Secure Message Transmission
with Small Public Discussion

Juan Garay (AT&T Labs — Research)

Clint Givens (UCLA)
Rafail Ostrovsky (UCLA)




——
SMT by Public Discussion (SMT-PD) [GO08]

Sender § Receiver R

I & if )

message/=7

& &

Problem: Transmit a message/=7 privately and reliably

= ¢ and R connected by n channels (“wires”)

= t wires (actively) corrupted by adversary 4
= .. plus an (authentic and reliable) public chann




——
The Original SMT Model... [DDWY93]

=N

Sender S

’ —g
message/=7 Nt b5

&

Receiver R

&

Problem: Transmit a message/=7 privately and reliably

= § and R connected by n channels (“wires”)
= t wires (actively) corrupted by adversary 4

B @200~



T
SMT(-PD): Some Motivation

" Unconditionally secure multiparty computation (MPC):




Secure Multi-Party Computation (MPC)

Multi-party computation (MPC) [Goldreich-Micali-Wigderson 87] :
e n parties {P,, P, ..., P.}, t corrupted; each P, holds a private

Input x;
e One public function f (X4,Xy,...,X,)
o Allwant to learn 'y =f (X{,X5,...,X;) (Correctness)
e Nobody wants to disclose his private input (Privacy)

2-party computation (2PC) [Yao 82] : n=2

e



——
SMT(-PD): Some Motivation

® Unconditionally secure multiparty computation (MPC):
0 Possible iff < 1/3 of players are corrupt [BGW'88, CCD’88]
0 Private point-to-point channels sufficient...

... but what if only some of the
nodes are connected?




SMT(-PD): Some Motivation

" |dea! [D'82,DDWY’93]. Simulate private p2p channels using
SMT protocol




SMT(-PD): Some Motivation

" |dea! [D'82,DDWY’93]. Simulate private p2p channels using
SMT protocol

0 Requires connectivity at least 2t+1




SMT(-PD): Some Motivation

" |dea! [D'82,DDWY’93]. Simulate private p2p channels using
SMT protocol

0 Requires connectivity at least 2t+1
a ... Can we do better?




SMT(-PD): Some Motivation

" |dea! [D'82,DDWY’93]. Simulate private p2p channels using
SMT protocol

0 Requires connectivity at least 2t+1
a ... Can we do better?




"
SMT-PD to the Rescue!

" Yes! Can even get constant connectivity (!) [GO’08]

o ...but now some of the good guys might be
totally cut off from the others...

0 SO we give up on
correctness and
privacy for these poor
lost souls




SMT-PD To The Rescue!

ldea! [GO’08]: Simulate private p2p channels using
SMT-PD protocol

o Possible even for n = t+1 (just one good wire)!

o The catch: Must
implement a public
channel between
Sender and Receiver




Implementing a Public Channel

= Byzantine agreement for partially connected
networks [DPPU’86, Upf'92, BG'93]




Byz. agreement (aka Broadcast) [PSL80, LSP82]

n players

1YY

ZANSN
i 4

If source is honest, v, = v (Validity)
Vi =V, (Agreement)

n > 3t
(in fully connected networks)

e



Implementing a Public Channel

= Byzantine agreement for partially connected
networks [DPPU’86, Upf'92, BG'93]




Implementing a Public Channel

= Byzantine agreement for partially connected
networks [DPPU’86, Upf'92, BG'93]

o This is EXPENSIVE in rounds and in
communication

o Question: Can we
minimize use of the
public channel in
SMT-PD?

o SMT with Small




e 4:&‘
SMT by Public Discussion (SMT-PD) [GU. €g )
¢

Sonder S v < N

message/=7

Receiver R

& &

Problem: Transmit a message/=7 privately and reliably

= ¢ and R connected by n channels (“wires”)

= { wires (actively) corrupted by adversary 4
= .. plus an (authentic and reliable) public chann




A Brief History of SMT
" [Dolev-Dwork-Waarts-Yung'93]

" Perfectly secure message transmission (PSMT)
" Requires majority of uncorrupted wires, i.e., n > 2t
= 2 rounds necessary, sufficient (in general)

® [Srinathan-Narayanan-PanduRangan’04, Srinathan-Prasad-
PanduRangan'07]

