Multi-Exponentiation Algorithm

Chien-Ning Chen
Email: chienning@ntu.edu.sg

$9 \square=$

Outline

- Review of multi-exponentiation algorithms
- Double/Multi-exponentiation based on binary GCD algorithm
- Side-channel analysis and countermeasures

Double-/Multi-Exponentiation

- Evaluating the product of several exponentiations
- Example: double-exponentiation, $x^{a} y^{b}$, in many digital signature verification primitives
- Example: multi-exponentiation, $g_{1}{ }^{e_{1}} \cdots g_{h}{ }^{{ }_{h}}$, in bilinear ring signature and batch verification of signatures
- Existing better algorithms than "multiplying the results of individual exponentiations"
- Most are developed based on Shamir's simultaneous squaring algorithm (1985) (Also proposed by Straus in 1964)

Square and Multiply Algorithm

INPUT: base number g,	
	exponent $e=\left(e_{k-1} \cdots e_{0}\right)$
OUTPUT: g^{e}	
$01 \mathrm{R}=1$	\Leftarrow Accumulator
02 for $i=k-1$ to 0 step -1	\Leftarrow From MSB to LSB
$03 \quad \mathrm{R}=\mathrm{R}^{2}$	
04 if $e_{i}=1$ then $\mathrm{R}=\mathrm{R} \times g$	\Leftarrow Multiply (optional)
05 return R	

- Left-to-right algorithm, complexity $=1.5 k$ multiplications

Shamir's Simultaneous Squaring Multi-Exponentiation Algorithm

INPUT:	base numbers $g_{1} \sim g_{h}$,	
	exponents $e_{1} \sim e_{h}$ where $e_{j}=\left(e_{j, k-1} \cdots e_{j, 0}\right)$	
OUTPUT: $g_{1} e^{e_{1}} \times \cdots \times g_{h}{ }^{e_{h}}$		
$01 \mathrm{R}=1$		
02 for $i=k-1$ to 0 step -1		
$03 \quad \mathrm{R}=\mathrm{R}^{2}$	\Leftarrow Simultaneous squaring	
$04 \quad \mathrm{R}=\mathrm{R} \times\left(g_{1}{ }^{e_{1, i}} \times \cdots \times g_{h}{ }^{e_{h, i}}\right)$	\Leftarrow How to compute it?	
05 return R		

- If $g_{1} \times g_{2}$ is pre-computed Table $=\left\{g_{1}, g_{2}, g_{1} \times g_{2}\right\}$
Complexity of double-exponentiation $=1.75 k$

Interleaving / Simultaneous Multi-Exponentiation ${ }^{1}$

- How to compute $\mathrm{R} \times\left(g_{1}{ }^{\left.e_{1, i} \times \cdots \times g_{h}{ }^{e_{h, i}}\right)}\right.$
- Interleaving: compute each of multiplications * $h k / 2$ multiplications on average (h terms, k-bit exponents)
- Simultaneous: prepare a table $\left\{g_{1}{ }^{\epsilon_{1}} \times \cdots \times g_{h}{ }^{\epsilon}\right\}$ * $k\left(1-2^{-h}\right) \approx k$ multiplications, where 2^{-h} is the prob. of $e_{1, i}=\cdots=e_{h, i}=0$ * Table size $=\left(2^{h}-h-1\right)$
- Exponent recoding can further improve performance
- Table size grows faster than in single-exponentiation

[^0]
Interleaving Double-Exp. with Window Method

- Separately recode exponents by sliding/fractional window method

Recoding Method	Avg. HW	Double-Exp. with $w=2$
w-bit sliding window	$\frac{k}{w+1}$	$\left(1+\frac{2}{w+1}\right) k=1.66 k$
w-bit signed sliding window	$\frac{k}{w+2}$	$\left(1+\frac{2}{w+2}\right) k=1.5 k$

- Example: 2-bit signed sliding window, digit set $\{0, \pm 1, \pm 3\}$

$$
\begin{aligned}
b=334= & 0
\end{aligned} \begin{array}{lllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array} \quad \Rightarrow \text { binary }
$$

- Prepare separate tables: $\left\{x, x^{3}, x^{-1}, x^{-3}\right\},\left\{y, y^{3}, y^{-1}, y^{-3}\right\}$

Simultaneous Double-Exp. with Recodings

- Recode exponents by NAF or Joint Sparse Form
- Example: double-exp. $x^{a} y^{b}$,

