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When a v-set can be equipped with a set of k-subsets so that
every 2-subset of the v-set appears in exactly (or at most, or
at least) one of the chosen k-subsets, the result is a balanced
incomplete block design (or packing, or covering, respectively).
For each k, balanced incomplete block designs are known to exist
for all sufficiently large values of v that meet certain divisibility
conditions. When these conditions are not met, one can ask for
the packing with the most blocks and/or the covering with the
fewest blocks. Elementary necessary conditions furnish an upper
bound on the number of blocks in a packing and a lower bound
on the number of blocks in a covering. In this paper it is shown
that for all sufficiently large values of v , a packing and a covering
on v elements exist whose numbers of blocks differ from the basic
bounds by no more than an additive constant depending only on k.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let v , k, and t be integers with v > k > t � 2. Let λ be a positive integer. A (t, λ)-packing of order v
and blocksize k is a set V of v elements, and a collection B of k-element subsets (blocks) of V , so
that every t-subset of V appears in at most λ blocks. A (t, λ)-covering of order v and blocksize k is
a set V of v elements, and a collection B of k-element subsets (blocks) of V , so that every t-subset
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of V appears in at least λ blocks. When λ = 1, the simpler notation of t-packing or t-covering is used.
When (V ,B) is both a (t, λ)-packing and a (t, λ)-covering with blocksize k, it is a t-(v,k, λ) design.

A t-(v,k, λ) design, if one exists, has λ
(v

t

)
/
(k

t

)
blocks. When the required number of blocks is

not integral, no such design can exist. Selecting all blocks containing a particular element x ∈ V and
deleting x from each forms the derived (t − 1)-(v − 1,k − 1, λ) design (with respect to x). For a design
to exist, evidently the derived design must exist; hence for a t-(v,k, λ) design to exist, λ

(v−i
t−i

)
/
(k−i

t−i

)
must be integral for every 0 � i � t . When these conditions are not all met, one can ask instead for
the largest (t, λ)-packing, or for the smallest (t, λ)-covering, of order v and blocksize k. The Johnson
bound [13] states that such a packing can have no more than⌊

n

k

⌊
· · ·

⌊
n − t + 2
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⌊
λ(n − t + 1)
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blocks, while the Schönheim bound [21] states that such a covering can have no fewer than⌈
n

k

⌈
· · ·
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n − t + 2

k − t + 2

⌈
λ(n − t + 1)

k − t + 1
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· · ·
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blocks. Our main result is that when t = 2 and λ = 1, there exist packings and coverings whose
sizes are within a constant of these bounds. Determining when these bounds are met exactly is a
challenging question.

In 1963, Erdős and Hanani [9] conjectured that, for fixed k and t , with all blocks of size k,
a t-packing on n elements with

((n
t

)
/
(k

t

))
(1 − o(1)) blocks and a t-covering on n elements with((n

t

)
/
(k

t

))
(1 + o(1)) blocks both exist. This was proved by Rödl [20], and has spawned a large literature

(for example, [10,11,14,15,23]). However, even when t = 2, all of these general constructions deviate
from the Johnson and Schönheim bounds by an amount that grows as a function of the number of
elements. Wilson [25] established that the necessary divisibility conditions for a 2-(v,k, λ) design to
exist are asymptotically sufficient (i.e., for fixed k and λ, and sufficiently large v). This provides a
different means to establish the Erdős–Hanani conjecture for t = 2, but also does not immediately
imply that one can find packings or coverings whose sizes are within a constant of the optimal sizes.
Wilson [24] earlier considered this more challenging problem for packings, but the solution for the
analogous problem for coverings has remained elusive.

We focus on the case when t = 2 and λ = 1 here. Caro and Yuster state stronger results for cover-
ing [3] and packing [2] than we prove here. Their approach relies in an essential manner on a strong
statement by Gustavsson [12]:

Proposition 1.1. Let H be a graph with ν vertices and h edges, having degree sequence (d1, . . . ,dν). Then
there exist a constant NH and a constant εH > 0, both depending only on H, such that for all n > NH , if
G is a graph on n vertices, m edges, and degree sequence (δ1, . . . , δn) so that min(δ1, . . . , δn) � n(1 − εH ),
gcd(d1, . . . ,dν) | gcd(δ1, . . . , δn), and h | m, then G has an edge partition (decomposition) into graphs iso-
morphic to H.

We have not been able to verify the proof of Proposition 1.1. Indeed, while the result has been
used a number of times in the literature, no satisfactory proof of it appears there. While we expect
that the statement is true, we do not think that the proof in [12] is sufficient at this time to employ
the statement as a foundation for further results. Therefore we adopt a strategy that is completely
independent of Proposition 1.1, and independent of the results built on it.

