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Example and definition [Costas (1984)]

Let [n] = {1,...,n}, f : [n] — [n]
(order n); f is Costas (bijection) iff

Vijen, k>0: itkj+ke[n
(fli+k)—f(0), k) = (F(G+k)=f(j), k)

Si=]

(On a straight line: 4 dots cannot
form 2 pairs of equidistant dots, 3
dots cannot be equidistant.

Otherwise: 4 dots cannot form a parallelogram)
@ No two linear segments have the same length and slope!

e Horizontal/vertical flips and transpositions of a Costas
array form families/equivalence classes (polymorphs) of
Costas arrays: 1 — 8 (or 1 — 4 if symmetric). uch
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A larger example
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The only sporadic Costas array of order 27. T
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Cross-correlation

Let f/Af and g/A, be permutations/permutation arrays of
order n. Their cross-correlation is:

U o(w,0) = S [fli—u)+o=g()] =Y a4,

i=1 i,j

where [P] = 1/0if P is true/false; also assume f (i) = g(i) = 0 if
i<lori>n.

In other words, superpose A/ on A$, slide it by u columns to the
right and by v rows downwards and count how many pairs of
dots coincide.

If f is a permutation of order 7, f is Costas iff U ¢ only takes the
3values 0,1, n.

uuuu
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Why Costas arrays?




Aside: Why a permutation?

o [Costas (1984)] states that the original application does not
benefit by a violation of the permutation condition.

@ Beyond that, no reason!

@ Mathematically, permutations are easier to handle and to
construct than general binary arrays.

@ What is the maximal number of dots that can be placed on
an x n grid without violating the Costas property?

uuuu
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The difference triangle

[Chang (1987), Barker-Drakakis-Rickard (2009)]

9517 3 13 8 6 11 18 20 12 2 19 16 4 15 21 10 1 147
412 -1410 5 2 5 7 2 -8 -10 17 -3 -12 11 6 -11 9 13 -7
8§ 2 45 -7 3 12 9 6 -18 7 14 -15 -1 17 -5 20 4 6
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Aside: Complexity considerations

@ A permutation of order n is Costas iff no row of the
difference triangle contains repeated entries, so

n—1 n—2 2 =k n—1
(=) (27 2)=5 6= ()
k=0
comparisons need to be carried out.

e Polynomial complexity: O(n*) comparisons.

@ There is no known fast way to discover Costas
permutations of order n, except for brute-force search.

@ Exponential complexity: n! objects.

@ So, existence of Costas arrays is in NP; but is it NP
complete? aia

uuuu
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Important basic open problems

(Note: the numbers below refer to the list of problems in
[Golomb-Taylor (1984)].)

For order n, let C(n) be the number of Costas arrays and c(n)
the number of equivalence classes of Costas arrays.

1. C(n) > 1foralln > 1.

4.46. C(n)/n!is monotonically decreasing to 0. [It is
known [Drakakis (2006)] that C(n)/n! = O(1/n).]

7. C(n)/c(n) — 8asn — oo.

10. Are there Costas arrays representing
configurations of non-attacking queens?

New. Can all Costas arrays be “systematically”

constructed?
New. Are there Costas arrays of order 32 or 33 (the 1T
smallest orders where none is currently known)? |t
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Known Costas arrays

o All Costas arrays of order n < 28 (through exhaustive
search) [Drakakis et al. (2010), Drakakis et al. (2008),
Rickard et al. (2006), Beard et al. (2007)].

@ Two construction algorithms (Golomb and Welch) working
for infinitely many (but not all) orders
[Golomb (1984), Golomb-Taylor (1984)].

e Four additional equivalence classes of Costas arrays, of
orders 29(2), 36 and 42 [Rickard (2004)].

Any Costas array belonging in the first set but not in the second
or third is characterized as sporadic.

uuuu
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Aside: The mystery of sporadic Costas arrays

@ Definitely the vast majority in “small” orders: for example,
only 16 out of the 10240 known Costas arrays of order 19
are not sporadic!

