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MIMO Coding and Decoding

The quasi static fading channel
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Figure: The Channel Model

Received signal

Y nr×T = Hnr×nt ·X nt×T +W nr×T (1)

with H perfectly known at the receiver. All matrices have entries in C. W is the noise matrix with i.i.d.
Gaussian entries.

H is assumed constant during the transmission of one codeword.
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MIMO Coding and Decoding

Decoding

Optimal decoding rule
Find

X̂ = argmin‖Y −H ·X‖2
F

where

‖A‖2
F =∑

i,j

∣∣∣aij

∣∣∣2 = Tr
(
A ·A†

)

Decoding is, in general, a computationally hard problem.
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MIMO Coding and Decoding

Pairwise Error Probability (I)

c =


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
are re-

spectively two distinct codewords (T ≥ nt )

B (c,e) = c−e

A (c,e) = B (c,e)† ·B (c,e)

Error probability
Union Bound gives

Pe ≤
∑

c∈C

Pr{c}
∑

e6=c
P (c → e)
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MIMO Coding and Decoding

Pairwise Error Probability (II)

Pairwise error probability for a quasi-static Rayleigh fading channel is upper bounded by

P (c → e) ≤
 nt∏

i=1

1

1+λ2
i

Es
4N0

nr

(2)

with λ2
i being the eigenvalues of A (c,e) counting the multiplicities

Two criteria

The rank criterion : In order to achieve maximum diversity nt ·nr , the matrix B (c,e) must be of maximum
rank nt .
The coding advantage : In order to maximize the coding gain, the quantity

min
c6=e

detA (c,e) (3)

must be maximized.
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The Golden Code structure

The Golden Code

Golden Code B. Rekaya Viterbo (2005)
Codewords are

X = 1p
5

(
α

(
z1 +z2ϕ

)
α

(
z3 +z4ϕ

)
i · ᾱ(

z3 +z4ϕ̄
)

ᾱ
(
z1 +z2ϕ̄

) )

with ϕ= 1+p5
2 , ϕ̄= 1−p5

2 , α= 1+ i− iϕ, ᾱ= 1+ i− iϕ̄ and zj ∈Z[i].

The two layers of X (the two diagonals) can be vectorized,

vecX1 =
(

x11
x22

)
= 1p

5

(
α αϕ

ᾱ ᾱϕ̄

)
·
(

z1
z2

)

vecX2 =
(

x12
x21

)
= 1p

5

(
α αϕ

iᾱ iᾱϕ̄

)
·
(

z3
z4

)
Remark the transform which maps (z1,z2) onto the first layer

U = 1p
5

[
α αϕ

ᾱ ᾱϕ̄

]
Number i isolates the first layer from the second one so that minimum determinant is not

zero.
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iᾱ iᾱϕ̄
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The Golden Code structure

Minimum determinant

We obtain

δmin = min
X6=0

|detX|2 = 1

5

(best minimum determinant for such codes)

Problems

Symbols zi are, in the “real life”, QAM symbols (finite subset of Z[i])

The Golden code is computationally hard to decode.
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The Golden Code structure

Division Algebra

The Algebra of the Golden Code
The Golden Algebra A (quaternion algebra) has elements

A =
[

s1 +θs2 s3 +θs4
is3 + θ̄s4 s1 + θ̄s2

]

with θ = 1+p5
2 , θ̄ = 1−p5

2 and sl , l = 1. . .4 are elements of the fieldQ(i).

Every non zero element in A has an inverse since

detA = (2+ i)
[
N (s1 +θs2)− iN

(
s3 +θs4

)] 6= 0

In fact, i is not a norm of Q
(
i,
p

5
)
.
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The Golden Code structure

Code defined on an order

The Order of the Golden Code
The Golden Order OA has elements

O =
[

s1 +θs2 s3 +θs4
is3 + θ̄s4 s1 + θ̄s2

]

with θ = 1+p5
2 , θ̄ = 1−p5

2 and sl , l = 1. . .4 are elements of Z[i]. OA is a maximal order.

The Golden code is the ideal α ·OA . Codewords are (up to a normalization constant),

Golden Code
A codeword X of the Golden code is

X =
[

α(s1 +θs2) α(s3 +θs4)
iᾱ(s3 + θ̄s4) ᾱ(s1 + θ̄s2)

]

with θ = 1+p5
2 , θ̄ = 1−p5

2 , α= 1+ i− iθ, α= 1+ i− iθ and sl , l = 1. . .4 are the information
symbols carved from Z[i].
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]

with θ = 1+p5
2 , θ̄ = 1−p5

2 , α= 1+ i− iθ, α= 1+ i− iθ and sl , l = 1. . .4 are the information
symbols carved from Z[i].

12 / 27
Decoding Space-Time Codes by absorbing the channel

N



The Golden Code structure

Code defined on an order

The Order of the Golden Code
The Golden Order OA has elements

O =
[

s1 +θs2 s3 +θs4
is3 + θ̄s4 s1 + θ̄s2

]

with θ = 1+p5
2 , θ̄ = 1−p5

2 and sl , l = 1. . .4 are elements of Z[i]. OA is a maximal order.