In the remainder of the paper, we first recall relevant known results. Then in Section 3, we deter-
mine the possible structure of optimal packings and coverings, in order to determine what can remain
uncovered in a packing, and what must be covered more than once in a covering. This is done in gen-
eral for packings and coverings with a single hole, in order to limit any deviation from the desired
bound to the manner in which a (fixed size) hole is filled. In Section 4, the most important part of
the proof is established, namely that in each congruence class, one finite example can be produced.
Finally in Section 5, these single examples are shown to form the required ingredients to establish
asymptotic existence.
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2. Background

To proceed more formally, we require a number of definitions and preliminary results from combi-
natorial design theory; related background material can be found in [1,22]. A balanced incomplete block
design (BIBD) is a 2-(v,k, λ) design. Balanced incomplete block designs have been extensively studied
because of their central role in numerous applications in experimental design, coding and information
theory, communications, and connections with fundamental topics in algebra, finite geometry, num-
ber theory, and combinatorics (see [5,7] for examples). The general divisibility conditions (stated for
general t earlier) require that λ

(v
2

) ≡ 0
(
mod

(k
2

))
and λ(v − 1) ≡ 0 (mod k − 1).

A group divisible design (V ,G,B) is a finite set V of elements or points; a partition G = {G1, . . . , Gs}
of V (groups); and a set B of subsets of V (blocks), with the property that every 2-subset of V lying
within a group appears in no block, while every 2-subset of V with elements from different groups
appears in exactly λ blocks. When K is a set of positive integers for which |B| ∈ K whenever B ∈ B,
the design is a (K , λ)-GDD. When λ = 1, we write simply K -GDD. Its order is |V |, its index is λ, and
its type is σ

u1
1 · · ·σ u�

� when the multiset of group sizes {|Gi |: 1 � i � s} is the same as the multiset
formed by including u j copies of σ j when σ j �= 0, for all 1 � j � �. We write (k, λ)-GDD (or k-GDD
when λ = 1) when K = {k}. A transversal design TDλ(k,n) is a (k, λ)-GDD of type nk . We write TD(k,n)

when λ = 1. A transversal design is idempotent if its element set is {1, . . . ,k}×{1, . . . ,n}, and its block
set contains {{(i, j): 1 � i � k}: 1 � j � n}. A pairwise balanced design with blocksizes K and order v
((K , λ)-PBD of order v) is a (K , λ)-GDD of type 1v ; we write K -PBD when λ = 1. Then a balanced
incomplete block design ((k, λ)-BIBD) is a (k, λ)-PBD; we write k-BIBD when λ = 1.

An incomplete pairwise balanced design of order v with holesize h, blocksizes K , and index λ is a
triple (V , H,B) for which |V | = v , |H| = h, H ⊆ V , B contains a set of subsets of V for which |B| ∈ K
whenever B ∈ B, and for every pair of distinct elements x, y ∈ V , the number of blocks in {{x, y} ⊂
B ∈ B} is 0 if {x, y} ⊆ H and λ otherwise. The notation (K , λ)-IPBD(v,h) is used; we may omit λ

when it is 1, and write k instead of K when K = {k}.
Let K be a set of positive integers, each at least 2. Then define α(K ) = gcd{k − 1: k ∈ K } and

β(K ) = gcd
{(k

2

)
: k ∈ K

}
.

Wilson establishes a crucial asymptotic existence result:

Theorem 2.1. (See [25].) Let K be a set of integers, each at least 2. Let λ be a positive integer. For all sufficiently
large n satisfying λ(n − 1) ≡ 0 (mod α(K )) and λ

(n
2

) ≡ 0 (mod β(K )), there exists a (K , λ)-PBD of order n. In

particular for K = {k}, when λ(n − 1) ≡ 0 (mod k − 1), λ
(n

2

) ≡ 0
(
mod

(k
2

))
, and n is sufficiently large, there

exists a (k, λ)-BIBD of order n.

Colbourn and Rödl prove a variant that we use:

Theorem 2.2. (See [6].) Let ε > 0. Let K = {k1, . . . ,km} be a set of block sizes. Let {p1, . . . , pm} be non-
negative numbers with

∑m
i=1 pi = 1. For all sufficiently large v satisfying v − 1 ≡ 0 (mod α(K )) and(v

2

) ≡ 0 (mod β(K )), there is a K -PBD of order v in which, for each 1 � i � m, the fraction of pairs appearing
in blocks having size ki is in the range [pi − ε, pi + ε].

