A \subseteq B$

Given a scheme Σ on P, we can define the function $h : \mathcal{P}(Q) \to \mathbb{R}$ with $Q = P \cup \{p_0\}$ as

$$h(A)=rac{H(E_A)}{H(E_{
ho_0})}.$$

This function satisfies that

- $h(A) \leq h(B)$ for every $A \subseteq B$
- $h(A \cap B) + h(A \cup B) \le h(A) + h(B)$ for every A, B

Given a scheme Σ on P, we can define the function $h : \mathcal{P}(Q) \to \mathbb{R}$ with $Q = P \cup \{p_0\}$ as

$$h(A)=rac{H(E_A)}{H(E_{
ho_0})}.$$

This function satisfies that

- $h(A) \leq h(B)$ for every $A \subseteq B$
- $h(A \cap B) + h(A \cup B) \le h(A) + h(B)$ for every A, B

Hence the pair S = (Q, h) is a polymatroid (Fujishige'78, Csirmaz'97).

・ロト・日本・日本・日本・日本

Given a scheme Σ on P, we can define the function $h : \mathcal{P}(Q) \to \mathbb{R}$ with $Q = P \cup \{p_0\}$ as

$$h(A)=rac{H(E_A)}{H(E_{
ho_0})}.$$

This function satisfies that

• $h(A) \leq h(B)$ for every $A \subseteq B$

• $h(A \cap B) + h(A \cup B) \le h(A) + h(B)$ for every A, B

Hence the pair S = (Q, h) is a polymatroid (Fujishige'78, Csirmaz'97).

(日) (日) (日) (日) (日) (日) (日) (日)

For every polymatroid S = (Q, h) with $h(\{p_0\}) > 0$ we define $\Gamma_{p_0}(S) = (\mathcal{A}, \mathcal{B})$ as the access structure with:

- $A \in \mathcal{A}$ iff $h(A \cup \{p_0\}) = h(A) + h(\{p_0\})$
- $A \in \mathcal{B}$ iff $h(A \cup \{p_0\}) = h(A)$

Secret Sharing Schemes and Polymatroids (I)

Given a scheme Σ on P, we can define the function $h : \mathcal{P}(Q) \to \mathbb{R}$ with $Q = P \cup \{p_0\}$ as

$$h(A)=rac{H(E_A)}{H(E_{
ho_0})}.$$

This function satisfies that

• $h(A) \leq h(B)$ for every $A \subseteq B$

• $h(A \cap B) + h(A \cup B) \le h(A) + h(B)$ for every A, B

Hence the pair S = (Q, h) is a polymatroid (Fujishige'78, Csirmaz'97).

For every polymatroid S = (Q, h) with $h(\{p_0\}) > 0$ we define $\Gamma_{p_0}(S) = (A, B)$ as the access structure with:

- $A \in \mathcal{A}$ iff $h(A \cup \{p_0\}) = h(A) + h(\{p_0\})$
- $A \in \mathcal{B}$ iff $h(A \cup \{p_0\}) = h(A)$

If S is defined from Σ , then $\Gamma_{p_0}(S)$ is the access structure of Σ .

Schemes and Polymatroids (II)

For every scheme Σ , the value

 $\sigma(\Sigma) = \max_{i \in P} h(\{i\})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

is a measure of the efficiency of the scheme

For every scheme Σ , the value

 $\sigma(\Sigma) = \max_{i \in P} h(\{i\})$

is a measure of the efficiency of the scheme

Lemma

If Σ is a perfect scheme, then $h(\{i\}) \ge 1$ for every $i \in P$. In particular, $\sigma(\Sigma) \ge 1$.

◆ロ▶ ◆母▶ ◆ヨ▶ ◆母▶ ● ● ●

For every scheme Σ , the value

 $\sigma(\Sigma) = \max_{i \in P} h(\{i\})$

is a measure of the efficiency of the scheme

Lemma

If Σ is a perfect scheme, then $h(\{i\}) \ge 1$ for every $i \in P$. In particular, $\sigma(\Sigma) \ge 1$.