Average complexity

$$
\begin{align*}
& \left.\begin{array}{l}
a=403=0111001101011 \\
b=334=01010011
\end{array}\right\} \Rightarrow \begin{array}{l}
\text { binary } \\
\text { average } j-\mathrm{HW}=0.75 k
\end{array} \quad 1.75 k \\
& \left.\begin{array}{llllllllll}
1 & 0 & \overline{1} & 0 & 0 & 1 & 0 & 1 & 0 & \overline{1} \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & \overline{1} & 0
\end{array}\right\} \Rightarrow \begin{array}{l}
\text { NAF recoding separately } \\
\text { average } j-H W=0.56 k
\end{array} 1.56 k
\end{align*}
$$

- Prepare joint table: $\left\{x, x^{-1}, y, y^{-1}, x y,(x y)^{-1}, x y^{-1}, x^{-1} y\right\}$

Binary GCD Multi-Exponentiation Algorithm

Euclidean Double-Exponentiation Algorithm ${ }^{2}$

- Find GCD of a and b when evaluating $x^{a} y^{b}$
$-\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)=\operatorname{gcd}(b, r)$ where $a=b q+r$
$-x^{a} y^{b}=x^{(b q+r)} y^{b}=x^{r}\left(x^{b q} y^{b}\right)=\left(y x^{q}\right)^{b} x^{r}=z^{b} x^{r}=\cdots$
- Evaluate the double-exponentiation $x^{a} y^{b}$ by

1. Initialize: $\left(\mathrm{A}_{\langle 0\rangle}, \mathrm{B}_{\langle 0\rangle}, \mathrm{X}_{\langle 0\rangle}, \mathrm{Y}_{\langle 0\rangle}\right)=(a, b, x, y)$
2. $\left(\mathrm{A}_{\langle i+1\rangle}, \mathrm{B}_{\langle i+1\rangle}, \mathrm{X}_{\langle i+1\rangle}, \mathrm{Y}_{\langle i+1\rangle}\right)=$ $\left(\mathrm{B}_{\langle i\rangle}, \mathrm{A}_{\langle i\rangle} \bmod \mathrm{B}_{\langle i\rangle}, \mathrm{Y}_{\langle i\rangle} \times \mathrm{X}_{\langle i\rangle}{ }^{\left\lfloor\mathrm{A}_{\langle i\rangle} / \mathrm{B}_{\langle i\rangle}\right\rfloor}, \mathrm{X}_{\langle i\rangle}\right)$
3. Terminate: $x^{a} y^{b}=\mathrm{X}_{\langle i\rangle}{ }^{\mathrm{A}_{\langle i\rangle}}$ when $\mathrm{B}_{\langle i\rangle}=0$
[^1]
Binary GCD Algorithm

- Alternate method to find greatest common divisor, base on

1. $\operatorname{gcd}(a, b)=2 \operatorname{gcd}(a / 2, b / 2)$, when both a and b are even
2. $\operatorname{gcd}(a, b)=\operatorname{gcd}(a / 2, b)$, when a is even and b is odd
3. $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$, when $a \geq b$

- Recursively perform $\operatorname{gcd}(a, b)=\left\{\begin{array}{l}\operatorname{gcd}\left((a-b) / 2^{k}, b\right) \\ \operatorname{gcd}\left(a,(b-a) / 2^{k}\right)\end{array}\right.$
- More efficient when handling long integers
- No long-integer modular operation
- Only subtraction and right shifting (divided by 2)

