
Multi-Exponentiation Algorithm

Chien-Ning Chen

Email: chienning@ntu.edu.sg

Feb 15, 2012 Coding and Cryptography Research Group

Outline

• Review of multi-exponentiation algorithms

• Double/Multi-exponentiation based on binary GCD algorithm

• Side-channel analysis and countermeasures

Feb 15, 2012 Coding and Cryptography Research Group 1

Double-/Multi-Exponentiation

• Evaluating the product of several exponentiations

– Example: double-exponentiation, xayb,

in many digital signature verification primitives

– Example: multi-exponentiation, g1
e1 · · · gh

eh,

in bilinear ring signature and batch verification of signatures

• Existing better algorithms than

“multiplying the results of individual exponentiations”

– Most are developed based on

Shamir’s simultaneous squaring algorithm (1985)

(Also proposed by Straus in 1964)

Feb 15, 2012 Coding and Cryptography Research Group 2

Square and Multiply Algorithm

INPUT: base number g,
exponent e = (ek−1 · · · e0)

OUTPUT: ge

01 R = 1 ⇐ Accumulator
02 for i = k − 1 to 0 step −1 ⇐ From MSB to LSB
03 R = R2 ⇐ Square
04 if ei = 1 then R = R× g ⇐ Multiply (optional)
05 return R

• Left-to-right algorithm, complexity = 1.5k multiplications

Feb 15, 2012 Coding and Cryptography Research Group 3

Shamir’s Simultaneous Squaring

Multi-Exponentiation Algorithm

INPUT: base numbers g1 ∼ gh,
exponents e1 ∼ eh where ej = (ej,k−1 · · · ej,0)

OUTPUT: g1
e1 × · · · × gh

eh

01 R = 1
02 for i = k − 1 to 0 step −1
03 R = R2 ⇐ Simultaneous squaring
04 R = R×(g1

e1,i× · · · ×gh
eh,i) ⇐ How to compute it?

05 return R

• If g1 × g2 is pre-computed Table = {g1, g2, g1×g2}

Complexity of double-exponentiation = 1.75k

Feb 15, 2012 Coding and Cryptography Research Group 4

Interleaving / Simultaneous Multi-Exponentiation1

• How to compute R×(g1
e1,i× · · · ×gh

eh,i)

– Interleaving: compute each of multiplications

∗ hk/2 multiplications on average (h terms, k-bit exponents)

– Simultaneous: prepare a table {g1
ǫ1 × · · · × gh

ǫh}

∗ k(1− 2−h) ≈ k multiplications,

where 2−h is the prob. of e1,i = · · · = eh,i = 0

∗ Table size = (2h − h− 1)