The Golden code is the ideal α ·OA . Codewords are (up to a normalization constant),

Golden Code
A codeword X of the Golden code is

X =
[

α(s1 +θs2) α(s3 +θs4)
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The Golden Code structure

The group of units O+

Group of units of OA

The group of units O× is the group of elements O of the order with determinant equal to
a unit in Z[i], i.e.

detO ∈ {±1,±i}

We only need those units with determinant equal to 1. These units form a subgroup of O×

Subgroup O+
The subgroup O+ of O× is

O+ = {
O ∈OA |detO = 1

}
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Absorption of the Channel

The MIMO Channel is a Unit

Received Signal
Received signal is

Y 2×2 = H2×2 ·X 2×2 +W 2×2

where X is a Golden Code codeword.

Set Ỹ = 1p
detH

Y and write

Ỹ = H̃ ·X +W̃

with H̃ ∈ SL2 (C). In fact, we could restrict to

PSL2 (C) = SU2 (C) \ SL2 (C)

since H̃ can be known up to a unitary transform.

Suppose H̃ is a unit in O+ up to a left unitary transform, then H̃ ·X is a new codeword X̃ , absorption
of the channel by the code,

Ỹ = X̃ +W̃

and X = H̃−1 · X̃ .
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Absorption of the Channel

The Multiplicative Error (1)

H̃ is no more a unit. We write H̃ = E ·U where U is a unit.

Received Signal
The received signal is (up to a left unitary transform)

Ỹ = E · Ũ ·X +W̃

and Ũ ·X is a new codeword.

Fact
Two problems to solve

16 / 27
Decoding Space-Time Codes by absorbing the channel

N



Absorption of the Channel

The Multiplicative Error (1)

H̃ is no more a unit. We write H̃ = E ·U where U is a unit.

Received Signal
The received signal is (up to a left unitary transform)
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Absorption of the Channel

The Multiplicative Error (2)

Unit Search
With a ZF detector used, minimizing the noise variance after ZF is equivalent to

Ũ = arg min
U∈O+

∥∥∥H̃ ·U−1
∥∥∥

F

where ‖A‖F is the Frobenius norm of A.

Find an algorithm that can search for Ũ with a low complexity.

Detection

Find then a detector that can use this algebraic reduction

Performance ?
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Hyperbolic Space

Action of SL2 (C)

The Hyperbolic SpaceH3

Space

H3 = {(z,r) ,z ∈C,r ∈R,r > 0}

g =
[

a b
c d

]
with g ∈ SL2 (C)

Action onH3

g ((z,r)) = (
z?,r?

)
with

z? = (az+b)
(
c̄z̄+d̄

)+ac̄r2

|cz+d|2+|c|2r2

r? = r
|cz+d|2+|c|2r2

We make our group act over J = (0,1)
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Hyperbolic Space

Hyperbolic distance

Hyperbolic distance
Define the hyperbolic dictance onH3

coshρ
(
P,P′)= 1+ d

(
P,P′)2

2rr′

With the action of SL2 (C) on J , we have the nice property

Hyperbolic vs Frobenius

∀g ∈ SL2 (C) ,
∥∥g

∥∥2
F = 2coshρ

(
J ,g (J)

)
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Hyperbolic Space

The fundamental domain

O+ is a discrete subgroup of SL2 (C). The action of O+ on J generates a tesselation of H3.

The tesselation defines, for each element g of O+, a hyperbolic polyhedron

Pg = {
x ∈H3|ρ

(
x,g (J)

)≤ ρ (
x,g′ (J)

)
,∀g′ 6= g

}

Fundamental Domain
PI (Dirichlet polyhedron) is the
fundamental domain of O+
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Hyperbolic Space

The generators

8 generators for O+

u1 =
(

iθ 0
0 iθ̄

)
u2 =

(
i 1+ i

i−1 i

)
u3 =

(
θ 1+ i

i−1 θ̄

)
u4 =

(
θ −1− i

−i+1 θ̄

)
u5 =

(
1+ i 1+ iθ̄

i (1+ iθ) 1+ i

)
u6 =

(
1+ i 1+ iθ

i
(
1+ iθ̄

)
1+ i

)
u7 =

(
1− i θ̄+ i

i (θ+ i) 1− i

)
u8 =

(
1− i θ+ i

i
(
θ̄+ i

)
1− i

)

Word problem
Each element in O+ can be written by using eight letters (ui)
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Reduction

Outline
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2 The Golden Code structure
Introduction
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The multiplicative error matrix

4 Hyperbolic Space
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5 Reduction
The algorithm
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Reduction

Reduction Algorithm (I)

Using the fundamental domain (generators), the aim is to find

Ũ = arg min
U∈O+

∥∥∥H̃ ·U−1
∥∥∥

F

by using an iterative process.

The optimal remaining error

E = H̃ · Ũ−1

is inside the fundamental domain of O+.
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Reduction

Reduction Algorithm (II)

Hyperbolic space on which acts SL2(C)

Fundamental polytope of I
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Figure: The algorithm
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Reduction

Simulation Results
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Figure: Simulation Results 8 bits pcu
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Figure: Thank you for your attention !!!
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