Binary GCD Double-Exponentiation Algorithm

- Compute GCD of exponents by binary GCD algorithm

$$
\begin{aligned}
& \left.-x^{a} y^{b}=\left(x^{2}\right)^{a / 2} y^{b} \text { (if } a \text { is even }\right) \quad \text { or }=x^{a-b}(x y)^{b}(\text { if } a \geq b) \\
& \left(\mathrm{A}_{\langle i+1\rangle}, \mathrm{B}_{\langle i+1\rangle},\right. \\
& \left.\mathrm{X}_{\langle i+1\rangle}, \mathrm{Y}_{\langle i+1\rangle}\right)
\end{aligned}=\left\{\begin{array}{ll}
\left(\mathrm{A}_{\langle i\rangle} / 2, \mathrm{~B}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle}{ }^{2}, \mathrm{Y}_{\langle i\rangle}\right) & \text { if } \mathrm{A}_{\langle i\rangle} \text { is even } \\
\left(\mathrm{A}_{\langle i\rangle}, \mathrm{B}_{\langle i\rangle} / 2, \mathrm{X}_{\langle i\rangle}, \mathrm{Y}_{\langle i\rangle}{ }^{2}\right) & \text { if } \mathrm{B}_{\langle i\rangle} \\
\left(\mathrm{A}_{\langle i\rangle}-\mathrm{B}_{\langle i\rangle}, \mathrm{B}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle} \mathrm{Y}_{\langle i\rangle}\right) & \text { if } \mathrm{A}_{\langle i\rangle} \geq \mathrm{B}_{\langle i\rangle} \\
\left(\mathrm{A}_{\langle i\rangle}, \mathrm{B}_{\langle i\rangle}-\mathrm{A}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle} \mathrm{Y}_{\langle i\rangle}, \mathrm{Y}_{\langle i\rangle}\right) & \text { if } \mathrm{B}_{\langle i\rangle}>\mathrm{A}_{\langle i\rangle}
\end{array} ~ . ~ .\right.
$$

- Require about $1.4 \log _{2} a$ squarings and $0.7 \log _{2} a$ multiplications when evaluating $x^{a} y^{b}$ when $a \approx b$ Complexity $=2.1 k$

Analysis of bGCD Double-Exp. Alg.

- Evaluate performance ${ }^{3}$ by $\log _{2}\left(\mathrm{~A}_{\langle i\rangle} \mathrm{B}_{\langle i\rangle}\right)$ (i.e., length of $\mathrm{A}_{\langle i\rangle} \mathrm{B}_{\langle i\rangle}$)
- Halving: $\left(\mathrm{A}_{\langle i+1\rangle}, \mathrm{B}_{\langle i+1\rangle}, \mathrm{X}_{\langle i+1\rangle}, \mathrm{Y}_{\langle i+1\rangle}\right)=\left(\mathrm{A}_{\langle i\rangle} / 2, \mathrm{~B}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle}{ }^{2}, \mathrm{Y}_{\langle i\rangle}\right)$
$-\log _{2}\left(\mathrm{~A}_{\langle i\rangle}\right)-\log _{2}\left(\mathrm{~A}_{\langle i\rangle} / 2\right)=1$, always reduce 1 bit
- Subtraction: $(\cdots)=\left(\mathrm{A}_{\langle i\rangle}-\mathrm{B}_{\langle i\rangle}, \mathrm{B}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle} \mathrm{Y}_{\langle i\rangle}\right)$
$-\log _{2}\left(\mathrm{~A}_{\langle i\rangle}\right)-\log _{2}\left(\mathrm{~A}_{\langle i\rangle}-\mathrm{B}_{\langle i\rangle}\right)$ depends on $\mathrm{A}_{\langle i\rangle} / \mathrm{B}_{\langle i\rangle}$
- Reduce more bits when $\mathrm{A}_{\langle i\rangle} \approx \mathrm{B}_{\langle i\rangle}$
- Reduce almost nothing when $\mathrm{A}_{\langle i\rangle} \gg \mathrm{B}_{\langle i\rangle}$

[^2]
Improvement to bGCD Double-Exp. Alg.

- Strategy 1: Always perform subtraction when $\mathrm{A}_{\langle i\rangle} \approx \mathrm{B}_{\langle i\rangle}$
- Subtraction has better performance than halving if $\mathrm{A}_{\langle i\rangle} \approx \mathrm{B}_{\langle i\rangle}$
- Determine $\mathrm{A}_{\langle i\rangle} \approx \mathrm{B}_{\langle i\rangle}$ by length, $\left\lfloor\log _{2} \mathrm{~A}_{\langle i\rangle}\right\rfloor-\left\lfloor\log _{2} \mathrm{~B}_{\langle i\rangle}\right\rfloor \leq 1$
- Strategy 2: Append 1^{1} to be a triple-exp. $x^{a} y^{b} 1^{1}$
- Solve the worst case, $\mathrm{A}_{\langle i\rangle}$ is odd, $\mathrm{B}_{\langle i\rangle}$ is even, $\mathrm{A}_{\langle i\rangle} \gg \mathrm{B}_{\langle i\rangle}$
$-\mathrm{A}_{\langle i+1+k\rangle}=\left(\mathrm{A}_{\langle i\rangle}-1\right) / 2^{k}$, until $\mathrm{A}_{\langle i+1+k\rangle}$ is odd, or $\mathrm{A}_{\langle i+1+k\rangle} \approx \mathrm{B}_{\langle i\rangle}$
- Require 1 additional variable,

