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Example and definition [Costas (1984)]

Let [n] = {1, . . . ,n}, f : [n] → [n]
(order n); f is Costas (bijection) iff

∀i, j ∈ [n], k > 0 : i + k, j + k ∈ [n]

(f (i+k)−f (i), k) = (f (j+k)−f (j), k)

⇔ i = j

(On a straight line: 4 dots cannot
form 2 pairs of equidistant dots, 3
dots cannot be equidistant.

Otherwise: 4 dots cannot form a parallelogram)
No two linear segments have the same length and slope!
Horizontal/vertical flips and transpositions of a Costas
array form families/equivalence classes (polymorphs) of
Costas arrays: 1→ 8 (or 1→ 4 if symmetric).
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A larger example

The only sporadic Costas array of order 27.
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Cross-correlation

Let f/Af and g/Ag be permutations/permutation arrays of
order n. Their cross-correlation is:

Ψf ,g(u, v) =

n∑
i=1

[f (i− u) + v = g(i)] =
∑

i,j

af
i−u,j−vag

ij,

where [P] = 1/0 if P is true/false; also assume f (i) = g(i) = 0 if
i < 1 or i > n.
In other words, superpose Af on Ag, slide it by u columns to the
right and by v rows downwards and count how many pairs of
dots coincide.
If f is a permutation of order n, f is Costas iff Ψf ,f only takes the
3 values 0, 1,n.
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Why Costas arrays?
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Aside: Why a permutation?

[Costas (1984)] states that the original application does not
benefit by a violation of the permutation condition.
Beyond that, no reason!
Mathematically, permutations are easier to handle and to
construct than general binary arrays.
What is the maximal number of dots that can be placed on
a n× n grid without violating the Costas property?
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The difference triangle
[Chang (1987), Barker-Drakakis-Rickard (2009)]
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Aside: Complexity considerations

A permutation of order n is Costas iff no row of the
difference triangle contains repeated entries, so(

n− 1
2

)
+

(
n− 2

2

)
+ . . .+

(
2
2

)
=

n−1∑
k=0

(
k
2

)
=

(
n− 1

3

)
comparisons need to be carried out.
Polynomial complexity: O(n3) comparisons.
There is no known fast way to discover Costas
permutations of order n, except for brute-force search.
Exponential complexity: n! objects.
So, existence of Costas arrays is in NP; but is it NP
complete?
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Important basic open problems

(Note: the numbers below refer to the list of problems in
[Golomb-Taylor (1984)].)
For order n, let C(n) be the number of Costas arrays and c(n)
the number of equivalence classes of Costas arrays.

1. C(n) ≥ 1 for all n ≥ 1.
4.+6. C(n)/n! is monotonically decreasing to 0. [It is

known [Drakakis (2006)] that C(n)/n! = O(1/n).]
7. C(n)/c(n)→ 8 as n→∞.

10. Are there Costas arrays representing
configurations of non-attacking queens?

New. Can all Costas arrays be “systematically”
constructed?

New. Are there Costas arrays of order 32 or 33 (the
smallest orders where none is currently known)?

Konstantinos Drakakis An introduction to Costas arrays



Known Costas arrays

All Costas arrays of order n ≤ 28 (through exhaustive
search) [Drakakis et al. (2010), Drakakis et al. (2008),
Rickard et al. (2006), Beard et al. (2007)].
Two construction algorithms (Golomb and Welch) working
for infinitely many (but not all) orders
[Golomb (1984), Golomb-Taylor (1984)].
Four additional equivalence classes of Costas arrays, of
orders 29(2), 36 and 42 [Rickard (2004)].

