Multi-Exponentiation Algorithm

Chien-Ning Chen

Email: chienning@ntu.edu.sg

SsPpace

Feb 15, 2012 Coding and Cryptography Research Group

Outline

e Review of multi-exponentiation algorithms
e Double/Multi-exponentiation based on binary GCD algorithm

e Side-channel analysis and countermeasures

Feb 15, 2012 Coding and Cryptography Research Group

Double- /Multi-Exponentiation
e Evaluating the product of several exponentiations
— Example: double-exponentiation, 2%,
in many digital signature verification primitives
— Fzxample: multi-exponentiation, g1t - - - g;°*,
in bilinear ring signature and batch verification of signatures

e Existing better algorithms than
“multiplying the results of individual exponentiations”

— Most are developed based on

Shamir's simultaneous squaring algorithm (1985)
(Also proposed by Straus in 1964)

Feb 15, 2012 Coding and Cryptography Research Group

Square and Multiply Algorithm

INPUT: base number g,
exponent e = (ep_1---€p)

QUTPUT: ¢°

01 R=1 < Accumulator

02 for i=k—1 to 0 step —1 <« From MSB to LSB
03 R=R? < Square

04 if e; =1 then R=R x g <« Multiply (optional)
05 return R

o Left-to-right algorithm, complexity = 1.5k multiplications

Feb 15, 2012 Coding and Cryptography Research Group

Shamir’s Simultaneous Squaring
Multi-Exponentiation Algorithm

INPUT: base numbers g; ~ g,
exponents e ~ e where e; = (ej7k_1 e ej70)
OUTPUT: ¢t X --- X gp°h

01 R=1
02 for 1=k —1 to 0 step —1
03 R=R? < Simultaneous squaring

04 R =Rx(g10ix .- xgphi) <= How to compute it?
05 return R

e If g1 X go Is pre-computed Table = {g1, 92,91 X g2}

Complexity of double-exponentiation = 1.75k

Feb 15, 2012 Coding and Cryptography Research Group

Interleaving / Simultaneous Multi-Exponentiation’

e How to compute | Rx (g1 - -+ X gp %)

— Interleaving: compute each of multiplications
x hk/2 multiplications on average (h terms, k-bit exponents)
— Simultaneous: prepare a table {g:t x - -+ X g}
x k(1 —27") = k multiplications,
where 27" is the prob. of 1 ;= -+ =¢,; =0
+ Table size = (2" — h — 1)

e Exponent recoding can further improve performance

— Table size grows faster than in single-exponentiation

'Named by Bodo Mdller

Feb 15, 2012 Coding and Cryptography Research Group

Interleaving Double-Exp. with Window Method

e Separately recode exponents by sliding/fractional window method

Recoding Method

Avg. HW

Double-Exp. with w = 2

w-bit sliding window| —= (1+ —25)k = 1.66k
w-bit signed sliding window| £ (1+ %)k = 1.5k

e Fxample: 2-bit signed sliding window, digit set {0, +1, +3}

b=334=0101001110 = binary
0101001030 = 2-bit sliding window
0030030010 = 2-bit signed sliding window

e Prepare separate tables: {z, 2%, 271, 273}, {y,y3, vy~ 1,y 3}

Feb 15, 2012 Coding and Cryptography Research Group

Simultaneous Double-Exp. with Recodings

e Recode exponents by NAF or Joint Sparse Form

o Example: double-exp. %, Average complexity

a:40320110010011\>:>binary | 75k
hb=2334=0101001110 average j-HW = 0.75k

1010010101 | NAF recoding separately | 56k
0101010010 average j-HW = 0.56k '
1010010011 >:>JSFrecoding | 5k
1011010010 average j-HW = 0.5k '

J \\

J \\

e Prepare joint table: {z, 271, y,y !, 2y, (zy) L, oy~ 1, 271y}

Feb 15, 2012 Coding and Cryptography Research Group 7

Binary GCD Multi-Exponentiation Algorithm

Feb 15, 2012 Coding and Cryptography Research Group

Euclidean Double-Exponentiation Algorithm?

e Find GCD of a and b when evaluating :cayb

— ged(a, b) = ged(b, a mod b) = ged(b, r) where a = bg + r
_ zayb _ x(bq+r)yb _ ZL‘T(.’,quyb) _ (qu)bzr _ szr ...

e Evaluate the double-exponentiation %y by
1. Initialize: (A(O>7 B<O>, X<0>,Y<O>) — (CL, b, x, y)
2. (Atit1y, Bris1y, Xeip1y, Yiig1y) =
(Biays Agiy mod By, Y iy 3 Xy A0/ B0 X)
3. Terminate: z%® = X<Z->A<i> when B,y =0

°In 1989, Bergeron et al. firstly employed Euclidean algorithm to construct continued fractions
for evaluating double-exponentiation.