A stronger version of Theorem 2.2 is given in [26], and a variant for resolvable designs appears
in [8].

Perhaps the most powerful generalization of Theorem 2.1 is due to Lamken and Wilson [16]. We in-
troduce this next. Let K (r,λ)

n be a complete digraph on n vertices with exactly λ edges of color i joining
any vertex x to any vertex y for every color i in a set of r colors. A family F of subgraphs of K (r,λ)

n is
a decomposition of K (r,λ)

n if every edge e ∈ E(K (r,λ)
n ) belongs to exactly one member in F . Given a fam-

ily Φ of edge-r-colored digraphs, a Φ-decomposition of K (r,λ)
n is a decomposition F such that every

graph F ∈ F is isomorphic to some graph G ∈ Φ . For a vertex x of an edge-r-colored digraph G , the
degree-vector of x is the 2r-vector d(x) = (in1(x),out1(x), in2(x),out2(x), . . . , inr(x),outr(x)), where
in j(x) and out j(x) denote the indegree and outdegree of vertex x in the spanning subgraph of G by



Y.M. Chee et al. / Journal of Combinatorial Theory, Series A 120 (2013) 1440–1449 1443
edges of color j, respectively, for 1 � j � r. We denote by α(G) the greatest common divisor of the
integers t such that the 2r-vector (t, t, . . . , t) is an integral linear combination of the vectors d(x) as
x ranges over the vertex set V (G) of G . Equivalently, α(G) is the smallest positive integer t0 such
that (t0, t0, . . . , t0) is an integral linear combination of the vectors {d(x)}. Let Φ be a family of simple
edge-r-colored digraphs and let α(Φ) denote the greatest common divisor of the integers t such that
the 2r-vector (t, t, . . . , t) is an integral linear combination of the vectors {d(x)} as x ranges over all
vertices of all graphs in Φ . For each graph G ∈ Φ , let μ(G) = (m1,m2, . . . ,mr), where mi is the num-
ber of edges of color i in G . We denote by β(Φ) the greatest common divisor of the integers m such
that (m,m, . . . ,m) is an integral linear combination of the vectors {μ(G): G ∈ Φ}. Equivalently, β(Φ)

is the smallest positive integer m0 such that (m0,m0, . . . ,m0) is an integral linear combination of the
vectors {μ(G)}. A graph G0 ∈ Φ is useless when it cannot occur in any Φ-decomposition of K (r,λ)

n .
Φ is admissible when no member of Φ is useless.

Theorem 2.3. (See [16].) Let Φ be an admissible family of simple edge-r-colored digraphs. For all sufficiently
large n satisfying λ(n − 1) ≡ 0 (mod α(Φ)) and λn(n − 1) ≡ 0 (mod β(Φ)), a Φ-decomposition of K (r,λ)

n
exists.

Theorem 2.3 has numerous consequences for the existence of various classes of combinatorial
designs. Building on Theorem 2.3, Liu establishes the following:

Theorem 2.4. (See [17].) Let K be a set of integers, each at least 2. Let m and λ be positive integers. For all
sufficiently large n satisfying λm(n − 1) ≡ 0 (mod α(K )) and λm2

(n
2

) ≡ 0 (mod β(K )), there exists a (K , λ)-
GDD of order mn.

Mohácsy and Ray-Chaudhuri prove a result for a fixed number of groups when the index is 1.

Theorem 2.5. (See [18,19].) Let k and u be integers with u � k � 2. For all sufficiently large m satisfying
m(u − 1) ≡ 0 (mod k − 1) and m2u(u − 1) ≡ 0 (mod k(k − 1)), there exists a k-GDD of type mu.

This subsumes a classical result of Chowla, Erdős, and Straus:

Theorem 2.6. (See [4].) Let k � 2 be an integer. For all sufficiently large m, there exists a TD(k,m).

3. Packings, coverings, and the optima

We use known asymptotic existence results to treat asymptotic existence of packings and coverings
in the cases that a k-BIBD does not exist. We require further definitions, to extend packings and
coverings to have a ‘hole’.

A packing with blocksize k with a hole (V , H,B) is a set V of elements, a subset (hole) H ⊂ V , and
a set B of k-subsets of V , so that for every {x, y} ⊂ V , {x, y} �⊂ H , there is at most one B ∈ B with
{x, y} ⊂ B; when {x, y} ⊂ H , there is no block B ∈ B with {x, y} ⊂ B . The leave Γ of (V ,B) is a graph
with vertex set V ; pair {x, y} appears as an edge if and only if {x, y} � H and is not a subset of any
block of B.