Any Costas array belonging in the first set but not in the second
or third is characterized as sporadic.
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Aside: The mystery of sporadic Costas arrays

Definitely the vast majority in “small” orders: for example,
only 16 out of the 10240 known Costas arrays of order 19
are not sporadic!
Almost die out later: only 2 sporadic equivalence classes of
order 26 are known, 1 of 27, and 0 of 28. . .
Do sporadic Costas arrays eventually die out?
Are there unknown constructions that can account for
sporadic Costas arrays?
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Number of known Costas arrays

1 1 10 2160/28 19 10240/12 28 712/0
2 2 11 4368/36 20 6464/8 29 ≥ 164/10
3 4 12 7852/34 21 3536/16 30 ≥ 664/8
4 12/2 13 12828/50 22 2052/10 31 ≥ 8/0
5 40/4 14 12752/46 23 872/20 32 ?
6 116/10 15 19612/62 24 200/0 33 ?
7 200/20 16 21104/40 25 88/4
8 444/18 17 18276/38 26 56/4
9 760/20 18 15096/20 27 204/14
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The exponential Welch construction W1(p, α, c)

Let p be prime, α a primitive root of the field F(p), and
c ∈ {0, . . . , p− 2}; then,

f (i) = αi−1+c mod p, i = 1, . . . , p− 1

is a Costas permutation of order p− 1.

φ(p− 1) choices for α, p− 1 for c −→ (p− 1)φ(p− 1)
distinct permutations.
Flips of W1(p, α, c) are also of this form, possibly for
different α, c.
For p > 5, transposes of W1(p, α, c) form a disjoint set
[Drakakis-Gow-O’Carroll (2009)]: they are known as
logarithmic Welch arrays.
In total, there are 2(p− 1)φ(p− 1) arrays in this family.
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Proof

Let i, j, i + k, j + k ∈ [p− 1]:

f (i + k)− f (i) = f (j + k)− f (j)⇒
f (i + k)− f (i) ≡ f (j + k)− f (j) mod p⇔

αi+k − αi ≡ αj+k − αj mod p⇔
(αi − αj)(αk − 1) ≡ 0 mod p⇔

i ≡ j mod (p− 1) or k ≡ 0 mod (p− 1)⇔
i = j or k = 0.

The last step follows because of the range i, j, k lie in.
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W1(17, 3, 0) −→ 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6
W1(17, 3, 2) −→ 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1 3
Note the anti-reflective symmetry:
6 + 11 = 2 + 15 = 12 + 5 = . . . = 17.

c circularly shifts columns: W1 Costas arrays are singly periodic.
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Aside: Inverse problems

Anti-reflective symmetry does not characterize W1!
Does single periodicity characterize W1? Most likely, but
still not formally proved!

In general:
Problem: show that Costas arrays in a certain collection
have a certain property.
Inverse problem: show that all Costas arrays having a
certain property must belong in a certain collection.

Inverse problems are very hard!
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Derived methods

W1(p, α, 0) begins with 1 (corner dot): removing it yields a
new Costas permutation W2(p, α) of order p− 2:
W2(17, 3) −→ 2 8 9 12 4 14 10 15 13 7 6 3 11 1 5
If 2 is a primitive root of F(p), W1(p, 2, 0) begins with 1 2
(two corner dots): removing them yields a new Costas
permutation W3(p) of order p− 3.
Adding a corner dot to W1(p, α, c) may lead to a new
Costas array W0(p, α, c) of order p.

Konstantinos Drakakis An introduction to Costas arrays



Golomb construction G2(pm, α, β)

Let p be a prime, m ∈ N, q = pm and α, β primitive roots of the
field F(q); then, f such that

αi + βf (i) = 1, i = 1, . . . , q− 2

is a Costas permutation of order q− 2.

φ(q− 1) choices for α, β −→ φ2(q− 1)/m distinct
permutations: if αi + βf (i) = 1, then, for k = 0, . . . ,m− 1,
1 = (αi + βf (i))pk

= (αpk
)i + (βpk

)f (i).
Flips and transposes of G2(pm, α, β) are also of this form,
possibly for different α, β.
There are two subfamilies of symmetric arrays
[Drakakis-Gow-O’Carroll (2009)]: i) α = β (Lempel Costas
arrays); ii) q = r2 and β = αr.
The main diagonal of the latter construction is an
asymptotically optimally dense Golomb ruler, equivalent
to the Bose-Chowla construction [Drakakis (2009)].

