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Introduction

Set-up and Motivation

Let Fq be a finite field of ¢ elements.

For e | g—1 with e < (¢ —1)/2 and s € Fq, Oc¢s
denote oracle that on every input z € Fq outputs
Oe,s(x) = (x 4 s)¢ for some “hidden” s € Fy:

r— Oes — (x4 5)°



Hidden Shifted Power Problem:

HSPP: given O¢ s for some unknown s €
Fq, find s

We also consider the following two versions of the
Shifted Power Identity Testing:

SPIT-1: given O¢ s for some unknown s €
Fq and known t € Fy, decide whether s = ¢
provided that the call x = —t is forbidden

and

SPIT-2: given O¢s and Og; for some un-
kKnown s,t € [, decide whether s = ¢.
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Side Remark

These problems are special cases of the ‘“black-
box” polynomial interpolation and identity test-
ing for arbitrary polynomials given by straight-line
programs: an instruction what operations to ex-
ecute in order to evaluate f(x)

Example: Evaluating the polynomial

f(X) = (X — 3)(X + 2)100 + XQOO

Read X

. Add 2 to x

Rise (2) to the power 100

. Subtract 3 from x

Multiply the results of (3) and (4)
Rise = to the power 200

. Add the results of (5) and (6)
Output (7)

X N hE N



Complicated polynomials may have very short straight-
line programs.

Classical Example: determinant

Classical Problem: show that permanent does not
have a short straight-line program.

Straigh-Line Program Testsing:

Given two straight-line programs for multivariate
polynomials f and g decide whether f = ¢ (as
polynomials or functions over some fixed field).

The area has a long history in theoretic computer
science and cryptography.

Here we consider very special polynomials given by
straight line programs of length 2.
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Observation

Observation: Returning the values of (x + s)¢

)

Giving u such that  +s = u x p for some p € Fy
with u® =

)

returning the values of x(xz 4+ s) for some fixed
multiplicative character y of IF;"].

In this form:

van Dam & Hallgren & Ip, 2006:

an efficient quantum algorithm in the case of a
quantum oracle Oe¢ s (that is, an oracle which can
talk to a quantum computer).

Vercauteren, 2008:

The same question under the name of Hidden
Root Problem in relation to the fault attack on
pairing based protocols on elliptic curves.

Boneh & Lipton; Damgard; Peralta, 1990-2000:
Links between HSPP with e = (p — 1)/2 (i.e.,
with the Legendre symbol) and cryptography, e.g.
hashing.



Efficiency Meassures

e Number of Oracle Calls
(in cryptographic applications ‘“calls” are ex-
pensive, they are induced hardware faults)

e Running Time

Two Straightforward Solutions

e HSPP: query Oc¢s On e+ 1 arbitrary elements
x € g and then interpolate the results:

Oracle Calls = e Time = e(log )9

e SPIT-1,2: query O¢,s and O+ on N random
elements xz € F; and compare the results:

Oracle Calls = N Time = N(log ¢)9(1)

N
Success Prob.: = (1 — E) <N
p



We will measure our progress (...and failures)
against these naive solutions.

We concentrate on the case of a prime g = p.

Some of our results are compact and nicely look-
ing, some are rather technical and ugly ...but
they do the job, lead to better algorithms.

You will see examples of both types.
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Our Results

HSPP

HSPP: Small e
Let e|p— 1 with e < p1—9.

Deterministic algorithm

For any € > O, it finds s in

e Calls = O(1), Time = elt¢(logp)P(L) pro-
vided we are given ¢-th power nonresidues for
all primes ¢ | e (or the ERH holds)

e Calls=0(1), Time = ep°

Probabilistic algorithm

It finds s in expected number of

Calls = O(logp/log(p/e))  and  Time = ep°L)
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HSPP: Large e

Deterministic algorithm

For any € > 0O it finds s in

e Calls = O(logp/log(p/e)), Time = p(log p)O (1)

e Calls = O(logp/log(p/e)), Time = elT¢(logp)° D),
provided we are given /-th power nonresidues
for all primes ¢ | e (or the ERH holds)

Note: If e < pl=9 for some § > 0 then

log p/log(p/e) = O(1).
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SPI

SPIT-1: (that is, t is known)
Let e| p— 1 and let we are given an oracle Oc¢s.

