Multi-Exponentiation Algorithm

Chien-Ning Chen Email: chienning@ntu.edu.sg

Coding and Cryptography Research Group

Outline

- Review of multi-exponentiation algorithms
- Double/Multi-exponentiation based on binary GCD algorithm
- Side-channel analysis and countermeasures

Double-/Multi-Exponentiation

• Evaluating the product of several exponentiations

- Example: double-exponentiation, $x^a y^b$, in many digital signature verification primitives
- *Example*: multi-exponentiation, $g_1^{e_1} \cdots g_h^{e_h}$, in bilinear ring signature and batch verification of signatures
- Existing better algorithms than "multiplying the results of individual exponentiations"
 - Most are developed based on
 Shamir's simultaneous squaring algorithm (1985) (Also proposed by Straus in 1964)

Square and Multiply Algorithm

INPUT: base number g, exponent $e = (e_{k-1} \cdots e_0)$ OUTPUT: g^e 01 R = 1 \Leftarrow Accumulator 02 for i = k - 1 to 0 step $-1 \Leftarrow$ From MSB to LSB 03 R = R² \Leftarrow Square 04 if $e_i = 1$ then R = R × $g \Leftarrow$ Multiply (optional) 05 return R

• Left-to-right algorithm, complexity = 1.5k multiplications

Shamir's Simultaneous Squaring Multi-Exponentiation Algorithm

INPUT: base numbers $g_1 \sim g_h$, exponents $e_1 \sim e_h$ where $e_j = (e_{j,k-1} \cdots e_{j,0})$ OUTPUT: $g_1^{e_1} \times \cdots \times g_h^{e_h}$ 01 R = 1 02 for i = k - 1 to 0 step -1 03 R = R² \Leftarrow Simultaneous squaring 04 R = R × $(g_1^{e_{1,i}} \times \cdots \times g_h^{e_{h,i}}) \Leftrightarrow$ How to compute it? 05 return R

• If $g_1 \times g_2$ is pre-computed Table = $\{g_1, g_2, g_1 \times g_2\}$ Complexity of double-exponentiation = 1.75k

Interleaving / Simultaneous Multi-Exponentiation¹

- How to compute $\mathsf{R} \times (g_1^{e_{1,i}} \times \cdots \times g_h^{e_{h,i}})$
 - Interleaving: compute each of multiplications * hk/2 multiplications on average (h terms, k-bit exponents) - Simultaneous: prepare a table $\{g_1^{\epsilon_1} \times \cdots \times g_h^{\epsilon_h}\}$ * $k(1-2^{-h}) \approx k$ multiplications, where 2^{-h} is the prob. of $e_{1,i} = \cdots = e_{h,i} = 0$
 - * Table size = $(2^h h 1)$
- Exponent recoding can further improve performance
 - Table size grows faster than in single-exponentiation

¹Named by Bodo Möller

Interleaving Double-Exp. with Window Method

• Separately recode exponents by sliding/fractional window method

Recoding Method	Avg. HW	Double-Exp. with $w = 2$
w-bit sliding window	$\frac{k}{w+1}$	$(1 + \frac{2}{w+1})k = 1.66k$
w-bit signed sliding window	$\frac{k}{w+2}$	$(1 + \frac{2}{w+2})k = 1.5k$

• *Example*: 2-bit signed sliding window, digit set $\{0, \pm 1, \pm 3\}$

 $\begin{array}{c} b = 334 = 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \Rightarrow {\rm binary} \\ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 3 \ 0 \Rightarrow {\rm 2-bit \ sliding \ window} \\ 0 \ 0 \ 3 \ 0 \ 0 \ \overline{3} \ 0 \ 0 \ \overline{1} \ 0 \Rightarrow {\rm 2-bit \ sliding \ window} \end{array}$

• Prepare separate tables: $\{x, x^3, x^{-1}, x^{-3}\}$, $\{y, y^3, y^{-1}, y^{-3}\}$

Simultaneous Double-Exp. with Recodings

- Recode exponents by NAF or Joint Sparse Form
- Example: double-exp. $x^a y^b$,

```
Average complexity
```

• Prepare joint table: $\{x, x^{-1}, y, y^{-1}, xy, (xy)^{-1}, xy^{-1}, x^{-1}y\}$

Binary GCD Multi-Exponentiation Algorithm

Euclidean Double-Exponentiation Algorithm²

• Find GCD of a and b when evaluating $x^a y^b$

- $gcd(a,b) = gcd(b, a \mod b) = gcd(b,r)$ where a = bq + r- $x^a y^b = x^{(bq+r)} y^b = x^r (x^{bq} y^b) = (yx^q)^b x^r = z^b x^r = \cdots$