" PSMT comm. complexity = Q(Mn/(n-2t))

= [Kurosawa-Suzuki'08]
= PSMT comm. complexity = O(Mn/(n-2t))

B @200~



A Brief History of SMT-PD

" [Franklin-Wright'98] Perfect reliability is impossible if majority of
wires are corrupt




A Brief History of SMT-PD

® [Franklin-Wright'98] Perfect reliability is impossible if majority of
wires are corrupt
® [Garay-Ostrovsky'08]
= 3 rounds, 2 public rounds
= Public communication = O(Mn)
= Private communication = O(Mn)

B 2000~



A Brief History of SMT-PD

® [Franklin-Wright'98] Perfect reliability is impossible if majority of
wires are corrupt
® [Garay-Ostrovsky'08]
= 3 rounds, 2 public rounds
= Public communication = O(Mn)
= Private communication = O(Mn)
® [Shi-Jian-Safavi/Naini-Tuhin’09]
= 3 rounds, 2 public rounds is optimal
® Public communication = O(M)
®= Private communication = O(Mn)

B 2000~



"
Previous SMT-PD Protocols Get:

m 3 rounds, 2 public rounds (optimal)
m Perfect privacy, negligible reliability error (optimal)
m Public communication = O(M)

m Private communication = O(Mn)
m Question: Can we significantly reduce public channel
communication?

m Question: Can we significantly reduce private wire
communication?

B @200~



Our Results
Upper Bounds

Public communication = O(n log M)
previous: O(M)

Private communication = O(M n/(n-t))
previous: O(M n)

Lower Bounds

Private communication = Q(M n/(n-t)) (matches upper
bound!)

Amortization

After 2 public rounds, can talk forever l



General Structure of SMT-PD Protocol

Swants to send a message to R..

1. (§— ®R) Send lots of randomness over each
private wire

2. (R— S ) Send checks on public channel to
verify randomness hasn't been tampered with

3. (§— R) Discard tampered wires. Combine

usable randomness into one-time pad for message
over public channel

B @200~



Technique: Integrity Checks

random subset

r

01110011 — E”O%%‘;rerec“”g S 10611010000 }ﬂo

[consistency check: {3, 6, 13, 15}: 11001 l

(1) Encode each wire’s randomness using an error-correcting
code

(2) Reveal small subset of symbols

(3) Reject if received word doesn’t match

(or is not a codeword!) \



Technique: Integrity Checks

random subset

r

01110011 — E”O%%‘;rerec“”g S 10611010000 }ﬂo

[consistency check: {3, 6, 13, 15}: 11001 l

Suffices to reveal log(n/d) randomness on each wire
O: reliability error parameter

B @200~



Fleshing Out the Protocol: Integrity Checks

S wants to send a message to R .

1. (§— R) Send lots of randomness over each

private wire... encoded using an Error-Correcting
Code

2. (R— S) Send checks on public channel to

verify randomness hasn't been tampered with... by
opening a random subset of codeword symbols

B @200~



Technique: Hiding the Message

Previous protocols combine randomness by XOR-ing all
usable strings together...

Have to send O(M) randomness per wire =(

A has partial information:

More efficient: Use 011010000101110100100010
randomness extractor! J,
= — Randomness
) 0010 Svtractor 1100011010
short, truly looks uniformly

random seed randomto A I



Randomness Extractors

The min-entropy of a distribution X over {0,1}N is
H.(X) = min(-log PrIX =x]). ~ H,(X)2K & max, PriX=x< 2K
(Xis a “K-source”)

Example: Fix N - K of the bits of X, and let the remaining K bits be
uniformly, independently random. H_(X) = K.

Randomness extractors: Given a sample from any source X with
sufficient min-entropy, produce an output which is close to uniform.

A function Ext: {0,1}Nx {0,1}* — {0,1}¥isan (N, K, k., €)-strong
extractor if

(Ug, Ext(X, U,)) is e-close to (U, Uy) whenever H_(X) 2 k...

e



Technique: Hiding the Message (cont’d)

A has side information on secret-wire randomness (from
Rd 2 integrity checks!)