$$
\mathrm{X}_{\langle i\rangle}{ }^{\mathrm{A}_{\langle i}} \mathrm{Y}_{\langle i\rangle}{ }^{\mathrm{B}_{\langle i\rangle}} \mathrm{Z}_{\langle i\rangle}=\mathrm{X}_{\langle i\rangle}{ }^{\left(\mathrm{A}_{\langle i\rangle}-1\right)} \mathrm{Y}_{\langle i\rangle}{ }^{\mathrm{B}_{\langle i\rangle}}\left(\mathrm{Z}_{\langle i\rangle} \times \mathrm{X}_{\langle i\rangle}\right)
$$

Comparison of Double-Exp. Alg.

- Performance comparison of 1024-bit double-exponentiation

Algorithm	Avg. \# of Operations		Avg.	Variables		
	Square	Mul.	Sum	Comp.	Base	Exp
	749.7	896.8	1646.5	1.6079	3	3
Binary GCD	1445.3	723.3	2168.5	2.1177	2	2
Strategy 1	724.8	1048.1	1772.9	1.7314	2	2
Strategy 1\&2	503.5	1106.8	1610.3	1.5726	3	2
Simult. binary	1024	768.0	1792.0	1.75	4	2
Simult. JSF	1024	512.0	1536.0	1.5	$5 / 9$	2
Inter. binary	1024	1024.0	2048.0	2.0	3	2
Inter. 2-uSW	1024	682.7	1706.7	1.6667	5	2
Inter. 2-sSW	1024	512.0	1536.0	1.5	$5 / 9$	2

binary GCD Multi-Exp. Algorithm

- Follow the same strategies of binary GCD double-exponentiation to reduce the largest exponent as efficient as possible
- No pre-computation table, memory efficiency
- Scalable from single exp. $g^{e} 1^{1}$ to multi-exp. Good performance for any bit length of exponents

Performance of High-Dimensional

- Performance comparison of 1024 -bit multi-exponentiation

Term	Algorithm	Avg. \# of		Avg. Comp.	Variables	
		Square	Mul.		Base	Exp.
3	bGCD	284.3	1503.5	1.746	4	3
	Simult. binary	1024.0	4+ 896.0	0.004+1.875	8	3
	Inter. binary	1024.0	1536.0	2.500	4	3
4	bGCD	173.7	1822.4	1.949	5	4
	Simult. binary	1024.0	11+ 960.0	$0.010+1.938$	16	4
	Inter. binary	1024.0	2048.0	3.000	5	4
10	bGCD	20.8	3301.1	3.244	10	10
	Simult. binary	1024.0	1013+1023.0	0.989+1.999	1024	10
	Inter. binary	1024.0	5120.0	6.000	11	10

Lim-Lee Algorithm and BGMW Method

- Lim-Lee: simultaneous exponentiation with multiple smaller tables
- Split h base numbers into l set, construct table on each set
- Table size reduced from $\mathrm{O}\left(2^{h}\right)$ to $\mathrm{O}\left(l 2^{h / l}\right)$, l-fold multiplications

$$
\begin{array}{ll}
\hline 03 & \mathrm{R}=\mathrm{R}^{2} \\
04 & \mathrm{R}=\mathrm{R} \times\left(g_{1}{ }^{e_{1, i}} \times \cdots \times g_{w}{ }^{e_{w, i}}\right) \times\left(g_{w+1}{ }^{e_{w+1}} \times \cdots \times g_{2 w}{ }^{e_{h}}\right) \times \cdots \\
\hline
\end{array}
$$

- BGMW: w-bit fixed window with a special comp. sequence
- Example: $\mathrm{R}^{8} \times\left(g_{1}{ }^{3} \times g_{2} \times g_{3}{ }^{3} \times g_{4}{ }^{4}\right) \rightarrow$

$$
\mathrm{R}^{8} \times\left(g_{4}\right) \times\left(g_{4} g_{1} g_{3}\right) \times\left(g_{4} g_{1} g_{3}\right) \times\left(g_{4} g_{1} g_{3} g_{2}\right)
$$

Comparison with Lim-Lee and BGMW

Side-Channel Analysis and Countermeasures

Simple Power Analysis

- Attacker can distinguish squaring and multiplication
- How much info can be retrieved from S and M sequence?
- Left-to-right binary square-and-multiply algorithm

03	$\mathrm{R}=\mathrm{R}^{2}$
04	if $e_{i}=1$ then $\mathrm{R}=\mathrm{R} \times g \stackrel{\text { Squaring always happens }}{\Leftarrow} \stackrel{\text { Mul. indicates a nonzero bit }}{ }$

- Fully recover private exponent when retrieving one sequence
- Example: . . . S M S S S M S M . . . indicates ... 10011 ...