The best possible situation for a perfect scheme is that $h(\{i\}) = 1$ for every $i \in P$. In this case, we say that Σ is ideal. Its access structure is called ideal as well.

- 2 Secret Sharing Schemes and Polymatroids
- Brickell-Davenport Theorem
- Non-Perfect Secret Sharing Schemes
- 5 Extension of Brickell-Davenport Theorem

A matroid M = (Q, h) is a polymatroid in which

- *h* is integer valued, and
- $h(A) \leq |A|$ for every $A \subseteq Q$

An access structure Γ is matroid port if there exists a matroid M such that $\Gamma = \Gamma_{\rho_0}(M)$

A matroid M = (Q, h) is a polymatroid in which

- *h* is integer valued, and
- $h(A) \leq |A|$ for every $A \subseteq Q$

An access structure Γ is matroid port if there exists a matroid *M* such that $\Gamma = \Gamma_{p_0}(M)$

Theorem (Brickell and Davenport)

Every ideal perfect secret sharing scheme defines a matroid.

Every ideal perfect secret sharing scheme defines a matroid.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Every ideal perfect secret sharing scheme defines a matroid.

Corollary

Every ideal perfect access structure is a matroid port.

Every ideal perfect secret sharing scheme defines a matroid.

Corollary

Every ideal perfect access structure is a matroid port.

Moreover, in this case the matroid is completely determined from the access structure.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Every ideal perfect secret sharing scheme defines a matroid.

Corollary

Every ideal perfect access structure is a matroid port.

Moreover, in this case the matroid is completely determined from the access structure.