@ Almost die out later: only 2 sporadic equivalence classes of
order 26 are known, 1 of 27, and 0 of 28...

@ Do sporadic Costas arrays eventually die out?

@ Are there unknown constructions that can account for
sporadic Costas arrays?

uuuu
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Number of known Costas arrays

O O N ONUl WD -

1
2

4

12/2
40/4
116/10
200/20
444/18
760,20

10
11
12
13
14
15
16
17
18

2160/28
436836
7852/34
12828/50
12752 /46
19612/62
21104,/40
1827638
15096,/20

19
20
21
22
23
24
25
26
27

10240/12
6464/8
3536/16
2052,/10
872/20
200/0
88/4
56/4
204/14

28
29
30
31
32
33

712/0

> 164/10
> 664/8
>8/0

?

?

uuuu

Konstantinos Drakakis

An introduction to Costas arrays



The exponential Welch construction Wi (p, «, ¢)

Let p be prime, « a primitive root of the field F(p), and
ce{0,...,p—2}; then,

)=a " modp,i=1,...,p—1
p 4

is a Costas permutation of order p — 1.
@ ¢(p —1) choices for o, p — 1 forc — (p — 1)p(p — 1)
distinct permutations.

@ Flips of Wi (p, c, c) are also of this form, possibly for
different o, c.

@ For p > 5, transposes of Wi (p, o, c) form a disjoint set
[Drakakis-Gow-O’Carroll (2009)]: they are known as
logarithmic Welch arrays.

@ In total, there are 2(p — 1)¢(p — 1) arrays in this family. ch

uuuu
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Leti,ji+kj+ke[p—1]:

fli+k) =f() =f(+ k) = f() =
fli+k) = f(i) =f(j+ k) = f(j) mod p &
otf i = ot — o/ modp &
(ol —al)(of —=1)=0mod p &
i=jmod (p—1)ork=0mod (p —1) &

i=jork=0.

The last step follows because of the range i, ], k lie in.

uuuu
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W1(17,3,0) —>\139101351511 16148741226\
W1(17,3,2) —>\9101351511 1614874122613\

Note the anti-reflective symmetry:
6+11=24+15=124+5=...=17.

c circularly shifts columns: W; Costas arrays are singly periodic.

uuuu
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Aside: Inverse problems

o Anti-reflective symmetry does not characterize W;!
@ Does single periodicity characterize W;? Most likely, but
still not formally proved!
In general:

@ Problem: show that Costas arrays in a certain collection
have a certain property.

@ Inverse problem: show that all Costas arrays having a
certain property must belong in a certain collection.

Inverse problems are very hard!

uuuu
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Derived methods

e Wi(p, a,0) begins with 1 (corner dot): removing it yields a
new Costas permutation W (p, ) of order p — 2:
W(17,3) —[289124141015137631115]

e If 2 is a primitive root of F(p), Wi (p,2,0) begins with 1 2
(two corner dots): removing them yields a new Costas
permutation W3(p) of order p — 3.

e Adding a corner dot to Wi (p, o, c) may lead to a new
Costas array Wy(p, a, c) of order p.

uuuu
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Golomb construction Gy (p™, «, 5)

Let p be a prime, m € N, g = p™ and «, 8 primitive roots of the
field F(g); then, f such that

o+ 40 =1i=1,...,q-2

is a Costas permutation of order g — 2.

® ¢(g — 1) choices for o, B — #*(q — 1)/m distinct
permutations: 1f o + ﬂf () = 1, then, for k = 0, . -1,
1= (ol + FO)P = (o) + (87 Y 0

e Flips and transposes of Ga(p™, o, ) are also of this form,
possibly for different «, 3.

@ There are two subfamilies of symmetric arrays
[Drakakis-Gow-O’Carroll (2009)]: i) o = 8 (Lempel Costas
arrays); i) g = r* and 8 = o'.