A covering with blocksize k with a hole (V , H,B) is a set V of elements, a subset H ⊂ V , and a set B
of k-subsets of V , so that for every {x, y} ⊂ V , {x, y} �⊂ H , there is at least one B ∈ B with {x, y} ⊂ B .
The excess Γ of (V ,B) is a multigraph with vertex set V ; the number of times pair {x, y} appears
as an edge is exactly λxy when {x, y} ⊂ H , and λxy − 1 otherwise, where λxy is the number of blocks
of B that contain {x, y}.

A packing with blocksize k (V ,B) is a packing with blocksize k with a hole (V ,∅,B), and a covering
with blocksize k (V ,B) is a covering with blocksize k with a hole (V ,∅,B). A maximum packing with
blocksize k is a packing with blocksize k (V ,B) with the most blocks among all packings with block-
size k on |V | elements; equivalently, its leave has the fewest edges. A minimum covering with blocksize
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k is a covering with blocksize k (V ,B) with fewest blocks among all coverings with blocksize k on |V |
elements; equivalently, its excess has the fewest edges.

Suppose that (V , H,B) is a packing with blocksize k with a hole, with v = |V |, h = |H|, and
n = |V \ H|. Let x be a vertex in V \ H . The number of pairs on V that contain x is congruent to v − 1
modulo k − 1. The number containing x that appear in blocks of B is congruent to 0 modulo k − 1.
Hence x has degree congruent to v − 1 modulo k − 1 in the leave. When the hole is nonempty,
elements in the hole have degrees congruent to n modulo k − 1 in the leave. By the same token, in
the excess of a covering with blocksize k with a hole, x has degree congruent to −(v − 1) modulo
k − 1; elements in the hole have degrees congruent to −n modulo k − 1.

We employ specific types of packings and coverings with holes in which the leave or excess has
all vertices in the hole of degree 0. For an integer n ≡ 0 (mod k(k − 1)) and an integer h � 1, let
δ ≡ h − 1 (mod k − 1) and  ≡ −(h − 1) (mod k − 1) with 0 � δ, < k − 1. Then an optimum packing
with blocksize k with a hole, k-OP(n + h,h), is a packing with blocksize k on n + h elements whose
leave has degree δ on each vertex not in the hole, and 0 on each vertex in the hole; and an optimum
covering with blocksize k with a hole, k-OC(n + h,h), is a covering with blocksize k on n + h elements
whose excess has degree  on each vertex not in the hole, and 0 on each vertex in the hole. When
h ≡ 1 (mod k − 1), δ =  = 0. In this case, a k-OP(v,h) and a k-OC(v,h) are the same, and are
equivalent to a k-IPBD(v,h).

In any packing with blocksize k on v = n + h elements with n ≡ 0 (mod k(k − 1)), no vertex
can have degree smaller than δ in the leave; and in any covering with blocksize k on v = n + h
elements with n ≡ 0 (mod k(k − 1)), no vertex can have degree smaller than  in the excess. Indeed,
choosing � and Λ so that � � v − 1 � Λ; �,Λ ≡ v − 1 (mod k − 1); Λ − � < k − 1; and � = Λ when
v ≡ 1 (mod k − 1), every packing with blocksize k on v elements contains at most �v,k = �v

k(k−1)

blocks, while every covering with blocksize k on v elements contains at least Lv,k = Λv
k(k−1)

blocks.
Then �v,k is at least the Johnson bound, and Λv,k is at most the Schönheim bound.

The purpose of this paper is to prove the following two results.

Theorem 3.1. There is a constant pk such that for all v � k, the number of blocks in a maximum packing with
blocksize k on v elements is at least �v,k − pk and at most �v,k.

Theorem 3.2. There is a constant ak such that for all v � k, the number of blocks in a minimum covering with
blocksize k on v elements is at least Lv,k and at most Lv,k + ak.

We establish these results in a number of steps. Treating an arbitrary but fixed value of k, in
Section 4, we show that for every c satisfying 0 � c < k(k − 1), there exist positive integers nc ≡
0 (mod k(k − 1)) and hc ≡ c (mod k(k − 1)) so that a k-OP(nc + hc,hc) exists; we also show that
for every c satisfying 0 � c < k(k − 1), there exist positive integers mc ≡ 0 (mod k(k − 1)) and �c ≡
c (mod k(k−1)) so that a k-OC(mc +�c, �c) exists. This provides a single example for optimal packings
and coverings with a hole in every congruence class modulo k(k − 1). In Section 5, we use these
results to establish that there exist integers κk and uk , depending only on k, so that whenever v � κk ,
there exists an h � uk for which a k-OP(v,h) exists, and there also exists an � � uk for which a
k-OC(v, �) exists. From this, because uk is fixed and independent of v , we establish Theorems 3.1
and 3.2 by filling the holes. The crucial step, particularly for coverings, is producing one example in
each congruence class. We treat this next.