Theorem

The ports of representable matroids admit ideal secret sharing schemes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

```
For every A \subseteq Q,

• if |A| = 1, then h(A) = 1
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For every A ⊆ Q,
if |A| = 1, then h(A) = 1
if |A| = 2, then h(A) = 2

For every $A \subseteq Q$,

• if |A| = 1, then h(A) = 1

…

• if
$$|A| = t$$
, then $h(A) = t$

For every $A \subseteq Q$,

• if |A| = 1, then h(A) = 1

…

• if
$$|A| = t$$
, then $h(A) = t$

• if
$$|A| > t$$
, then $h(A) = t$

For every A ⊆ Q, if |A| = 1, then h(A) = 1

• ...

• if
$$|A| = t$$
, then $h(A) = t$

• if
$$|A| > t$$
, then $h(A) = t$

This is the uniform matroid of rank t

It can also be determined from the access structure.

For every $A \subseteq Q$, • if |A| = 1, then h(A) = 1• if |A| = 2, then h(A) = 2• ... • if |A| = t, then h(A) = t• if |A| > t, then h(A) = t

This is the uniform matroid of rank t

It can also be determined from the access structure.

Every threshold access structure is the port of a uniform matroid.

(日) (日) (日) (日) (日) (日) (日) (日)

For every A ⊆ Q,
if |A| = 1, then h(A) = 1
if |A| = 2, then h(A) = 2
...
if |A| = t, then h(A) = t
if |A| > t, then h(A) = t
This is the uniform matroid of rank t

It can also be determined from the access structure.

Every threshold access structure is the port of a uniform matroid.

Since the uniform matroid is representable, their matroid ports admit ideal schemes.

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

 the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)
- ideal weighted threshold secret sharing schemes (Beimel, Weinreb, Tassa'08)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)
- ideal weighted threshold secret sharing schemes (Beimel, Weinreb, Tassa'08)
- ideal hierarchical secret sharing schemes (Farràs, Padró'10)

The Brickell-Davenport Theorem is the most important result on ideal perfect secret sharing schemes. It has been used to study

- the efficiency of linear and non-linear schemes (Beimel, Weinreb'05)
- algebraic properties of ideal perfect schemes (Matus'99)
- the complexity of non-ideal access structures (Martí-Farré, Padró'10)
- ideal multipartite secret sharing schemes (Farràs,Martí-Farré, Padró'12)
- ideal weighted threshold secret sharing schemes (Beimel, Weinreb, Tassa'08)
- ideal hierarchical secret sharing schemes (Farràs, Padró'10)

(日) (日) (日) (日) (日) (日) (日) (日)

• ...

We want to extend the Brickell-Davenport theorem to non-perfect secret sharing schemes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We want to extend the Brickell-Davenport theorem to non-perfect secret sharing schemes

We want to extend the notion of matroid port to non-perfect schemes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We want to extend the Brickell-Davenport theorem to non-perfect secret sharing schemes

We want to extend the notion of matroid port to non-perfect schemes

There are some previous works in this direction:

- Kurosawa et al'94
- Pailier'98

- Secret Sharing Schemes and Polymatroids
- 3 Brickell-Davenport Theorem
- 4 Non-Perfect Secret Sharing Schemes
- 5 Extension of Brickell-Davenport Theorem

It is called ramp scheme:

It is called ramp scheme:

• Secret value $(s_1, s_2, \ldots, s_k) \in \mathbb{K}^k$, a finite field.

It is called ramp scheme:

- Secret value $(s_1, s_2, \ldots, s_k) \in \mathbb{K}^k$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.

It is called ramp scheme:

- Secret value $(s_1, s_2, ..., s_k) \in \mathbb{K}^k$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{y_1, \ldots, y_k, x_1, \ldots, x_n\} \in \mathbb{K}$, which are made public

It is called ramp scheme:

- Secret value $(s_1, s_2, ..., s_k) \in \mathbb{K}^k$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{y_1, \ldots, y_k, x_1, \ldots, x_n\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = a_0 + a_1x + \cdots + a_tx^{t-1}$$

(日) (日) (日) (日) (日) (日) (日) (日)