@ The main diagonal of the latter construction is an T
asymptotically optimally dense Golomb ruler, equivalent i
to the Bose-Chowla construction [Drakakis (2009)]. \/
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Leti,ji+k,j+ke[qg—2]:

fli+k) =f() =fG+ k) = f() =
fli+K) = f(0) =+ k) —f(j) mod (g 1) &
pEHR~f(0) = gf(+0-f() &
1—aitk 1otk
1-af 1-d
(F -1 -d)=0s
i=jmod(g—1)ork=0mod (4 —1) &

i=jork=0.
The last step follows because of the range i, 7, k lie in. T
UCD
v
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An example of a Golomb construction

g=16=24P(x)=x*+x+lLa=x,b=x+1=x*
1 1

0 0

1 x 1 x+1 ; ;

2 x2 2 x?+1 3 11

3 x3 3 P¥4+x24+x+1 14

4 x+1 4 X

5 x>+ x 5 X%+ x 5 1(7)

6 x3 4 x? 6 X3+ x ? 6

7 ¥ Hx+1 7 ¥ 4+xr+1 s g

8 x*+1 8 x? 9 13

9 ¥4+ x 9 X3+ 22 10 5

10 x>+x+1 10 x> +x+1 1 3

11 B+x2+x 11 X +1 12 14

12 B+ +x+1 12 x® 3 9

13 ¥4+xr+1 13 P¥4x+1 14 12

14 1 14 ¥4+ +1 -
This is a non-Lempel symmetric Costas permutation with 4 fixed 9“-(;7‘[”)

points.
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Derived methods

@ Let o + 8 = 1: this is possible in any finite field
[Cohen-Mullen (1991)]; then, G2(p™, «, B) has a corner dot,
and, removing it, yields a new Costas permutation
Gs3(p™, a) of order q — 3.

@ Derived Golomb Costas permutations of order g — 4 are
possible through three different techniques:

G4 Assuming Gz and p = 2, it follows that
(a+ B)? = a® + 82 = 1; then, G (2™, a, )
begins with 1 2 (has two corner dots), so,
removing them, yields G4(2", «).

G; Assumingp >2,Gz,and o + 871 =1,
Ga2(p™, o, B) begins with 1 g — 2 and has 2
corner dots: removing them yields G (p™, o).

Ty Assuming p > 2, a = 3, and a?4+a=1,
G2(p™, o, o) begins with 2 1 and hasa 2 x 2 teD

uuuu

corner array: removing it yields T4(p™, cv). v
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e Assume Gj: it always follows that a ! + 32 = 1, so that
G2(p™, o, B) begins with 1 g — 2 and ends with 2, so that it
has 3 corner dots: removing them yields GZ(p™, ) of order
q—>5.

@ Adding one or two anti-diametrical corner dots to
G2(p™, o, B) may lead to a Costas array of order g — 1 or g,
respectively: these are G1(p™, a, 5) and Go(p™, o, 5).

Note the following;:

e T, Costas arrays represent configurations of non-attacking
kings on the chessboard [Drakakis-Gow-Rickard (2009)].

@ Letf be a G, Costas permutation for p > 2: then
[Drakakis (2010+)], for p = (g — 1)/2 and i € [ — 1],

flu+i) =fp—i=ilf (u+1)=f(p—1)]mod (g -1).

This is an analog of the anti-reflective symmetry. LA
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Welch Rickard construction

@ The proof of W; construction shows that these
permutations satisfy a stricter version of the Costas
property (modulo p).

@ Add a blank row at the bottom, and circularly shift the
rows any number of times. The resulting p x (p — 1)
rectangle has the Costas property.

@ Add a blank column, either to the left or to the right, and
place a dot at the intersection of the blank row and column.