4. One example in each congruence class

In the case when h ≡ 1 (mod k − 1), a k-OP(v,h) and a k-OC(v,h) coincide with a k-IPBD(v,h),
so we treat this situation first; subsequently the packing and covering cases differ.

4.1. Packing and covering: v ≡ 1 (mod k − 1)

An incomplete transversal design ITD(k,n + φ;φ) is a set V of k(n + φ) elements, of which kφ form
a hole H . The elements are partitioned into k groups G1, . . . , Gk so that |Gi ∩ H| = φ for 1 � i � k.
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This set is equipped with a set of k-subsets (blocks) with the property that every pair of elements
that appears in a group or appears in the hole H appears in no block, and every other pair appears
in exactly one block.

Lemma 4.1. Let k � 2 be an integer. Let 0 � φ � k. For all sufficiently large n, an ITD(k,n + φ;φ) exists.

Proof. Using Theorem 2.6, choose ω so that a TD(k + 1,ω), a TD(k + 1,ω + 1), a TD(k + 1,ω + 2),
and a TD(k + 1,ω + 3) all exist. Delete one group in each to form an idempotent TD(k, v) for each
v ∈ {ω,ω + 1,ω + 2,ω + 3}. For n sufficiently large, there is an {ω + 1,ω + 2,ω + 3}-PBD of order
n +ω + 1 containing a block of size ω + 1 by Theorem 2.2. (Because α({ω + 1,ω + 2,ω + 3}) = 1 and
β({ω + 1,ω + 2,ω + 3}) = 1, this follows by choosing 0 < ε < 1

4 and choosing the fraction of pairs
in blocks of size ω + 1 to be 2ε.) Delete all but φ elements from a block of size ω + 1, and remove
the block of size φ making a hole, to form an {ω,ω + 1,ω + 2,ω + 3}-IPBD(n + φ,φ). Give every
element weight k, and use the idempotent TDs to inflate all blocks. The kφ elements arising from the
φ elements of hole in the IPBD form the hole of the ITD. �
Lemma 4.2. Let h be an integer for which h ≡ 1 (mod k − 1) and k � h � k(k − 1) + 1. Then there exist
infinitely many integers γ for which a k-IPBD(γ k(k − 1) + h,h) exists.

Proof. Let φ = h−k
k−1 . Choose γ so that a k-BIBD of order γ (k − 1) + k and an ITD(k, γ (k − 1) + φ;φ)

both exist. (Use Lemma 4.1 for the existence of the ITD.) Start with the ITD on the elements of V
having a hole on the elements in H ⊂ V . Add k − φ new elements N∞ . For 1 � i � k, let Ni consist of
the φ elements in the ith group of the ITD that appear in H . Place on the elements of the ith group,
together with N∞ , the blocks of a copy of the k-BIBD, omitting a block on the elements of Ni ∪ N∞ .
On the γ k(k − 1) + φ(k − 1) + k = γ k(k − 1) + h elements of V ∪ N∞ , all pairs are covered except
those within the hole on elements N∞ ∪ ⋃k

i=1 Ni of size h = φ(k − 1) + k. �
Corollary 4.3. Whenever c ≡ 1 (mod k − 1) and 0 � c < k(k − 1), there are infinitely many integers nc and hc
with nc ≡ 0 (mod k(k − 1)) and hc ≡ c (mod k(k − 1)) so that a k-OP(nc + hc,hc) exists.

Proof. Set hc = c if c � k, and hc = k(k − 1) + 1 if c = 1. Apply Lemma 4.2 with h = hc , and set
nc = γ k(k − 1). �

The same argument establishes:

Corollary 4.4. Whenever c ≡ 1 (mod k−1) and 0 � c < k(k−1), there are infinitely many integers mc and �c
with mc ≡ 0 (mod k(k − 1)) and �c ≡ c (mod k(k − 1)) so that a k-OC(mc + �c, �c) exists.

4.2. Packing: v �≡ 1 (mod k − 1)

Lemma 4.5. For every integer c satisfying 0 � c < k(k − 1), there exist an nc ≡ 0 (mod k(k − 1)) and an
hc ≡ c (mod k(k − 1)) for which a k-OP(nc + hc,hc) exists.