satisfying that $f(y_i) = s_i$ for i = 1, ..., k

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $(s_1, s_2, ..., s_k) \in \mathbb{K}^k$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{y_1, \ldots, y_k, x_1, \ldots, x_n\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = a_0 + a_1x + \cdots + a_tx^{t-1}$$

(日) (日) (日) (日) (日) (日) (日) (日)

satisfying that $f(y_i) = s_i$ for i = 1, ..., k

• The dealer sends privately $f(x_i)$ to the *i*-th participant.

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $(s_1, s_2, ..., s_k) \in \mathbb{K}^k$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{y_1, \ldots, y_k, x_1, \ldots, x_n\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = a_0 + a_1 x + \cdots + a_t x^{t-1}$$

satisfying that $f(y_i) = s_i$ for i = 1, ..., k

• The dealer sends privately $f(x_i)$ to the *i*-th participant.

•
$$\Gamma = (\mathcal{A}, \mathcal{B})$$
, where $\mathcal{A} = \{A \subseteq P : |A| \le t - k\}$ and $\mathcal{B} = \{A \subseteq P : |A| \ge t\}$

Example: Shamir-based Non-perfect Secret Sharing Scheme

It is called ramp scheme:

- Secret value $(s_1, s_2, ..., s_k) \in \mathbb{K}^k$, a finite field.
- Set of participants $P = \{1, \ldots, n\}$.
- The dealer chooses $\{y_1, \ldots, y_k, x_1, \ldots, x_n\} \in \mathbb{K}$, which are made public
- The dealer chooses a polynomial in $\mathbb{K}[x]$ at random:

$$f(x) = a_0 + a_1x + \cdots + a_tx^{t-1}$$

ヘロア 人間 アメヨア 人間 ア

satisfying that $f(y_i) = s_i$ for i = 1, ..., k

• The dealer sends privately $f(x_i)$ to the *i*-th participant.

•
$$\Gamma = (\mathcal{A}, \mathcal{B})$$
, where $\mathcal{A} = \{A \subseteq P : |A| \le t - k\}$ and $\mathcal{B} = \{A \subseteq P : |A| \ge t\}$

Advantage: the shares are *k* times smaller than the secret.

Utility of Non-Perfect Secret Sharing Schemes

Advantage: the shares are k times smaller than the secret. Disadvantage: some subsets may have partial information about the secret

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Utility of Non-Perfect Secret Sharing Schemes

Advantage: the shares are k times smaller than the secret. Disadvantage: some subsets may have partial information about the secret

・ロト・日本・日本・日本・日本

There are situations in which efficiency is more important than perfectness

Advantage: the shares are k times smaller than the secret. Disadvantage: some subsets may have partial information about the secret

There are situations in which efficiency is more important than perfectness

Example:

Some protocols in multiparty computation need:

- efficient schemes
- sets of size less than t are forbidden
- big sets are authorized
- a solution: ramp schemes and other non-perfect schemes (Chen, Cramer, de Haan, Cascudo'08)

Definition

Let $M = (P \cup R, h)$ be a matroid. The generalized port of the matroid M at the set R is the access structure $\Gamma_R(M) = (\mathcal{A}, \mathcal{B})$, where

- $A \in \mathcal{A}$ iff $h(A \cup R) = h(A) + h(R)$
- $A \in \mathcal{B}$ iff $h(A \cup R) = h(A)$

Definition

Let $M = (P \cup R, h)$ be a matroid. The generalized port of the matroid M at the set R is the access structure $\Gamma_R(M) = (\mathcal{A}, \mathcal{B})$, where

・ロト・日本・日本・日本・日本

- $A \in \mathcal{A}$ iff $h(A \cup R) = h(A) + h(R)$
- $A \in \mathcal{B}$ iff $h(A \cup R) = h(A)$

If |R| = 1, then it is a matroid port.

Definition

Let $M = (P \cup R, h)$ be a matroid. The generalized port of the matroid M at the set R is the access structure $\Gamma_R(M) = (\mathcal{A}, \mathcal{B})$, where

- $A \in \mathcal{A}$ iff $h(A \cup R) = h(A) + h(R)$
- $A \in \mathcal{B}$ iff $h(A \cup R) = h(A)$

If |R| = 1, then it is a matroid port.

The access structure of the ramp scheme is a generalized matroid port:

- Consider the uniform matroid *M* of dimension *t* on $P \cup R$, with |R| = k
- The access structure coincides with $\Gamma_R(M)$

Lemma

Let Σ be an secret sharing scheme with access structure $\Gamma=(\mathcal{A},\mathcal{B}).$ Let