Deterministic algorithm

It tests s = t:

e Foranye<(p—1)/2, in
Time = 61/4p0(1)
e For e<p?, in

Time = %9 (log p)o(n,

where cqg is a constant.

The constant cg can be explicitly evaluated, but
we have never done so.
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SPIT-2: (that is, t is unknown)

Let e | p— 1 and let we are given oracles O s and
Oe t-

Deterministic algorithm

e Foranye<(p—1)/2,
Time = pl/2+o()

e Foranye<(p—1)/2,

Time = max{el/zpo(l), ezp_H_O(l)}.

e For e§p5,

Time = 60051/3009 p)O)

The constant Cy can be explicitly evaluated, but
we have never done so.
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Methods and Algorithms

HSPP

(1) Query Oc s at several values of j, eg. j =
1,...,m for some small m, getting A; = (s +
J)e-

(ii) Find sets S; of solutions to A; = u®, note that
S € Sj — 7.

(iif) Find their intersection

S = ﬂ (Sm —J)

j€ll,m]
(iv) Prove that for m not too large, #S8 is small.

(v) Query O for all x € —S until it returns O.
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Step (ii): It is well studied problem of root extrac-
tion in finite fields. Unfortunately still there is no
polynomial time deterministic algorithm (even for
e = 2) unless we are given ¢-th power nonresidues
for all primes ¢ | e (or the ERH holds).

Sometimes we can circumvent this problem but
sometimes it holds us back (and so we request
these non-residues to be given).

Step (iii): we do not know how to do this more
efficiently that directly from the definition. ..
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Step (iv) is the key point in our approach.

The sets S, are shifted co-sets of the multiplicative
group

Ge={p €Fq 1 p°=1}

of residues of order e.

So, the problem has a natural multiplicative struc-
ture associate with it.

U

We use some new results about the intersections
of shifted co-sets and also some old and new num-
ber theoretic estimates of multiplicative character
sums.
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Technical Tools

Preliminary Shrinking the Search Set S

Heath-Brown & Konyagin, 1999: m =1
Shkredov & Vyugin, 2011: any m>1

Lemma 1 Assume that for an integer m > 1,

p > 3meltl/(@m+1),

Then for pairwise distinct py,...,um € Fy and ar-
bitrary A1,..., m € F; the bound

m—+1
# (Ge N (AMGe + 1) NN (AmGe + pm)) K e2mtl

holds, where the implied constant depends on m.

Note: The RHS of Lemma 1 approaches el/2 when
m INCreases.

So, for any ¢ in O(1) steps at the Step (iii) we
obtain a set of size el/2%¢,
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Further Shrinking the Search Set S

We derive and use new bounds of multiplicative
characters sums that stems from a series of results
of

Karatsuba, 1992:
Friedlander & Iwaniec, 1993:
Chang, 2009:

The aim is to get an improvement of the general
bound

S x(@+y)| < \Jo#x#Y

reX ye)y
that holds for arbitrary sets X, Y C Iy,

In our and all other works one of the sets is always
assumed to be “structured” (e.g. an interval or
d-spaced).
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Improvements??

Each of these Steps (ii)—(iv) can be the bottle-
neck, depending on the value of e.

Step (iii): We do not know any nontrivial algo-
rithm for finding the set intersection.

Question: Any quantum speed-up?

Not the that the oracle O¢ s is classical here.
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SPIT-1,2

As before, let Ge C F; be the multiplicative group
of order e | ¢ — 1, that is,

ge:{,UJEIFq D ut =1}

We write,

Foa(X) = T (X+s—n(X+0).
BEGe

Our approach is based on the idea of choosing
a small “test” set X, which nevertheless is guar-
anteed to contain at least one non-zero of the
polynomial Fs; for any s # t.