Proof. When c > 0, write c = s(k − 1) + d with 1 � d < k. When c = 0, set s = d = k − 1. If d = 1,
apply Lemma 4.3. Otherwise choose α ≡ 1 (mod k(k − 1)) and N > α so that

N ≡ α (mod k − 1);
a k-GDD of type dα exists (Theorem 2.4);
an α-BIBD of order N exists (Theorem 2.1); and
an ITD(k,d(N − α) + s, s) exists (Lemma 4.1).

Treat the α-BIBD as an α-GDD of type 1N−αα1 by removing a block, and inflate using the k-
GDD of type dα to form a k-GDD of type dN−α(dα)1. Adjoin dα − s infinite elements to the
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ITD(k,d(N − α) + s, s). On each group together with the infinite elements, place a copy of the k-
GDD of type dN−α(dα)1, aligning the group of size dα on the s elements in the intersection of
the group and the hole of the ITD, together with the dα − s infinite elements. The result is a k-
GDD of type dk(N−α)(dα + s(k − 1))1. Treat this as a packing. On the dk(N − α) points not in the
large hole, the leave has degree d − 1, so the result is a k-OP(nc + hc,hc) with nc = dk(N − α) and
hc = dα + s(k −1). Because dk ≡ 0 (mod k) and N −α ≡ 0 (mod k −1), nc ≡ 0 (mod k(k −1)). Because
dα ≡ d (mod k(k − 1)), hc ≡ c (mod k(k − 1)). �
4.3. Covering: v �≡ 1 (mod k − 1)

We employ some further, more specialized, combinatorial objects to treat coverings for the re-
maining congruence classes.

Let V be a set of elements; B be a set of k-subsets of V ; G = {G1, . . . , Gr} be a partition of V ,
and H = {H1, . . . , Ht} be a partition of V . Suppose that |Gi ∩ H j | = μ for all 1 � i � r, 1 � j � t .

Further suppose that for every 2-subset {x, y} ⊂ V , either {x, y} ∈ (⋃r
i=1

(Gi
2

)) ∪ (⋃t
j=1

(H j
2

))
, or there

is exactly one B ∈ B with {x, y} ⊂ B , but not both. Then (V ,G,H,B) is a double group divisible design
with blocksize k (k-DGDD) of type (μr)t . A holey transversal design with blocksize k (k-HTD) of type μr

is a k-DGDD of type (μr)k .

Theorem 4.6. Let k � 2 be an integer. For all sufficiently large r, there exists a k-HTD of type 2r .

Proof. Choose K = {x1, . . . , xs} so that α(K ) = β(K ) = 1, and so that for each 1 � i � s, xi is large
enough to ensure that Theorem 2.6 yields a TD(k + 1, xi). Remove one group (and rename elements
as needed) to form an idempotent TD(k, xi). When r is large enough, Theorem 2.4 yields a K -GDD
(V ,G,B) of type 2r with groups G = {G1, . . . , Gr}. The elements of the k-HTD to be formed are
V × {0, . . . ,k − 1}. For each block B ∈ B, on the elements B × {0, . . . ,k − 1}, align the k groups on
{B × {i}: 0 � i < k} to place the blocks of an idempotent TD(k, |B|). In the resulting design, one set of
groups is formed by V × {i} for 0 � i < k, the other by G j × {0, . . . ,k − 1} for 1 � j � r. �
Theorem 4.7. Let k � 2 be an integer. For all sufficiently large integers r and t satisfying t − 1 ≡ 0 (mod k − 1)

and
(t

2

) ≡ 0
(
mod

(k
2

))
, there exists a k-DGDD of type (2r)t .

Proof. Apply Theorem 2.1 to form a k-BIBD (V ,B) with t elements. Apply Theorem 4.6 to form a
k-HTD of type 2r . To form the k-DGDD, use elements V × {a,b} × {1, . . . , r}. For every B ∈ B, place a
copy of the HTD on B × {a,b} × {1, . . . , r}, aligning groups of size 2k on B × {a,b} × {i} for 1 � i � r,
and groups of size 2r on {x} × {a,b} × {1, . . . , r} for x ∈ B . �

The key construction follows:

Theorem 4.8. Let t, r, y be positive integers so that r ≡ 0 (mod k(k − 1)), t ≡ 1 (mod k(k − 1)), and y �≡
2 (mod k − 1). Suppose that there exist

(1) a k-DGDD of type (2r)t ;
(2) a k-BIBD on 2t + k − 2 elements;
(3) a k-OC(2r + y, y).