$$k = \min\{|B \setminus A| : B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}$$

Then

 $\sigma(\Sigma) \geq \frac{1}{k}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lemma

Let Σ be an secret sharing scheme with access structure $\Gamma = (\mathcal{A}, \mathcal{B})$. Let

$$k = \min\{|B \setminus A| : B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}$$

Then

 $\sigma(\Sigma) \geq \frac{1}{k}$

There exist access structures with schemes satisfying $\sigma(\Sigma) = 1/k$ that are not generalized ports of matroids. Hence, this condition is not strong enough to imply the matroid connection.

・ロト・日本・日本・日本・日本

Lemma

Let Σ be an secret sharing scheme with access structure $\Gamma = (\mathcal{A}, \mathcal{B})$. Let

$$k = \min\{|B \setminus A| : B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}$$

Then

 $\sigma(\Sigma) \geq \frac{1}{k}$

There exist access structures with schemes satisfying $\sigma(\Sigma) = 1/k$ that are not generalized ports of matroids. Hence, this condition is not strong enough to imply the matroid connection.

We need additional conditions

Bounds on the Complexity (II)

Define $h(A|B) = h(A \cup B) - h(B)$ for every $A, B \subseteq Q$

Bounds on the Complexity (II)

Define $h(A|B) = h(A \cup B) - h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid S = (Q, h) with access structure $\Gamma_{p_0}(S) = (A, B)$, we define

- $\beta(S) = \min\{h(\{p_0\}|C) : C \in \overline{B}\},\$
- $\alpha(\mathcal{S}) = \min\{h(\{p_0\}) h(\{p_0\}|C) : C \in \overline{\mathcal{A}}\}.$

If S is the polymatroid defined by a secret sharing scheme, we say that $\beta(S)$ and $\alpha(S)$ are the secrecy and co-secrecy of the scheme.

・ロト・日本・日本・日本・日本

Define $h(A|B) = h(A \cup B) - h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid S = (Q, h) with access structure $\Gamma_{p_0}(S) = (A, B)$, we define

- $\beta(S) = \min\{h(\{p_0\}|C) : C \in \overline{B}\},\$
- $\alpha(\mathcal{S}) = \min\{h(\{p_0\}) h(\{p_0\}|C) : C \in \overline{\mathcal{A}}\}.$

If S is the polymatroid defined by a secret sharing scheme, we say that $\beta(S)$ and $\alpha(S)$ are the secrecy and co-secrecy of the scheme.

Proposition

Let S be defined by Σ . Then $h(\{x\}) \ge \max\{\alpha(S), \beta(S)\}$

・ロト・日本・日本・日本・日本

Define $h(A|B) = h(A \cup B) - h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid S = (Q, h) with access structure $\Gamma_{p_0}(S) = (A, B)$, we define

- $\beta(S) = \min\{h(\{p_0\}|C) : C \in \overline{B}\},\$
- $\alpha(\mathcal{S}) = \min\{h(\{p_0\}) h(\{p_0\}|C) : C \in \overline{\mathcal{A}}\}.$

If S is the polymatroid defined by a secret sharing scheme, we say that $\beta(S)$ and $\alpha(S)$ are the secrecy and co-secrecy of the scheme.

(日) (日) (日) (日) (日) (日) (日) (日)

Proposition

Let S be defined by Σ . Then $h(\{x\}) \ge \max\{\alpha(S), \beta(S)\}$

• In a perfect scheme, $\alpha(S) = \beta(S) = h(\{p_0\}).$

Define $h(A|B) = h(A \cup B) - h(B)$ for every $A, B \subseteq Q$

For every scheme polymatroid S = (Q, h) with access structure $\Gamma_{p_0}(S) = (A, B)$, we define

- $\beta(S) = \min\{h(\{p_0\}|C) : C \in \overline{B}\},\$
- $\alpha(\mathcal{S}) = \min\{h(\{p_0\}) h(\{p_0\}|C) : C \in \overline{\mathcal{A}}\}.$

If S is the polymatroid defined by a secret sharing scheme, we say that $\beta(S)$ and $\alpha(S)$ are the secrecy and co-secrecy of the scheme.

Proposition

Let S be defined by Σ . Then $h(\{x\}) \ge \max\{\alpha(S), \beta(S)\}$

• In a perfect scheme, $\alpha(S) = \beta(S) = h(\{p_0\})$.

Definition

A scheme is ideal if $\alpha(S) = \beta(S) = \max_{x \in P} h(\{x\})$.

- Secret Sharing Schemes and Polymatroids
- Brickell-Davenport Theorem
- Non-Perfect Secret Sharing Schemes
- 5 Extension of Brickell-Davenport Theorem

Theorem (Brickell-Davenport)

Let $\mathcal{S}=(Q,h)$ be a polymatroid with $h(\{p_0\})=1$ such that $\Gamma_{p_0}(\mathcal{S})$ is perfect and