- Evaluate the double-exponentiation x^ay^b by
 - 1. Initialize: $(A_{\langle 0 \rangle}, B_{\langle 0 \rangle}, X_{\langle 0 \rangle}, Y_{\langle 0 \rangle}) = (a, b, x, y)$ 2. $(A_{\langle i+1 \rangle}, B_{\langle i+1 \rangle}, X_{\langle i+1 \rangle}, Y_{\langle i+1 \rangle}) =$ $(B_{\langle i \rangle}, A_{\langle i \rangle} \mod B_{\langle i \rangle}, Y_{\langle i \rangle} \times X_{\langle i \rangle} {}^{\lfloor A_{\langle i \rangle}/B_{\langle i \rangle} \rfloor}, X_{\langle i \rangle})$ 3. Terminate: $x^a y^b = X_{\langle i \rangle} {}^{A_{\langle i \rangle}}$ when $B_{\langle i \rangle} = 0$

 $^{^{2}}$ In 1989, Bergeron *et al.* firstly employed Euclidean algorithm to construct continued fractions for evaluating double-exponentiation.

Binary GCD Algorithm

- Alternate method to find greatest common divisor, base on
 - 1. gcd(a,b) = 2 gcd(a/2, b/2), when both a and b are even 2. gcd(a,b) = gcd(a/2,b), when a is even and b is odd 3. gcd(a,b) = gcd(a-b,b), when $a \ge b$
- Recursively perform $gcd(a, b) = \begin{cases} gcd((a b)/2^k, b) \\ gcd(a, (b a)/2^k) \end{cases}$
- More efficient when handling long integers
 - No long-integer modular operation
 - Only subtraction and right shifting (divided by 2)

Binary GCD Double-Exponentiation Algorithm

• Compute GCD of exponents by binary GCD algorithm

$$\begin{array}{l} -x^{a}y^{b} = (x^{2})^{a/2}y^{b} \text{ (if } a \text{ is even}) \quad \text{or} \quad = x^{a-b}(xy)^{b} \text{ (if } a \geq b) \\ \\ (\mathsf{A}_{\langle i+1 \rangle}, \, \mathsf{B}_{\langle i+1 \rangle}, \\ \mathsf{X}_{\langle i+1 \rangle}, \, \mathsf{Y}_{\langle i+1 \rangle}) \end{array} = \begin{cases} (\mathsf{A}_{\langle i \rangle}/2, \mathsf{B}_{\langle i \rangle}, \mathsf{X}_{\langle i \rangle}^{2}, \mathsf{Y}_{\langle i \rangle}) & \text{if } \mathsf{A}_{\langle i \rangle} \text{ is even} \\ (\mathsf{A}_{\langle i \rangle}, \mathsf{B}_{\langle i \rangle}/2, \mathsf{X}_{\langle i \rangle}, \mathsf{Y}_{\langle i \rangle}^{2}) & \text{if } \mathsf{B}_{\langle i \rangle} \text{ is even} \\ (\mathsf{A}_{\langle i \rangle} - \mathsf{B}_{\langle i \rangle}, \mathsf{B}_{\langle i \rangle}, \mathsf{X}_{\langle i \rangle}, \mathsf{X}_{\langle i \rangle}, \mathsf{X}_{\langle i \rangle}) & \text{if } \mathsf{A}_{\langle i \rangle} \geq \mathsf{B}_{\langle i \rangle} \\ (\mathsf{A}_{\langle i \rangle}, \mathsf{B}_{\langle i \rangle} - \mathsf{A}_{\langle i \rangle}, \mathsf{X}_{\langle i \rangle}, \mathsf{X}_{\langle i \rangle}, \mathsf{Y}_{\langle i \rangle}) & \text{if } \mathsf{B}_{\langle i \rangle} > \mathsf{A}_{\langle i \rangle} \end{cases} \end{cases}$$

• Require about $1.4 \log_2 a$ squarings and $0.7 \log_2 a$ multiplications when evaluating $x^a y^b$ when $a \approx b$ Complexity = 2.1k

Analysis of bGCD Double-Exp. Alg.