• Exponent recoding can further improve performance

– Table size grows faster than in single-exponentiation

1Named by Bodo Möller

Feb 15, 2012 Coding and Cryptography Research Group 5

Interleaving Double-Exp. with Window Method

• Separately recode exponents by sliding/fractional window method

Recoding Method Avg. HW Double-Exp. with w = 2

w-bit sliding window k
w+1 (1 + 2

w+1)k = 1.66k

w-bit signed sliding window k
w+2 (1 + 2

w+2)k = 1.5k

• Example: 2-bit signed sliding window, digit set {0,±1,±3}

b = 334 = 0 1 0 1 0 0 1 1 1 0 ⇒ binary

0 1 0 1 0 0 1 0 3 0 ⇒ 2-bit sliding window

0 0 3 0 0 3 0 0 1 0 ⇒ 2-bit signed sliding window

• Prepare separate tables: {x, x3, x−1, x−3}, {y, y3, y−1, y−3}

Feb 15, 2012 Coding and Cryptography Research Group 6

Simultaneous Double-Exp. with Recodings

• Recode exponents by NAF or Joint Sparse Form

• Example: double-exp. xayb, Average complexity

a = 403 = 0 1 1 0 0 1 0 0 1 1

b = 334 = 0 1 0 1 0 0 1 1 1 0

}

⇒
binary

average j -HW = 0.75k
1.75k

1 0 1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0 1 0

}

⇒
NAF recoding separately

average j -HW = 0.56k
1.56k

1 0 1 0 0 1 0 0 1 1

1 0 1 1 0 1 0 0 1 0

}

⇒
JSF recoding

average j -HW = 0.5k
1.5k

• Prepare joint table: {x, x−1, y, y−1, xy, (xy)−1, xy−1, x−1y}

Feb 15, 2012 Coding and Cryptography Research Group 7

Binary GCD Multi-Exponentiation Algorithm

Feb 15, 2012 Coding and Cryptography Research Group 8

Euclidean Double-Exponentiation Algorithm2

• Find GCD of a and b when evaluating xayb

– gcd(a, b) = gcd(b, a mod b) = gcd(b, r) where a = bq + r

– xayb = x(bq+r)yb = xr(xbqyb) = (yxq)bxr = zbxr = · · ·

• Evaluate the double-exponentiation xayb by

1. Initialize: (A〈0〉,B〈0〉,X〈0〉,Y〈0〉) = (a, b, x, y)

2. (A〈i+1〉,B〈i+1〉,X〈i+1〉,Y〈i+1〉) =

(B〈i〉,A〈i〉 mod B〈i〉,Y〈i〉 × X〈i〉
⌊A〈i〉/B〈i〉⌋,X〈i〉)

3. Terminate: xayb = X〈i〉
A〈i〉 when B〈i〉 = 0

2In 1989, Bergeron et al. firstly employed Euclidean algorithm to construct continued fractions

for evaluating double-exponentiation.

Feb 15, 2012 Coding and Cryptography Research Group 9

Binary GCD Algorithm

• Alternate method to find greatest common divisor, base on

1. gcd(a, b) = 2 gcd(a/2, b/2), when both a and b are even

2. gcd(a, b) = gcd(a/2, b), when a is even and b is odd

3. gcd(a, b) = gcd(a− b, b), when a ≥ b

• Recursively perform gcd(a, b) =

{

gcd((a− b)/2k, b)

gcd(a, (b − a)/2k)

• More efficient when handling long integers

– No long-integer modular operation

– Only subtraction and right shifting (divided by 2)

Feb 15, 2012 Coding and Cryptography Research Group 10

Binary GCD Double-Exponentiation Algorithm

• Compute GCD of exponents by binary GCD algorithm

– xayb = (x2)
a/2

yb (if a is even) or = xa−b(xy)b (if a ≥ b)

(A〈i+1〉, B〈i+1〉,

X〈i+1〉, Y〈i+1〉)
=























(A〈i〉/2,B〈i〉,X〈i〉
2,Y〈i〉) if A〈i〉 is even

(A〈i〉,B〈i〉/2,X〈i〉,Y〈i〉
2) if B〈i〉 is even

(A〈i〉−B〈i〉,B〈i〉,X〈i〉,X〈i〉Y〈i〉) if A〈i〉 ≥ B〈i〉

(A〈i〉,B〈i〉−A〈i〉,X〈i〉Y〈i〉,Y〈i〉) if B〈i〉 > A〈i〉

• Require about 1.4 log2 a squarings and 0.7 log2 a multiplications

when evaluating xayb when a ≈ b Complexity = 2.1k

Feb 15, 2012 Coding and Cryptography Research Group 11

Analysis of bGCD Double-Exp. Alg.

• Evaluate performance3 by log2(A〈i〉B〈i〉) (i.e., length of A〈i〉B〈i〉)

• Halving: (A〈i+1〉,B〈i+1〉,X〈i+1〉,Y〈i+1〉) = (A〈i〉/2,B〈i〉,X〈i〉
2,Y〈i〉)

– log2(A〈i〉)− log2(A〈i〉/2) = 1, always reduce 1 bit

• Subtraction: (· · ·) = (A〈i〉 − B〈i〉,B〈i〉,X〈i〉,X〈i〉Y〈i〉)

– log2(A〈i〉)− log2(A〈i〉 − B〈i〉) depends on A〈i〉/B〈i〉

– Reduce more bits when A〈i〉 ≈ B〈i〉

– Reduce almost nothing when A〈i〉 ≫ B〈i〉

3Referring to the analysis of Brent in 1976.