$$h(\{x\}) = 1$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for every $x \in P$. Then S is a matroid.

Theorem (Brickell-Davenport)

Let $\mathcal{S}=(Q,h)$ be a polymatroid with $h(\{p_0\})=1$ such that $\Gamma_{p_0}(\mathcal{S})$ is perfect and

$$h(\{x\}) = 1$$

for every $x \in P$. Then S is a matroid.

Theorem (Extension of Brickell-Davenport Theorem)

Let S = (Q, h) be a polymatroid with $h(\{p_0\}) > 1$ such that

$$h(\{\mathbf{x}\}) = \alpha(\mathcal{S}) = \beta(\mathcal{S}) = 1$$

for every $x \in P$. Then there is a matroid $M = (P \cup R, r)$ with $|R| = h(\{p_0\})$ such that $\Gamma_R(M) = \Gamma_{p_0}(S)$.

Theorem (Extension of Brickell-Davenport Theorem)

Let S = (Q, h) be a polymatroid with $h(\{p_0\}) > 0$ such that

$$h(\{\boldsymbol{x}\}) = \alpha(\mathcal{S}) = \beta(\mathcal{S}) = 1$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

for every $x \in P$, then there is a matroid $M = (P \cup R, r)$ with $|R| = h(\{p_0\})$ such that $\Gamma_R(M) = \Gamma_{p_0}(S)$.

Theorem (Extension of Brickell-Davenport Theorem)

Let S = (Q, h) be a polymatroid with $h(\{p_0\}) > 0$ such that

 $h(\{\mathbf{x}\}) = \alpha(\mathcal{S}) = \beta(\mathcal{S}) = 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

for every $x \in P$, then there is a matroid $M = (P \cup R, r)$ with $|R| = h(\{p_0\})$ such that $\Gamma_R(M) = \Gamma_{p_0}(S)$.

The theorem is of combinatorial nature. It uses

- Brickell-Davenport theorem
- Csirmaz'98 results
- Duality

Theorem (Extension of Brickell-Davenport Theorem)

Let S = (Q, h) be a polymatroid with $h(\{p_0\}) > 0$ such that

 $h(\{\mathbf{x}\}) = \alpha(\mathcal{S}) = \beta(\mathcal{S}) = 1$

for every $x \in P$, then there is a matroid $M = (P \cup R, r)$ with $|R| = h(\{p_0\})$ such that $\Gamma_R(M) = \Gamma_{p_0}(S)$.

The theorem is of combinatorial nature. It uses

- Brickell-Davenport theorem
- Csirmaz'98 results
- Duality

It provides a new combinatorial tool for the study of non-perfect schemes.

Theorem (Extension of Brickell-Davenport Theorem)

Let S = (Q, h) be a polymatroid with $h(\{p_0\}) > 0$ such that

 $h(\{\mathbf{x}\}) = \alpha(\mathcal{S}) = \beta(\mathcal{S}) = 1$

for every $x \in P$, then there is a matroid $M = (P \cup R, r)$ with $|R| = h(\{p_0\})$ such that $\Gamma_R(M) = \Gamma_{p_0}(S)$.

The theorem is of combinatorial nature. It uses

- Brickell-Davenport theorem
- Csirmaz'98 results
- Duality

It provides a new combinatorial tool for the study of non-perfect schemes.

It improves the connection found by Kurosawa et al'94. Our result is more general

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

In an access structure is ideal, we can determine uniquely its associated matroid.

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

In an access structure is ideal, we can determine uniquely its associated matroid.

Corollary

Every ideal scheme satisfies $\sigma(\Sigma) = 1/\min\{|B \setminus A| : B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}.$

Corollary

Every ideal secret sharing scheme defines a matroid such that the access structure is a generalized port of it

Corollary

Every ideal access structure is a generalized matroid port.

In an access structure is ideal, we can determine uniquely its associated matroid.

Corollary

Every ideal scheme satisfies $\sigma(\Sigma) = 1/\min\{|B \setminus A| : B \in \mathcal{B}, A \in \mathcal{A}, A \subseteq B\}.$

Theorem

The generalized ports of representable matroids are ideal access structures

We already have used this result to characterize some families of ideal non-perfect access structures.

Some open problems and interesting topics are

 construction of ideal non-perfect schemes with homomorphic properties

- construction of efficient schemes for interesting access structures
- characterization of ideal non-perfect access structures
- bounds on the complexity of generalized matroid ports

Thank you

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ○ ○ ○ ○