- Evaluate performance³ by $\log_2(A_{\langle i \rangle}B_{\langle i \rangle})$ (i.e., length of $A_{\langle i \rangle}B_{\langle i \rangle}$)
- Halving: $(A_{\langle i+1 \rangle}, B_{\langle i+1 \rangle}, X_{\langle i+1 \rangle}, Y_{\langle i+1 \rangle}) = (A_{\langle i \rangle}/2, B_{\langle i \rangle}, X_{\langle i \rangle}^2, Y_{\langle i \rangle})$ - $\log_2(A_{\langle i \rangle}) - \log_2(A_{\langle i \rangle}/2) = 1$, always reduce 1 bit
- Subtraction: $(\cdots) = (A_{\langle i \rangle} B_{\langle i \rangle}, B_{\langle i \rangle}, X_{\langle i \rangle}, X_{\langle i \rangle}, Y_{\langle i \rangle})$
 - $\log_2(\mathsf{A}_{\langle i\rangle}) \log_2(\mathsf{A}_{\langle i\rangle} \mathsf{B}_{\langle i\rangle})$ depends on $\mathsf{A}_{\langle i\rangle}/\mathsf{B}_{\langle i\rangle}$
 - Reduce more bits when $\mathsf{A}_{\langle i \rangle} pprox \mathsf{B}_{\langle i
 angle}$
 - Reduce almost nothing when $A_{\langle i \rangle} \gg B_{\langle i \rangle}$

³Referring to the analysis of Brent in 1976.

Improvement to bGCD Double-Exp. Alg.

- Strategy 1: Always perform subtraction when $A_{\langle i \rangle} \approx B_{\langle i \rangle}$
 - Subtraction has better performance than halving if $A_{\langle i \rangle} \approx B_{\langle i \rangle}$
 - Determine $A_{\langle i \rangle} \approx B_{\langle i \rangle}$ by length, $\lfloor \log_2 A_{\langle i \rangle} \rfloor \lfloor \log_2 B_{\langle i \rangle} \rfloor \le 1$
- Strategy 2: Append 1^1 to be a triple-exp. $x^a y^b 1^1$
 - Solve the worst case, $A_{\langle i \rangle}$ is odd, $B_{\langle i \rangle}$ is even, $A_{\langle i \rangle} \gg B_{\langle i \rangle}$
 - $\begin{array}{l} -\mathsf{A}_{\langle i+1+k\rangle} = (\mathsf{A}_{\langle i\rangle} 1)/2^k, \\ \text{until } \mathsf{A}_{\langle i+1+k\rangle} \text{ is odd, or } \mathsf{A}_{\langle i+1+k\rangle} \approx \mathsf{B}_{\langle i\rangle} \end{array}$
 - Require 1 additional variable, $X_{\langle i \rangle}{}^{A_{\langle i \rangle}}Y_{\langle i \rangle}{}^{B_{\langle i \rangle}}Z_{\langle i \rangle} = X_{\langle i \rangle}{}^{(A_{\langle i \rangle}-1)}Y_{\langle i \rangle}{}^{B_{\langle i \rangle}}(Z_{\langle i \rangle} \times X_{\langle i \rangle})$

Comparison of Double-Exp. Alg.

• Performance comparison of 1024-bit double-exponentiation

	Avg. # of Operations			Avg.	Variables	
Algorithm	Square	Mul.	Sum	Comp.	Base	Exp
Euclidean	749.7	896.8	1646.5	1.6079	3	3
Binary GCD	1445.3	723.3	2168.5	2.1177	2	2
Strategy 1	724.8	1048.1	1772.9	1.7314	2	2
Strategy 1&2	503.5	1106.8	1610.3	1.5726	3	2
Simult. binary	1024	768.0	1792.0	1.75	4	2
Simult. JSF	1024	512.0	1536.0	1.5	5/9	2
Inter. binary	1024	1024.0	2048.0	2.0	3	2
Inter. 2-uSW	1024	682.7	1706.7	1.6667	5	2
Inter. 2-sSW	1024	512.0	1536.0	1.5	5/9	2

binary GCD Multi-Exp. Algorithm

- Follow the same strategies of binary GCD double-exponentiation to reduce the largest exponent as efficient as possible
- No pre-computation table, memory efficiency
- Scalable from single exp. $g^e 1^1$ to multi-exp. Good performance for any bit length of exponents

Performance of High-Dimensional

• Performance comparison of 1024-bit multi-exponentiation

Term	Algorithm	Avg. # of			Variables	
		Square	Mul.	Avg. comp.	Base	Exp.
3	bGCD	284.3	1503.5	1.746	4	3
	Simult. binary	1024.0	4+ 896.0	0.004+1.875	8	3
	Inter. binary	1024.0	1536.0	2.500	4	3
4	bGCD	173.7	1822.4	1.949	5	4
	Simult. binary	1024.0	11+ 960.0	0.010+1.938	16	4
	Inter. binary	1024.0	2048.0	3.000	5	4
10	bGCD	20.8	3301.1	3.244	10	10
	Simult. binary	1024.0	1013+ 1023.0	0.989+1.999	1024	10
	Inter. binary	1024.0	5120.0	6.000	11	10