Feb 15, 2012 Coding and Cryptography Research Group 9

Binary GCD Algorithm

e Alternate method to find greatest common divisor, base on

1. ged(a,b) = 2ged(a/2,b/2), when both a and b are even
2. ged(a,b) = ged(a/2,b), when a is even and b is odd

3. ged(a,b) = ged(a — b,b), when a > b

ged((a —) /2%, b)
ged(a, (b — a)/2")

e More efficient when handling long integers

e Recursively perform ged(a,b) = {

— No long-integer modular operation
— Only subtraction and right shifting (divided by 2)

Feb 15, 2012 Coding and Cryptography Research Group

10

Binary GCD Double-Exponentiation Algorithm

e Compute GCD of exponents by binary GCD algorithm

— 2%b = (z)aj/2 b(if aiseven) or = az%%ay)® (if a > b)
(A<Z>/2 By, X Y<Z) if Ai;y is even

(A1), Blrnys _ . (Auy, Bry/2, X) if By;y is even

Xit1)s Y(it1)) (A<z>— (i) B<7:>»X<7:>»X<i>Y<i>) it Ay > By
Ay, By —Ag, Yiy) if By > Ag)

e Require about 1.4log, a squarings and 0.7 log, a multiplications
when evaluating z%y® when a ~ b Complexity = 2.1k

Feb 15, 2012 Coding and Cryptography Research Group 11

Analysis of bGCD Double-Exp. Alg.
e Evaluate performance’ by log,(A;B;y) (i.e., length of A;;By)

e Halving: (A<Z-+1>, B<i+1>7x<i+1>7Y<i+1>) = (A<i>/27 B<i>vx<z‘>2,Y<i>)
— logy(Ay) — loga(Ar;y/2) = 1, always reduce 1 bit

e Subtraction: (---) = (Ayy — By, Bray, Xy, Xy Yiiy)

— logQ(A<Z>) — logQ(A<Z> — B(z)) depends on A<Z>/B<Z>
— Reduce more bits when A, =~ B,
— Reduce almost nothing when Ay > B,

SReferring to the analysis of Brent in 1976.

Feb 15, 2012 Coding and Cryptography Research Group 12

Improvement to bGCD Double-Exp. Alg.

e Strategy 1: Always perform subtraction when Ay ~ B,

— Subtraction has better performance than halving if Ay ~ B
— Determine Ay ~ B;) by length, |log, Ayy] — [logy Biiy] <1

e Strategy 2: Append 1! to be a triple-exp. z%y?1!

— Solve the worst case, Ay is odd, By, is even, Ay > By

= Apiyir) = (Ap—1)/2%,
until A(H—l—l—k) IS Odd or A(H—l—l—k) ~ B<@'>

— Require 1 additional variable,
Xy MY (3 PO Z 3y = Xy PO DY) BO(Z 15y XX)

Feb 15, 2012 Coding and Cryptography Research Group 13

Comparison of Double-Exp. Alg.

e Performance comparison of 1024-bit double-exponentiation

Feb 15, 2012

Avg. # of Operations| Avg. [Variables
Algorithm Square| Mul. Ssum | Comp. |Base| Exp
Euclidean 749.7| 896.8|1646.5|1.6079| 3 3
Binary GCD 1445.3| 723.3|2168.5(2.1177(2 2
Strategy 1 724.8(1048.1|1772.9|1.7314| 2 2
Strategy 1&2 503.5|1106.8|1610.3|1.5726| 3 2
Simult. binary|[1024 768.0(1792.0|1.75 4 2
Simult. JSF 1024 512.0|1536.0|1.5 5/9| 2
Inter. binary |1024 [1024.0]2048.0(2.0 3 2
Inter. 2-uSW |1024 682.7|1706.7|1.6667| b5 2
Inter. 2-sSW 1024 512.0|1536.0(1.5 5/9| 2

Coding and Cryptography Research Group

14

binary GCD Multi-Exp. Algorithm

e Follow the same strategies of binary GCD double-exponentiation
to reduce the largest exponent as efficient as possible

e No pre-computation table, memory efficiency

e Scalable from single exp. g°1' to multi-exp.
Good performance for any bit length of exponents