Feb 15, 2012 Coding and Cryptography Research Group 12

Improvement to bGCD Double-Exp. Alg.

• Strategy 1: Always perform subtraction when A〈i〉 ≈ B〈i〉

– Subtraction has better performance than halving if A〈i〉 ≈ B〈i〉

– Determine A〈i〉 ≈ B〈i〉 by length, ⌊log2A〈i〉⌋ − ⌊log2B〈i〉⌋ ≤ 1

• Strategy 2: Append 11 to be a triple-exp. xayb11

– Solve the worst case, A〈i〉 is odd, B〈i〉 is even, A〈i〉 ≫ B〈i〉

– A〈i+1+k〉 = (A〈i〉−1)/2k,

until A〈i+1+k〉 is odd, or A〈i+1+k〉 ≈ B〈i〉

– Require 1 additional variable,

X〈i〉
A〈i〉Y〈i〉

B〈i〉Z〈i〉 = X〈i〉
(A〈i〉−1)Y〈i〉

B〈i〉(Z〈i〉×X〈i〉)

Feb 15, 2012 Coding and Cryptography Research Group 13

Comparison of Double-Exp. Alg.

• Performance comparison of 1024-bit double-exponentiation

Avg. # of Operations Avg. Variables

Algorithm Square Mul. Sum Comp. Base Exp

Euclidean 749.7 896.8 1646.5 1.6079 3 3

Binary GCD 1445.3 723.3 2168.5 2.1177 2 2

Strategy 1 724.8 1048.1 1772.9 1.7314 2 2

Strategy 1&2 503.5 1106.8 1610.3 1.5726 3 2

Simult. binary 1024 768.0 1792.0 1.75 4 2

Simult. JSF 1024 512.0 1536.0 1.5 5 / 9 2

Inter. binary 1024 1024.0 2048.0 2.0 3 2

Inter. 2-uSW 1024 682.7 1706.7 1.6667 5 2

Inter. 2-sSW 1024 512.0 1536.0 1.5 5 / 9 2

Feb 15, 2012 Coding and Cryptography Research Group 14

binary GCD Multi-Exp. Algorithm

• Follow the same strategies of binary GCD double-exponentiation

to reduce the largest exponent as efficient as possible

• No pre-computation table, memory efficiency

• Scalable from single exp. ge11 to multi-exp.

Good performance for any bit length of exponents

Feb 15, 2012 Coding and Cryptography Research Group 15

Performance of High-Dimensional

• Performance comparison of 1024-bit multi-exponentiation

Term Algorithm
Avg. # of

Avg. Comp.
Variables

Square Mul. Base Exp.

3

bGCD 284.3 1503.5 1.746 4 3

Simult. binary 1024.0 4+ 896.0 0.004+1.875 8 3

Inter. binary 1024.0 1536.0 2.500 4 3

4

bGCD 173.7 1822.4 1.949 5 4

Simult. binary 1024.0 11+ 960.0 0.010+1.938 16 4

Inter. binary 1024.0 2048.0 3.000 5 4

10

bGCD 20.8 3301.1 3.244 10 10

Simult. binary 1024.0 1013+1023.0 0.989+1.999 1024 10

Inter. binary 1024.0 5120.0 6.000 11 10

Feb 15, 2012 Coding and Cryptography Research Group 16

Lim-Lee Algorithm and BGMW Method

• Lim-Lee: simultaneous exponentiation with multiple smaller tables

– Split h base numbers into l set, construct table on each set

– Table size reduced fromO(2h) toO(l2h/l), l-fold multiplications

03 R = R2

04 R = R×(g1
e1,i × · · · × gw

ew,i)×(gw+1
ew+1 × · · · × g2w

eh)× · · ·

• BGMW: w-bit fixed window with a special comp. sequence

– Example: R8 × (g1
3 × g2 × g3

3 × g4
4) →

R8 × (g4)× (g4g1g3)× (g4g1g3)× (g4g1g3g2)