Immunity Against Simple Power Analysis

- bGCD multi-exp. alg. is natively with immunity against SPA, because both base numbers are updated
- When squaring occurs, $\left(\mathrm{X}_{\langle i+1\rangle}, \mathrm{Y}_{\langle i+1\rangle}\right)=\left\{\begin{array}{l}\left(\mathrm{X}_{\langle i\rangle}{ }^{2}, \mathrm{Y}_{\langle i\rangle}\right) \\ \left(\mathrm{X}_{\langle i\rangle}, \mathrm{Y}_{\langle i\rangle}{ }^{2}\right),\end{array}\right.$
can not distinguish which variable is squared
- When multiplication occurs, $\left(\mathrm{X}_{\langle i+1\rangle}, \mathrm{Y}_{\langle i+1\rangle}\right)=\left\{\begin{array}{l}\left(\mathrm{X}_{\langle i\rangle} \mathrm{Y}_{\langle i\rangle}, \mathrm{Y}_{\langle i\rangle}\right) \\ \left(\mathrm{X}_{\langle i\rangle}, \mathrm{X}_{\langle i\rangle} \mathrm{Y}_{\langle i\rangle}\right)\end{array}\right.$,
can not distinguish which variable is overwritten
- More than $1.5 k$ indistinguishable operations in k-bit double-exp.

Differential Power Analysis

- Statistical methods to test whether expected values appear
- Power consumption depends on operand
- In left-to-right square-and-multiply algorithm, if attacker has retrieved MSBs of exponent, $\mathrm{E}_{\langle i+1\rangle}=\left(e_{k-1} \cdots e_{i+1}\right)$

1. Calculate $\mathrm{R}_{\langle i+1\rangle}=g^{\mathrm{E}_{\langle i+1\rangle}}$
2. $\mathrm{E}_{\langle i\rangle}=\left(e_{k-1} \cdots e_{i+1} e_{i}\right)$, guess $e_{i}=0$ or 1
3. Either $\mathrm{R}_{\langle i\rangle}=\mathrm{R}_{\langle i+1\rangle}{ }^{2}$ or $\mathrm{R}_{\langle i\rangle}=\mathrm{R}_{\langle i+1\rangle}{ }^{2} \times g$
4. Test whether $\left(\mathrm{R}_{\langle i\rangle}\right)^{2}$ or $\left(\mathrm{R}_{\langle i\rangle}\right)^{2}$ appears by DPA

Immunity Against Differential Power Analysis

- To prevent DPA by appending r^{ϕ}, where r is a random number and ϕ is the order of group
- Single exp. $g^{e} \Longrightarrow g^{e} r^{\phi} 1^{1}$, Complexity $=1.5726 k$
- Double exp. $x^{a} y^{b} \Longrightarrow x^{a} y^{b} r^{\phi} 1^{1}$, Complexity $=1.7461 k$
- The intermediate values will be of the form: $g^{\alpha} r^{\beta}$
- Cannot guess them because r is unknown \Rightarrow NO DPA
- After computation, we have $\left(g^{\alpha} r^{\beta}\right)^{0}\left(g^{\alpha^{\prime}} r^{\beta^{\prime}}\right)^{0}\left(g^{e}\right)^{1}$
* Either $g^{\alpha} r^{\beta}$ or $g^{\alpha^{\prime}} r^{\beta^{\prime}}$ will be the next random number

Summary of bGCD Multi-exp. Alg.

- Comparable performance, scalable from single exp. to multi-exp.
- No pre-computation table, no inversion computation
- Side-channel immunity
- No explicit proof of complexity, only simulation
- All variables will be overwritten during computation

Thank You

[^0]: ${ }^{1}$ Named by Bodo Möller

[^1]: ${ }^{2}$ In 1989, Bergeron et al. firstly employed Euclidean algorithm to construct continued fractions for evaluating double-exponentiation.

[^2]: ${ }^{3}$ Referring to the analysis of Brent in 1976.