Then there is a k-OC(2rt + k − 2 + y,2r + y + k − 2).

Proof. Let V = {ai, j,bi, j: 1 � i � r, 1 � j � t} be the elements of the k-DGDD, with groups aligned
so that Gi = {ai, j,bi, j: 1 � j � t} and H j = {ai, j,bi, j: 1 � i � r}. Let B be its set of blocks. Adjoin a
set C of k − 2 new elements. For 1 � i � r, on C ∪ Gi , form a k-BIBD on 2t + k − 2 elements, aligning
a block on C ∪ {ait ,bit}; then delete that block, and call the resulting set of blocks Di . Adjoin a set R
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with y further new elements. For 1 � j < t , on R ∪ H j place a k-OC(2r + y, y) with the hole aligned
on R , whose block set is E j .

We consider the design on the 2rt + k − 2 + y elements V ∪ R ∪ C with block set B ∪ ⋃r
i=1 Di ∪⋃t−1

j=1 E j . All blocks have size k because each ingredient contains only blocks of size k. First we show
that the design is a covering with a hole on R ∪ C ∪ Ht . Two elements in the hole do not appear
together in a block. An element from Gi ∩ H j with j < t appears in a block with each element
of C ∪ (Gi ∩ Ht) in Di ; it appears in a block with each element of R in E j ; and it appears with
each element of Ht \ Gi in a block of B. Consider two distinct elements x ∈ Gi ∩ H j and y ∈ Gm ∩ Hn
with j,n < t . If i = m and j = n, then {x, y} = {ai, j,bi, j} appears in a block of Di (and also in at least
one block of E j ). If i �= m and j = n, then {x, y} appears in at least one block of E j . If i = m and j �= n,
then {x, y} appears in one block of Di . If i �= m and j �= n, then {x, y} appears in one block of B.
Hence the design is a covering with a hole on R ∪ C ∪ Ht .

Secondly, we establish that it has the correct excess degrees to be an optimal covering with a
hole, a k-OC. The design has 2rt + k − 2 + y elements. Because r ≡ 0 (mod k − 1), the number of
elements satisfies 2rt + k − 2 + y ≡ y − 1 (mod k − 1). The hole has 2r + k − 2 + y elements. Because
r ≡ 0 (mod k − 1), the number of elements in the hole satisfies 2r + k − 2 + y ≡ y − 1 (mod k − 1).
Let y ≡ −(y − 1) (mod k − 1) with 0 � y < k − 1. We must show that every element not in the
hole has degree y + 1 in the excess, and every element in the hole has degree 0 in the excess.
We treat elements in the hole first. Each element of C appears only in blocks {Di: 1 � i � r}. It
appears in r(t − 1) pairs to be covered, and appears in r(t − 1)/(k − 1) blocks, with (t − 1)/(k − 1)

blocks arising in each of {Di: 1 � i � r} because this was constructed from a BIBD. Each element
of R appears only in blocks {E j: 1 � j < t}. Because elements of R have excess degree 0 in the k-
OC(2r + y, y) forming E j , they have excess degree 0 in the union. Each element of Ht appears only
in blocks of B, and has excess degree 0. Now consider an element x ∈ Gi ∩ H j , with j �= t so that x
is not in the hole. Then x appears in elements of B, Di and E j . It appears in 2(r − 1)(t − 1)/(k − 1)

blocks of B, because it arises from the DGDD. It appears in (2t + k − 3)/(k − 1) blocks of Di , because
it arises from a BIBD. Now in E j , x is not in the hole of the k-OC(2r + y, y), and hence it arises
in (2r − 1 + y + y)/(k − 1) blocks. So in total x appears in 1

k−1 (2rt + k − 2 + y + y) blocks, and
because it appears in (2rt + k − 2 + y) − 1 pairs, its excess degree is y + 1.

Because 2r + y + k − 2 ≡ y − 1 (mod k − 1) and y �≡ 2 (mod k − 1), the result is the k-OC(2rt +
k − 2 + y,2r + y + k − 2). �
Corollary 4.9. For each 0 � c < k(k − 1), there exist integers mc and �c with mc ≡ 0 (mod k(k − 1)) and
�c ≡ c (mod k(k − 1)) for which a k-OC(mc + �c, �c) exists.

Proof. Let t0 and r0 be integers with t0 ≡ 1 (mod k(k − 1)) and t0 > 1 so that whenever r � r0, t � t0,
and t ≡ 1 (mod k(k − 1)),

(1) there is a k-DGDD of type (2r)t (apply Theorem 4.7), and
(2) there is a k-BIBD on 2t + k − 2 (≡ k (mod k(k − 1))) elements (apply Theorem 2.1).