Feb 15, 2012 Coding and Cryptography Research Group 17

Comparison with Lim-Lee and BGMW

0

0.1

0.2

0.3

0.4

1 10 100 1000 10000

Lim-Lee 160-bit

Lim-Lee 1024-bit

BGMW 160-bit

BGMW 1024-bit

binaryGCD 160-bit

binaryGCD 1024-bit Dimension

Complexity =
of mul.

Len. × Dim.

Lim-Lee

BGMW

binaryGCD

Feb 15, 2012 Coding and Cryptography Research Group 18

Side-Channel Analysis

and Countermeasures

Feb 15, 2012 Coding and Cryptography Research Group 19

Simple Power Analysis

• Attacker can distinguish squaring and multiplication

– How much info can be retrieved from S and M sequence?

• Left-to-right binary square-and-multiply algorithm

03 R = R2 ⇐ Squaring always happens
04 if ei = 1 then R = R× g ⇐ Mul. indicates a nonzero bit

– Fully recover private exponent when retrieving one sequence

– Example: . . . S M S S S M S M . . . indicates . . . 10011 . . .

Feb 15, 2012 Coding and Cryptography Research Group 20

Immunity Against Simple Power Analysis

• bGCD multi-exp. alg. is natively with immunity against SPA,

because both base numbers are updated

– When squaring occurs, (X〈i+1〉,Y〈i+1〉) =

{

(X〈i〉
2,Y〈i〉)

(X〈i〉,Y〈i〉
2)

,

can not distinguish which variable is squared

– When multiplication occurs, (X〈i+1〉,Y〈i+1〉) =

{

(X〈i〉Y〈i〉,Y〈i〉)

(X〈i〉,X〈i〉Y〈i〉)
,

can not distinguish which variable is overwritten

• More than 1.5k indistinguishable operations in k-bit double-exp.

Feb 15, 2012 Coding and Cryptography Research Group 21

Differential Power Analysis

• Statistical methods to test whether expected values appear

– Power consumption depends on operand

• In left-to-right square-and-multiply algorithm, if attacker has

retrieved MSBs of exponent, E〈i+1〉 = (ek−1 · · · ei+1)

1. Calculate R〈i+1〉 = gE〈i+1〉

2. E〈i〉 = (ek−1 · · · ei+1ei), guess ei = 0 or 1

3. Either R〈i〉 = R〈i+1〉
2 or R〈i〉 = R〈i+1〉

2 × g

4. Test whether
(

R〈i〉

)2
or

(

R〈i〉

)2
appears by DPA

Feb 15, 2012 Coding and Cryptography Research Group 22

Immunity Against Differential Power Analysis

• To prevent DPA by appending rφ,

where r is a random number and φ is the order of group

– Single exp. ge =⇒ gerφ11, Complexity = 1.5726k

– Double exp. xayb =⇒ xaybrφ11, Complexity = 1.7461k

• The intermediate values will be of the form: gαrβ

– Cannot guess them because r is unknown ⇒ NO DPA

– After computation, we have
(

gαrβ
)0(

gα
′
rβ

′
)0(

ge
)1

∗ Either gαrβ or gα
′
rβ

′
will be the next random number

Feb 15, 2012 Coding and Cryptography Research Group 23

Summary of bGCD Multi-exp. Alg.

• Comparable performance, scalable from single exp. to multi-exp.

• No pre-computation table, no inversion computation

• Side-channel immunity

• No explicit proof of complexity, only simulation

• All variables will be overwritten during computation

Feb 15, 2012 Coding and Cryptography Research Group 24

Thank You

Feb 15, 2012 Coding and Cryptography Research Group 25