Konstantinos Drakakis An introduction to Costas arrays



Proof

Let i, j, i + k, j + k ∈ [q− 2]:

f (i + k)− f (i) = f (j + k)− f (j)⇒
f (i + k)− f (i) ≡ f (j + k)− f (j) mod (q− 1)⇔

βf (i+k)−f (i) = βf (j+k)−f (j) ⇔
1− αi+k

1− αi =
1− αj+k

1− αj ⇔

(αk − 1)(αi − αj) = 0⇔
i ≡ j mod (q− 1) or k ≡ 0 mod (q− 1)⇔

i = j or k = 0.

The last step follows because of the range i, j, k lie in.
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An example of a Golomb construction
q = 16 = 24, P(x) = x4 + x + 1, a = x, b = x + 1 = x4

0 1
1 x
2 x2

3 x3

4 x + 1
5 x2 + x
6 x3 + x2

7 x3 + x + 1
8 x2 + 1
9 x3 + x

10 x2 + x + 1
11 x3 + x2 + x
12 x3 + x2 + x + 1
13 x3 + x2 + 1
14 x3 + 1

0 1
1 x + 1
2 x2 + 1
3 x3 + x2 + x + 1
4 x
5 x2 + x
6 x3 + x
7 x3 + x2 + 1
8 x2

9 x3 + x2

10 x2 + x + 1
11 x3 + 1
12 x3

13 x3 + x + 1
14 x3 + x2 + 1

1 1
2 2
3 11
4 4
5 10
6 7
7 6
8 8
9 13

10 5
11 3
12 14
13 9
14 12

This is a non-Lempel symmetric Costas permutation with 4 fixed
points.
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Derived methods

Let α+ β = 1: this is possible in any finite field
[Cohen-Mullen (1991)]; then, G2(pm, α, β) has a corner dot,
and, removing it, yields a new Costas permutation
G3(pm, α) of order q− 3.
Derived Golomb Costas permutations of order q− 4 are
possible through three different techniques:

G4 Assuming G3 and p = 2, it follows that
(α+ β)2 = α2 + β2 = 1; then, G2(2m, α, β)
begins with 1 2 (has two corner dots), so,
removing them, yields G4(2m, α).

G∗
4 Assuming p > 2, G3, and α2 + β−1 = 1,

G2(pm, α, β) begins with 1 q− 2 and has 2
corner dots: removing them yields G∗

4(pm, α).
T4 Assuming p > 2, α = β, and α2 + α = 1,

G2(pm, α, α) begins with 2 1 and has a 2× 2
corner array: removing it yields T4(pm, α).
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Assume G∗
4: it always follows that α−1 + β2 = 1, so that

G2(pm, α, β) begins with 1 q− 2 and ends with 2, so that it
has 3 corner dots: removing them yields G∗

5(pm, α) of order
q− 5.
Adding one or two anti-diametrical corner dots to
G2(pm, α, β) may lead to a Costas array of order q− 1 or q,
respectively: these are G1(pm, α, β) and G0(pm, α, β).

Note the following:
T4 Costas arrays represent configurations of non-attacking
kings on the chessboard [Drakakis-Gow-Rickard (2009)].
Let f be a G2 Costas permutation for p > 2: then
[Drakakis (2010+)], for µ = (q− 1)/2 and i ∈ [µ− 1],

f (µ+ i)− f (µ− i) ≡ i [f (µ+ 1)− f (µ− 1)] mod (q− 1).