Lim-Lee Algorithm and BGMW Method

- Lim-Lee: simultaneous exponentiation with multiple smaller tables
 - Split h base numbers into l set, construct table on each set
 - Table size reduced from $O(2^h)$ to $O(l2^{h/l})$, *l*-fold multiplications

03 $R = R^2$ 04 $R = R \times (g_1^{e_{1,i}} \times \cdots \times g_w^{e_{w,i}}) \times (g_{w+1}^{e_{w+1}} \times \cdots \times g_{2w}^{e_h}) \times \cdots$

• BGMW: w-bit fixed window with a special comp. sequence

- Example:
$$\mathsf{R}^8 \times (g_1^3 \times g_2 \times g_3^3 \times g_4^4) \rightarrow$$

 $\mathsf{R}^8 \times (g_4) \times (g_4 g_1 g_3) \times (g_4 g_1 g_3) \times (g_4 g_1 g_3 g_2)$

Comparison with Lim-Lee and BGMW

Feb 15, 2012

Coding and Cryptography Research Group

Side-Channel Analysis and Countermeasures

Simple Power Analysis

- Attacker can distinguish squaring and multiplication
 - How much info can be retrieved from S and M sequence?
- Left-to-right binary square-and-multiply algorithm

03 $R = R^2$ \Leftarrow Squaring always happens04if $e_i = 1$ then $R = R \times g \Leftarrow$ Mul. indicates a nonzero bit

- Fully recover private exponent when retrieving one sequence - $Example: \dots \underline{S M} \underline{S S \underline{S M} \underline{S M}} \dots$ indicates $\dots 10011 \dots$

Immunity Against Simple Power Analysis

- bGCD multi-exp. alg. is natively with immunity against SPA, because both base numbers are updated
 - When squaring occurs, $(X_{\langle i+1 \rangle}, Y_{\langle i+1 \rangle}) = \begin{cases} (X_{\langle i \rangle}^2, Y_{\langle i \rangle}) \\ (X_{\langle i \rangle}, Y_{\langle i \rangle}^2) \end{cases}$, can not distinguish which variable is squared

– When multiplication occurs, $(X_{\langle i+1 \rangle}, Y_{\langle i+1 \rangle}) = \begin{cases} (X_{\langle i \rangle} Y_{\langle i \rangle}, Y_{\langle i \rangle}) \\ (X_{\langle i \rangle}, X_{\langle i \rangle} Y_{\langle i \rangle}) \end{cases}$, can not distinguish which variable is overwritten

• More than 1.5k indistinguishable operations in k-bit double-exp.

Differential Power Analysis

- Statistical methods to test whether expected values appear
 - Power consumption depends on operand
- In left-to-right square-and-multiply algorithm, if attacker has retrieved MSBs of exponent, $E_{\langle i+1 \rangle} = (e_{k-1} \cdots e_{i+1})$

1. Calculate
$$R_{\langle i+1 \rangle} = g^{\mathsf{E}_{\langle i+1 \rangle}}$$

2. $\mathsf{E}_{\langle i \rangle} = (e_{k-1} \cdots e_{i+1} e_i)$, guess $e_i = 0$ or 1
3. Either $\mathsf{R}_{\langle i \rangle} = \mathsf{R}_{\langle i+1 \rangle}^2$ or $\mathsf{R}_{\langle i \rangle} = \mathsf{R}_{\langle i+1 \rangle}^2 \times g$
4. Test whether $(\mathsf{R}_{\langle i \rangle})^2$ or $(\mathsf{R}_{\langle i \rangle})^2$ appears by DPA

Immunity Against Differential Power Analysis

- To prevent DPA by appending r^{ϕ} , where r is a random number and ϕ is the order of group
 - Single exp. $g^e \Longrightarrow g^e r^{\phi} 1^1$, Complexity = 1.5726k
 - Double exp. $x^a y^b \Longrightarrow x^a y^b r^{\phi} 1^1$, Complexity = 1.7461k
- The intermediate values will be of the form: $g^{lpha}r^{eta}$
 - Cannot guess them because r is unknown \Rightarrow NO DPA
 - After computation, we have $\left(g^{\alpha}r^{\beta}\right)^{0}\left(g^{\alpha'}r^{\beta'}\right)^{0}\left(g^{e}\right)^{\perp}$
 - * Either $g^{\alpha}r^{\beta}$ or $g^{\alpha'}r^{\beta'}$ will be the next random number

Summary of bGCD Multi-exp. Alg.

- Comparable performance, scalable from single exp. to multi-exp.
- No pre-computation table, no inversion computation
- Side-channel immunity

- No explicit proof of complexity, only simulation
- All variables will be overwritten during computation

Thank You