When c ≡ 1 (mod k − 1), apply Corollary 4.4 to choose one k-OC(mc + �c, �c) with mc ≡
0 (mod k(k − 1)) and mc � r0. In general, when a k-OC(mc + �c, �c) with mc ≡ 0 (mod k(k − 1)) and
mc � r0 exists, Theorem 4.8 produces a k-OC(mct0 +k−2+�c,mc +�c +k−2). Set mc+k−2 mod k(k−1) =
mc(t0 − 1), which exceeds r0 and is a multiple of k(k − 1). Set �c+k−2 mod k(k−1) = mc + �c + k − 2 ≡
c + k − 2 (mod k(k − 1)). Then k − 2 applications of Theorem 4.8 handle all congruence classes. �
5. Asymptotic existence

Our next task is to handle not just one example for hole size in each congruence class modulo
k(k − 1), but to extend to all sufficiently large orders.

Theorem 5.1. Let k � 2 be an integer. Then there are constants κk and uk so that whenever v � κk, there is a
k-OP(v,h) and a k-OC(v,h) with h � uk.



1448 Y.M. Chee et al. / Journal of Combinatorial Theory, Series A 120 (2013) 1440–1449
Proof. By Corollary 4.9, for 0 � c < k(k − 1) there are integers mc ≡ 0 (mod k(k − 1)) and �c ≡
c (mod k(k − 1)) for which a k-OC(mc + �c, �c) exists. By Lemma 4.5, for 0 � c < k(k − 1) there are
integers nc ≡ 0 (mod k(k − 1)) and hc ≡ c (mod k(k − 1)) for which a k-OP(nc + hc,hc) exists. Set
uk = max{nc + hc,mc + �c: 0 � c < k(k − 1)}.

Using Theorem 2.4, choose an integer x for which k-GDDs of type (k(k − 1))x′
exist for all x′ ∈

{x, x + 1, x + 2, x + 3}. Again using Theorem 2.4, choose an integer r for which an {x + 1, x + 2, x + 3}-
GDD of type pg exists for all 1 � p � uk and all g � r. Then set κk = rk(k − 1) + uk , a constant
depending only on k.

We develop the remainder of the proof for packings; that for coverings parallels it very closely. Let
v � κk be an integer, and write v = φk(k − 1)+ c with 0 � c < k(k − 1). Write v −hc = gnc +d so that
d ≡ 0 (mod k(k − 1)) and d < nc . Let n′ = nc/(k(k − 1)) and d′ = d/(k(k − 1)).

Construct a k-GDD of type ng
c d1 as follows. Form an {x + 1, x + 2, x + 3}-GDD of type (n′)g+1.

Delete all but d′ elements in one group to form an {x, x + 1, x + 2, x + 3}-GDD of type (n′)g(d′)1.
Inflate using weight k(k − 1), employing k-GDDs of type (k(k − 1))x′

for x′ ∈ {x, x + 1, x + 2, x + 3}, to
form a k-GDD of type ng

c d1. Then add hc new elements, and place a k-OP(nc + hc,hc) on each group
of size nc together with the hc new elements, aligning the hole on these hc elements. The result is a
k-OP(v,hc + d), and hc + d � uk as required. �
Proof of Theorem 3.1. When v < κk , a maximum packing with blocksize k contains at least �v,k − (κk

2

)
blocks, and

(κk
2

)
is a constant. When v � κk , form a k-OP(v,h) with h � uk , which has at least �v,k −(uk

2

)
blocks and

(uk
2

)
is a constant. �

Proof of Theorem 3.2. When v < κk , a minimum covering with blocksize k requires at most
(κk

2

)
blocks, which is a constant. When v � κk , form a k-OC(v,h) with h � uk , which has at most Lv,k
blocks. A covering on h points in which every block contains some pair that is covered only once has
at most

(uk
2

)
blocks, which is a constant independent of v . Use this to fill the hole. �

6. Conclusion

For t = 2, our results establish that the elementary Johnson and Schönheim bounds are essentially
the correct ones, in that the respective optima cannot differ from them by more than an additive
constant. Unless this constant can be shown to be quite small, the specific value obtained for the
constant is not of particular interest. Without recourse to Proposition 1.1 or a similar statement, we
see no way at present to obtain differences from the bounds that are bounded by a quantity as small
as (say) k in general, although it is plausible that such bounds hold.
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