This is an analog of the anti-reflective symmetry.
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Welch Rickard construction

The proof of W1 construction shows that these
permutations satisfy a stricter version of the Costas
property (modulo p).
Add a blank row at the bottom, and circularly shift the
rows any number of times. The resulting p× (p− 1)
rectangle has the Costas property.
Add a blank column, either to the left or to the right, and
place a dot at the intersection of the blank row and column.
The result is a permutation array which may have the
Costas property.
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Golomb Rickard construction

The proof of G2 construction shows that these
permutations satisfy a stricter version of the Costas
property (modulo q− 1).
Add a blank row at the bottom and a blank column at the
right, and circularly shift the rows and columns any
number of times. The resulting (q− 1)× (q− 1) rectangle
has the Costas property.
Place a dot at the intersection of the blank row and column.
The result is a permutation array which may have the
Costas property.
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Aside: Reinventing the wheel (and failing)

Can known Costas arrays be combined into larger new Costas
arrays? Not in an “obvious” way! For example, letting A = [a],
B = [b] be Costas arrays whose orders exceed 3:

The following composite array seems to never be Costas:

A 0
0 B

The following “interlaced” array is never Costas:

a 0 a 0 . . .
0 b 0 b . . .
...

...
...

...
. . .

The reason is that any two Costas arrays of orders either equal
or differing by 1 (and the smallest exceeding 3) have a common
distance vector [Drakakis-Gow-Rickard (2008)].
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Aside: Common distance vectors

To disqualify composite Costas arrays, one needs to
establish that any two “large” Costas arrays have a
common distance vector.
[Drakakis-Gow-Rickard (2009)] attempted to investigate
this, but only for Welch and Golomb Costas arrays.
Bottom line: there is no proof yet that composition is futile,
though, in practice, it works when the order of A is 1 or 2
(when it is 3, the last successful case is for n = 7).
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Aside: How close to interlacing do Costas arrays
come? [Drakakis-Gow-Rickard (2007)]

Define parity populations ee, oo, eo, oe to stand for the
number of dots whose coordinates are both even, both
odd, and of mixed parity, respectively.
ee + oo + eo + oe = n, eo = oe,
oo + oe− (eo + ee) = oo− ee = n mod 2: need a 4th equation.
For G2 Costas arrays with p > 2:

If q ≡ 1 mod 4, oo = eo = oe = (q− 1)/4, ee = (q− 5)/4;
If q ≡ 3 mod 4, ee = eo = oe = (q− 3)/4, ee = (q + 1)/4;

For W1 Costas arrays:
If p ≡ 1 mod 4, oo = eo = oe = ee;
If p ≡ 3 mod 4, then |ee− oe| = h(−p) if p ≡ 7 mod 8, and
|ee− oe| = 3h(−p) if p ≡ 3 mod 8.

In particular, parity populations are only dependent on p and q;
this is no longer true for G2 with p = 2.
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Future directions

Enumeration:

Enumeration of order 29 projected to require 350 years of
CPU time!
Complexity of current enumeration algorithm increases 5
times whenever order increases by 1.
Realistically, order 30 is the last one within reach today. . .

Genetic algorithms:

“Mutate” random permutations into Costas ones.
Current algorithms fail for “large” orders (20 or above).
Problem: the structure of Costas arrays is very tight. It
seems that, for any large order n, i, j, k exist such that the
values f (i), f (j), f (k) determine at most one Costas
permutation! [Drakakis (2010)]
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Classification (finite simple groups style!)

Known Costas arrays seem to fall into 4 categories:
Generated (G): they are constructed by an algorithm
whose applicability is determined by a sufficient condition
involving the order alone (W1, W2, G2, G3, G4).
Predictably emergent (PE): they are constructed by an
algorithm whose applicability can be asserted by a
condition involving the order and some additional
parameters (W3, G∗

4, T4, G∗
5).

Unpredictably emergent (UE): they are heuristically
constructed and the Costas property has to be explicitly
checked (W0, G0, G1, Welch Rickard, Golomb Rickard).
Sporadic (S): of unknown origin.

Up to order 300, the last Rickard Costas arrays are the ones
reported, while the last G1 and W0 Costas arrays were found in
orders 52 and 53, respectively. UE seem to die out!
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