
ΓΝΩΘΙΣ ΑΥΤΟΝKnow Thyself

Dieter Gollmann

Hamburg University of Technology

Cryptography &
Computer Security

2

About the Speaker

You were once a
cryptographer but now

you are a reformed character.

3

Agenda

� Introducing cryptography

� Know Thyself

� Paradigms for cryptographic computer security
services

� Keys that speak for/by themselves

� Analyzing security protocols – theory and practice

4

History of Ideas

� Crypto had an early start in IT security education.

� Because it lends itself to academic teaching, pleasingly brief
problem descriptions, intellectually challenging solutions?

� As opposed to computer security; messy problem
descriptions, actually building real solutions is tedious.

� One often encounters the view that crypto provides

“strong” security compared to other techniques.

5

History of Ideas – Crypto

� Crypto has its origin in communications security.

� There is a sender and a receiver.

� The communications network is insecure.

� Sender and receiver construct secure logical tunnels.
� With symmetric crypto, they must share secret keys.

� With asymmetric cryptography, they need the authentic
public key of their peer, e.g. provided by a Public Key
Infrastructure.

� Cryptography does not solve security problems;
cryptography transforms security problems into key
management problems.

6

Computer Security 101

� Confidentiality: crypto has a solution – encryption

mechanisms

� Integrity: crypto has a solution – message

authentication codes, digital signatures

� These mechanisms can also be used to authenticate a peer.

� Availability: crypto is a problem – cryptographic

operations need computational and communications
resources.

7

Know Thyself

� In communications security, you authenticate your

peer.

� In computer security, you may want to authenticate

yourself.

� “Egress filter”: ensure that a request you are sending out has
been created by yourself and not been slipped in by the
adversary.

� “Ingress filter”: ensure that a response you are receiving
matches a request you had sent out earlier.

� “Know Thyself” as a new basic security mechanism?

8

Know Thyself – Cookies

� TCP SYN flooding attack:

� Attacker sends lots of SYN requests.

� Server replies with SYN-ACK messages, stores sequence
number expected in the final ACK message.

� Eventually server runs out of resources for dealing with half
open connections.

� Solution: do not keep state locally, send the state in

the challenge (sequence number).

� Construct cookies from a secret key shared with

nobody and relevant session parameters.

9

Know Thyself – RequestRodeo

� Client-side defence against CSRF attacks.
� Attacker inserts request in existing authenticated session.

� Proxy between browser and network marks URLs in
incoming web pages with unpredictable tokens; for
each token stores name of host URL had come from.

� Checks all outgoing requests:
� URL without a token must have been been created locally;

can be securely sent in current session.

� URL with a token sent back to host it is associated with
satisfies Same Origin Policy; can be sent in current session.

� Otherwise, remove all authenticators (cookies) from URL;
does not work with SSL sessions.

10

Paradigms

� Cryptography uses paradigms from the physical
world to explain its services.

� E.g. digital signatures as the equivalent of handwritten
signatures for the digital world.

� Whether this explanation is helpful is another matter.

� Paradigms for crypto services in computer security:

� Vault

� Private letter box

� Transparent vault

11

Crypto & Computer Security

� Vault for locking away sensitive data.

� Has to be unlocked with a key when putting data in or taking
data out.

� Implemented by symmetric encryption mechanisms.

� Private letter boxes.

� Letter box needs some serial number (public key) so that
you can distinguish between letter boxes.

� Anybody can drop documents into the letter box.

� Only the owner can open the letter box with a private key.

12

Crypto & Computer Security

� Transparent vault, consider e.g. public lottery draws.

� Everyone can see what is in the vault; only

authorized personnel may put items in the vault.

� Private key required for putting items in the vault.

� If the vault has a unique serial number (public key),
everyone can refer to items in the vault by this serial

number.

� Can create protected name spaces; public key is like

a database key for organizing and addressing items.

13

. NET Strong Names

� Assemblies protected by digital signatures:
� Publisher’s public key given in metadata.

� Digital signature computed and written into assembly during
compilation.

� Provides origin authentication (w.r.t. name space and data
integrity.

� The public key is in fact the ‘identity’ of the publisher.

� Strong names: public key cryptography without a
Public Key Infrastructure.

� Method for locally creating globally unique names
nobody else can use.

14

Ownership of Addresses

� Cryptographically Generated Addresses: proving
ownership of dynamically allocated (IPv6) addresses.

� Address owner creates a public key/private key pair;
hash of public key is interface ID in IPv6 address.

� Address claim signed with the owner’s private key,
signed claim sent together with public key to verifier.

� Verifier checks that the public verification key is
linked to the IP address.

� We use public key cryptography without using a PKI.

� Address is the “certificate” for its public key.

Analyzing Security Protocols

Theory & Practice

16

Cultures in Cryptography

� Theoreticians: … address theoretical questions as

opposed to real world problems …

� Try to make protocols secure independent of the
implementation.

� Practitioners: … perspective of specification

document writers and that of the implementers …

� Try to have secure implementations of protocols.

[Kenny Paterson, IEEE S&P, May/June 2011]

17

Protocol design – theory

� Start from abstract specification of the protocol.