Feb 15, 2012 Coding and Cryptography Research Group 15

Performance of High-Dimensional

e Performance comparison of 1024-bit multi-exponentiation

Term|Algorithm Squaﬁgqg. #MZi. Avg. Comp. gzz:agi;?
bGCD 284.3 1503.5 1.746(4 3
3 |Simult. binary|1024.0 4+ 896.0|0.004+1.875| 8 3
Inter. binary (1024.0 1536.0 2.500| 4 3
bGCD 173.7 1822.4 1.949(5 4
4 |Simult. binary|1024.0| 11+ 960.0(0.010+1.938| 16 4
Inter. binary (1024.0 2048.0 3.000(5 4
bGCD 20.8 3301.1 3.244(10 | 10
10 |Simult. binary|1024.0|1013+1023.0|0.989+1.999|1024| 10
Inter. binary (1024.0 5120.0 6.000| 11 10

Feb 15, 2012

Coding and Cryptography Research Group

16

Lim-Lee Algorithm and BGMW Method

e Lim-Lee: simultaneous exponentiation with multiple smaller tables

— Split h base numbers into [set, construct table on each set
— Table size reduced from O(2") to O(12"/%), I-fold multiplications

03 R=R’
04 R =RxX(g177 X -+ X g) X (Gug1 7! X -+ X gogyh) X - -

e BGMW: w-bit fixed window with a special comp. sequence

— Ezample: R® x (g1° X g X g3° X g4*) —

R® % (g4) X (949193) X (949193) X (94919392)

Feb 15, 2012 Coding and Cryptography Research Group 17

Feb 15, 2012

0.4

of mul.
Len. x Dim.

0.3

Complexity =

Comparison with Lim-Lee and BGMW

0.2

|
\
\
\
\
\
\
\
\
\
\
1
\
)
|
\
\
A

\‘ F
S

—Lim-Lee 160-bit
---Lim-Lee 1024-bit

0.1

—BGMW 160-bit
--BGMW 1024-bit
—=binaryGCD 160-bit

-+binaryGCD 1024-bit
0

10

binaryGCD

100

Dimension
1000

10000

Coding and Cryptography Research Group

18

Feb 15, 2012

Side-Channel Analysis
and Countermeasures

Coding and Cryptography Research Group

19

Simple Power Analysis

e Attacker can distinguish squaring and multiplication

— How much info can be retrieved from S and M sequence?

e Left-to-right binary square-and-multiply algorithm

03 R=R? < Squaring always happens
04 if e; =1 then R=R x g < Mul. indicates a nonzero bit

— Fully recover private exponent when retrieving one sequence
— Example: ... SMSSSMSM ... indicates...10011...

Feb 15, 2012 Coding and Cryptography Research Group 20

Immunity Against Simple Power Analysis

e bGCD multi-exp. alg. is natively with immunity against SPA,
because both base numbers are updated

— When squaring occurs, (X(;t1y, Y(it1)) = {
can not distinguish which variable is squared
— When multiplication occurs, (Xiy1y, Y(it1)) = {

can not distinguish which variable is overwritten

e More than 1.5k indistinguishable operations in k-bit double-exp.

Feb 15, 2012 Coding and Cryptography Research Group 21

Differential Power Analysis

e Statistical methods to test whether expected values appear
— Power consumption depends on operand

e In left-to-right square-and-multiply algorithm, if attacker has
retrieved MSBs of exponent, E(; 11y = (ex—1---€i41)

1. Calculate R4y = gE<i+1>

2. E(z) = (ek_l e 67;_|_1€Z'), gUEess €; — Oorl

3. Either R<7;> — R<7;_|_1>2 or R(z’) = R(i—|—1>2 X g

4. Test whether (R<i>)2 or (R<i>)2 appears by DPA

Feb 15, 2012 Coding and Cryptography Research Group 22

Immunity Against Differential Power Analysis

e To prevent DPA by appending 7,
where r is a random number and ¢ is the order of group

— Single exp. ¢¢ = ¢°r?1!, Complexity = 1.5726k
— Double exp. z%y® = z%’r?1!, Complexity = 1.7461k
e The intermediate values will be of the form: ¢g®r”

— Cannot guess them because r is unknown = NO DPA
0, , ANO 1
— After computation, we have (go‘frﬁ) (go‘ 7“5) (ge)

« Either ¢g®rP or go‘/'rﬁl will be the next random number

Feb 15, 2012 Coding and Cryptography Research Group

23

Summary of bGCD Multi-exp. Alg.

e Comparable performance, scalable from single exp. to multi-exp.
e No pre-computation table, no inversion computation

e Side-channel immunity

e No explicit proof of complexity, only simulation

e All variables will be overwritten during computation

Feb 15, 2012 Coding and Cryptography Research Group 24

Feb 15, 2012

Thank You

Coding and Cryptography Research Group

25