This is based on a careful examination of the roots
of Fs; and relating it to some classical number the-
oretic problems about the distribution of elements
of small subgroups of finite fields.
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Technical Tools

Ayyad, Cochrane and Zheng, 1996:
Cilleruelo & Garaev, 2010:, Garaev & Garcia,
2008:

Lemma 2 Uniformly over integers a and H, the
congruence

(a +z1)(a+z2) = (a+23)(@a+24) (MoOd p),
1 SCB1,332,5133,$4 < H7

has H*/p + O(H21t°(1)Y sojutions as H — cc.
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Analogue of Bourgain, Konyagin & Shaprlinski,
2008: (K = Q)

Another approach: Cilleruelo, Ramana & Ramare,
2010:

Lemma 3 Let A,B C K, where d = [K : Q] be
finite sets with elements of logarithmic height at
most H. For some c(d), depending only on d,

#(AB) > exp (—c(d) ) HAH#B.

N
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From Krick, Pardo & Sombra, 2001: we derive
(where we care only about the size of b and do not
need to estimate other parameters):

Lemma 4 LetPy,...,PN,f €Z[Z1,...,2Zy] be N+
1 > 2 polynomials in n variables of degree at most
D > 3 and of logarithmic height at most H such
that f vanishes on the variety

Pi(Zy,....Zp) =...=Pn(Z1,...,Zn) = 0.
T here are positive integers b and r with
logb < C(n)D"™ ! (H + log N + D)

and polynomials Q1,...,QN € 7Z[Zq,...,Zn] such
that

P1Q1+ ...+ PNQn = bf",

where C(n) depends only on n.

In our case, n = 2, not no better bound seems to
be known.
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For A C F,, let A®) be the v-fold product set

A(V):{a,l...ay : Cl,]_...(Jq/EA}

Lemma b Let v > 2 be a fixed integer. Assume
that

h < pl/(VQ—l).
For s € Fp, we consider the set
A={z+s : 1<z < h} CFp.
T hen
#(AW)) > prto(l),

Note: The bound is tight as

# (A < (#A)Y < b

Interpretation: Intervals generate very large sub-
groups of IE“;‘;.
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Lemma 6 Fixv >1. Assume that

—4
h < pCI/ :

where ¢ is a certain absolute constant. For pair-
wise distinct s,t € Fp, we consider the set

r+ s
Az{ 1< <h}CIF.

x4+t == =P
T hen

#(AW)) > prto(l),

Note: The bound is tight as

#(AW)) < (#A) =< ¥

Interpretation: Values of linear-fraction functions
on intervals generate very large subgroups of IF;;.
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SPIT-1: (thatis, ¢ is known)

Clearly, if
Oe,s(x) — Oe,t(x)

for some z € F; then Fs(x) =0 or
r+ s

x4+t
(provided =z 4+t #= 0). We now choose

€ Ge (1)

X={y -t :ycy} (2)

for some set Y C ;. Then the condition (1) means
that a shift of ) is contained inside of a coset of
Ge, that is, with »r = (s —t)~1, we have

Y+ rCre (3)

Goal: find a “small” set Y C IFZ‘] such that its shifts
cannot be inside of any coset of G (we note that
r is unknown).

Idea: Choose Y as a short interval of h consecutive
integers and define X by (2).



26

Immediate from Lemma 5:

Products of sufficiently many copies of an inter-
val cannot be locked in a co-sets of a small small
subgroup.

If e is small, take h = {6005-‘ for a sufficiently large
co and Y = [1,h] and see that (3) is impossible:

For a known t € F), and e < p°, we decided whether
s=1t11Iin

Time = e“°(log p)O(l),

where cg is a constant.

If e = p°(1) then Time = ¢°(1)(log p)O(1),
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Consider Z = [a + 1,a + H] C [0,p — 1] of size
H <p1/3.

Fix some integer m > 1 so that p and e satisfy the
condition of Lemma 1.

Set

= m!, yv=m!/(v+1),v=1,....m—1, K= |H/{|.

Let 7 ={a+2¢...,a+¢K}. Thus J C Z. Let
A=J/J, that is,

A={ji1/j2 : j1,j2 € T} C Fp.
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Now, let N(«) be the number of solutions to
a—+Lth
a+ /1 o
Clearly N(a) >0 <& «a€ A

a i1,hell,K],

Furthermore
> N(a)?*=T,
acA
where T' is the number of solutions to:
a+£th a++4{j
a+0i  a-+ Lk

i,J,h, k € [1, K].
or to

(a+40i)(a+45) = (a+£h)(a+2k), 4,7,h, ke [l,K].
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By Lemma 2 we see that

acA
Also, we have the trivial relation
Y N(a) = K?
acA

Therefore, by the Cauchy inequality

2
K% = (Z N(a)) <#A Y N(@)? < #AxZHD)
acA acA

Hence #.A is large:
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Next we observe that

A+vC{(v+1)u : vwel/I},

since

a-+ ¢h . a+vl,r+ b, h
xS

and

1/61/7: _I_ E]/h S (V —I_ 1)61/[( S H.