@ The result is a permutation array which may have the
Costas property.

uuuu
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Golomb Rickard construction

@ The proof of G, construction shows that these
permutations satisfy a stricter version of the Costas
property (modulo g — 1).

@ Add a blank row at the bottom and a blank column at the
right, and circularly shift the rows and columns any
number of times. The resulting (4 — 1) x (g — 1) rectangle
has the Costas property.

@ Place a dot at the intersection of the blank row and column.

@ The result is a permutation array which may have the
Costas property.

uuuu
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Aside: Reinventing the wheel (and failing)

Can known Costas arrays be combined into larger new Costas
arrays? Not in an “obvious” way! For example, letting A = [a],
B = [b] be Costas arrays whose orders exceed 3:

@ The following composite array seems to never be Costas:

A0
0 B

@ The following “interlaced” array is never Costas:
0 0
b b

a a
0 0

The reason is that any two Costas arrays of orders either equal gy
or differing by 1 (and the smallest exceeding 3) have a common &
distance vector [Drakakis-Gow-Rickard (2008)].
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Aside: Common distance vectors

e To disqualify composite Costas arrays, one needs to
establish that any two “large” Costas arrays have a
common distance vector.

@ [Drakakis-Gow-Rickard (2009)] attempted to investigate
this, but only for Welch and Golomb Costas arrays.

@ Bottom line: there is no proof yet that composition is futile,
though, in practice, it works when the order of A is 1 or 2
(when it is 3, the last successful case is for n = 7).

uuuu
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Aside: How close to interlacing do Costas arrays

come? [Drakakis-Gow-Rickard (2007)]

@ Define parity populations ee, 00, eo, oe to stand for the
number of dots whose coordinates are both even, both
odd, and of mixed parity, respectively.

@ ee+ 00+ €0+ 0e =mn,e0 = oe,
00+ 0e — (eo + ee) = 0o — ee = n mod 2: need a 4th equation.
@ For G, Costas arrays with p > 2:
o Ifg=1mod4,00=e0=0e=(g—1)/4,ee=(q9—5)/4
o Ifg=3mod4,ee=co=0e=(qg—3)/4,ee=(q+1)/4;
@ For W; Costas arrays:
o If p=1mod 4, 00 = eo = oe = ee;
e If p =3 mod 4, then |ee — 0e| = h(—p) if p = 7 mod 8, and
lee — oe| = 3h(—p) if p = 3 mod 8.

In particular, parity populations are only dependent on p and g; hen

uuuu

this is no longer true for G, with p = 2. v
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Future directions

Enumeration:
@ Enumeration of order 29 projected to require 350 years of
CPU time!

o Complexity of current enumeration algorithm increases 5
times whenever order increases by 1.

@ Realistically, order 30 is the last one within reach today. ..
Genetic algorithms:
@ “Mutate” random permutations into Costas ones.

@ Current algorithms fail for “large” orders (20 or above).

@ Problem: the structure of Costas arrays is very tight. It
seems that, for any large order n, i, ], k exist such that the

values f(i),f(j),f (k) determine at most one Costas -
permutation! [Drakakis (2010)] ucp
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Classification (finite simple groups style!)

Known Costas arrays seem to fall into 4 categories:

@ Generated (G): they are constructed by an algorithm
whose applicability is determined by a sufficient condition
involving the order alone (W1, W», Gz, G3, Gy).

@ Predictably emergent (PE): they are constructed by an
algorithm whose applicability can be asserted by a
condition involving the order and some additional
parameters (W3, G}, Ty, Gz).

@ Unpredictably emergent (UE): they are heuristically
constructed and the Costas property has to be explicitly
checked (Wy, Gy, G1, Welch Rickard, Golomb Rickard).

@ Sporadic (S): of unknown origin.

Up to order 300, the last Rickard Costas arrays are the ones
reported, while the last G; and W Costas arrays were found in [ifa3

uuuu

orders 52 and 53, respectively. UE seem to die out! W
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