� Prove security for abstract specification.

� Ensure that implementation does not introduce
vulnerabilities.

� Secure implementation of provably secure protocols.

� Problem: even when the implementation is “secure
by design”, the proof of security takes place again in
an abstract model; attacks may be possible by
exploiting features outside the model.

18

Example for this approach

� “If you prove something about the (self-identified)
cryptographic core of an authentication protocol,
does this actually prove anything about the full-
fledged scheme?”

� “In our model, compactly described in pseudocode,
a protocol core (PC) will call out to protocol details
(PD), but, for defining security, such calls will be
serviced by the adversary.”

[Rogaway, Stegers: Authentication without Elision]

19

Protocol design – practice

� Case study: protocols for the German eHealth card

� Protocols run between a reader and a card.

� Card is “passive”; all protocol runs must be initiated by the
reader.

� Based on CWA 14980-1 [CEN]:

� Focus on interoperability, mainly interface specifications.

� Internal checks in a protocol run not completely specified;
this is by intent: do not restrict design space unnecessarily.

� Instruction set from ISO/IEC 7816-4

20

Case study: ISO 9798-2

� “B verifies TokenAB by deciphering the enciphered
part and checking the correctness of the distinguishing
identifier B, if present, and that the random number RB,
sent to A in step (1), agrees with the random number
contained in TokenAB.”

� “Distinguishing identifier B is included in TokenAB to
prevent a so-called reflection attack.”

A B
RB||Text1

TokenAB = Text3||eKAB(RB||B||Text2)
KAB KAB

21

CWA 14980-1, section 8.7.1

ICC

SN.ICC

IFD

eKENC(S) ||MAC(KMAC;eKENC(S))

GET CHALLENGE (n)

RND.ICC

GET DATA

eKENC(R) ||MAC(KMAC;eKENC(R))

S = RND.IFD||

SN.IFD||

RND.ICC||

SN.ICC||KIFD

R = RND.ICC||

SN.ICC||

RND.IFD||

SN.IFD||KICC

card reader

interface device

smart card

integrated

circuit card

decrypts input;
compares
RND.ICC with
previous
response;
verifies
RND.ICC,
SN.ICC

RND … random number
SN … serial number

22

Problem?

ICC

SN.ICC

Malou

eKENC(S) ||MAC(KMAC;eKENC(S))

GET CHALLENGE (1)

RND.ICC

GET DATA

eKENC(R) ||MAC(KMAC;eKENC(R))

S = RND.IFD||

SN.IFD||

RND.ICC||

SN.ICC||KIFD

R = RND.ICC||

SN.ICC||

RND.IFD||

SN.IFD||KICC

Attacker smart card

integrated

circuit card

decrypts input;
compares
RND.ICC with
previous
response;
verifies
RND.ICC,
SN.ICC

attacker asks for one byte
random challenge; standard does
not define how card should react.

Don’t trust your inputs!

23

Software security

� Software is secure if it can deal with intentionally
malformed input.

� In this case, the attacker does not know the secret
key and tries to improve her chances of guessing a
correct answer by asking for a short challenge.

� Secure software must check its inputs; can then
reject or ignore illegal inputs.

� Such a check can be easily implemented on the card
but is not prescribed by the standard.

24

… Variation

ICCIFD

eKENC(S) ||MAC(KMAC;eKENC(S))

RND.IFD||SN.IFD

eKENC(R) ||MAC(KMAC;eKENC(R))

R = RND.IFD||

SN.IFD||

RND.ICC||

SN.ICC||KIFD

S = RND.ICC||

SN.ICC||

RND.IFD||

SN.IFD||KICC

card reader

interface device

smart card

integrated

circuit card

25

Problem (reflection attack)?

ICCMalou

eKENC(S) ||MAC(KMAC;eKENC(S))

RND.IFD||SN.ICC

eKENC(S) ||MAC(KMAC;eKENC(S))

Attack

succeeds if

RND.ICC =

RND.IFD

S = RND.ICC||

SN.ICC||

RND.IFD||

SN.ICC||KICC

smart card

integrated

circuit card

Attacker

ICC does not

recognize its own

message

26

On the use of XOR

� XOR with a random value guarantees randomness??

� KICC, KIFD are 32 byte random values.

� KICC ⊕ KIFD is input for generation of the session key.

� In the previous scenario KICC = KIFD .

� Attacker doesn’t know KICC, but knows KICC ⊕ KICC = 0
and can compute the session key.

� XOR with random value doesn’t give perfect security.

� Use hash function instead and derive session key
from h(KICC, KIFD).

27

Remark

� These are instances of known problems.

� There exist well known and simple fixes.

� Smart cards on the market today may well defend
against these attacks.

� How can a decision maker be sure?

� How can a certification body be sure that all relevant
undocumented requirements are met by a card?

28

Conclusion

� Secure implementation of insecure protocols.

� Formal analysis of the protocols discussed previously

would flag vulnerabilities.

� Formal analysis needs to be applied to protocol +

(partial) card specification; may need to consider

specific properties of a cryptographic algorithm.

� Formal analysis needs to consider software security.

� Thank you very much for your attention.