Clearly if Z € rGe then A C Ge and A+v C (v+1)Ge.
The system of equations

ro+v=xp, € W+1)Ge, v=0,...,m—1,

has at least #.A solutions of the form zg € A,
Ty =x0+v,v=1,...,m.

By Lemma 1 (bound on the intersection of m
shifted co-sets of G¢), we have

#A < e(m—|—1)/(2m—|—1) (5)
We see that for
H — L61/4+€J

for some € > 0. For a sufficiently large m we see
that (4) and (5) are incomparable.

Choosing Y = [1, H] and recalling (3), we now
complete the proof.
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SPIT-2: (that is, t is unknown)

We cannot use

X={y_1—t y eV}
anymore and have to work with

r+ s
x+t

€ Ge (6)
directly.
Goal: Find a “small’ set X C IF; such that the v-

fold product set of (x +s)/(x+1t), z € X is large.
Then (6) cannot hold unless |s = t|.

Idea: Choose X as a short interval of h consecutive
integers, and test (6) by comparing Og¢s(z) and
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Immediate from Lemma 6 (v-fold product set of

A:{“’S : 1gx§h}ng.
x4+t

is large).

If e < p5 IS small, take h = [eco‘ﬂﬂﬂ for a suffi-

ciently large c¢g and Y = [1,h] and see that (6) is
impossible:

For a unknown t € Fp and e < p°, we decided
whether s =t in

Time = 66051/3009 p)O(l)a

where cqg is a constant.

If e = p°(1) then Time = ¢°(1)(log p)O(1),



33

Lemma 2: multiplicities of residues of (z4u)(y+u)

U

For any interval Z = [r+1,r+h] C [, the products
uv, u,v € 1, take a lot of distinct values:

#{uv : uw,v € T}>min{HY?pl/2 g2toll)y

Y

The interval Z is not contained in a small sub-
group.

The classical Burgess and Weil bounds also work
in some ranges.
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Other Applications

Congruences

The following result in the case v = 4 solves an
open problem Cilleruelo & Garaev, 2010:.

Let v > 2 be a fixed integer, A 2 0 (mod p). As-
sume that for some sufficiently large positive inte-
ger h and prime p we have

h < pl/(VQ_l)_

Then for any s € Fp for the number J,(\; h) of
solutions of the congruence

(x14+s)... (xpv+s) =X (modp), 1<uxq,...,20 <h,

we have the bound

log h )

Ju(A; h) < exp (C(V)
log log h

where c¢(v) depends only on v.
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Polynomial Factorisation

The following algorithm (still in progress!!) im-
proves the result of Shoup, 1991:

There is a deterministic algorithm that, given a
squarefree polynomial f € Fp[X] of degree n = p©
that fully splits over Fp, finds in time p*H‘O(l) a
factor g | f of degree 1 < degg < n where

(1/2, ifa>1/2,
3 /1 =2 9a?
PR Rl ¢4 A9 125 a > ag,
80 — 11942 o<
9 a a?
| 160 — 119a 0
where
3280
o — 0.22779....

~ 14399
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Open Questions

e \What about arbitrary fields?
... most of our tools do not work there, but
some modifications are possible

e Find other applications of these methods?

e Better results for almost all p?

e More complicated polynomials? For example,
a(X + s)¢+b(X + )/ or f(X)°



37

Can we do better with quantum algorithms?

Given pairwise distinct ay,...,ay € Fp and arbi-
trary z1,...,zv € Fp how fast can we find the
intersection of the solution sets to

ut+z;))¢*=a; 1=1,...,U7
1 1

Note that we know that this set is small, e.g.

-0 (61/2+0(1)> is v is large

-0 <62/3+0(1)) if v = 2 (an interesting case
too).

It feels like a special case of the Hidden Sub-
group Problem but with a classically given func-
tion f.