Use average-case extractor [DORS'04]

A has partial information:

011010000101110100100010

L

- Randomness
0010 Extractor —> 1100011010
short, truly looks uniformly

random seed randomto A I



Fleshing Out the Protocol: Hiding the Message

Swants to send a message to R

2. (R— S) Send checks on public channel to verify
randomness hasn't been tampered with... by opening a
random subset of codeword symbols

3. (5 — R) Discard tampered wires. Combine usable
randomness... using an average-case extractor ...into one-
time pad for message over public channel

B @200~



What have we gained?

On each private wire we can send:
O(M/ (n-t)) randomness

+ log(n/®) extra randomness to account for integrity
checks

= total private-wires communication of O(Mn / (n-t)) !

(with modest assumptions on M, size of the message)

B 2000~



Now for Public Channel Communication...

2. (R—S) Send checks on public channel to verify

randomness hasn't been tampered with by opening a
random subset of codeword symbols.

cheap: O(n log(n/d))

3. (§— R) Discard tampered wires. Combine usable

randomness using an average-case extractor into one-time
pad for message over public channel

expensive: O(M)

B @200~




Now for Public Channel Communication...

3. (§— R) Discard tampered wires. Combine usable

randomness using an average-case extractor into one-time
pad for message over public channel

expensive: O(M)

Idea! Why not send the blinded message
over the private wires?

B @200~



Yes, Why Not Send It Over Private Wires?

Issue 1: Won't this raise private-wire communication back to
O(Mn), thus negating all our hard-fought progress over the
last several slides?!

Solution: ...Let’s think about this later.

B 2000~



Yes, Why Not Send It Over Private Wires?

$

Issue 2: How will we keep the adversary from
tampering with it? A

L
&

Solution: Let's send a (short!) authentication on the
public channel

Issue 3: If we send the authentication at the same time as
we send the message (Rd 3), adversary can just choose a
tampering consistent with it...?

Solution: Blind the authentication, too

B @200~



A Short Authentication, Publicly

For short authenticator, we can use the error-
correction integrity checks again:

Encode blinded message, send result over each
private wire

Reveal (logarithmic # of) random symbols on the
public channel

B @200~



A Short Authentication, Publicly

To hide authenticator, would like a small (size =
log M) shared key between Sand R,

How to get it?
Run a (small) SMT-PD protocol in parallel!

Since the key is = log M, doesn't hurt us to send it
over public channel in Rd 3

B @200~



Fleshing Out the Protocol: Parallel SMT-PDs

S wants to send a message to R .

1a. (§— ®) Send lots of randomness over each private
wire, encoded using an Error-Correcting Code

(eventually used to blind message)

1b. (§ — R) Send some more randomness over each
private wire, encoded using an Error-Correcting Code

(eventually used to blind authenticator)

B @200~



Fleshing Out the Protocol: Parallel SMT-PDs

2a. (R— S) Send checks on public channel to verify (1a)-

randomness hasn't been tampered with, by opening a
random subset of codeword symbols

2b. (R— S ) Send checks on public channel to verify (1b)-

randomness hasn't been tampered with, by opening a
random subset of codeword symbols

B @200~



——
Fleshing Out the Protocol: Parallel SMT-PDs

3a. (§— R ) Discard tampered wires.

3b. (§— ®R) Combine usable (1a) randomness using an

average-case extractor, into a one-time pad for message over
public channel... Encode (msg+pad) using Error-Correcting
Code, send result over every private wire.

3c. (§— R) Combine usable (1b) randomness using an
average-case extractor, into a one-time pad for authenticator ...

Construct auth by opening ECC(msg+pad) at random subset of
symbols; send (auth+pad) on public channel.

B @200~



One Last Nagging Question...

Issue 1: Won't this raise private-wire communication back to
O(Mn)?!

Solution: Don’t send (msg+pad) over every wire.
(So wasteful!) Instead...

B 2000~



One Last Nagging Question...

First encode C == (msg+pad) into n shares of size =
M/(n-t)

Thus, n-t correct shares reconstruct C

Integrity-check each share on public channel
Raises Rd. 3 public communication to O(n log M)

B 2000~



Summary: Our Results on SMT-PD
Upper Bounds

Public communication = O(n log M)
previous: O(M)

Private communication = O(M n/(n-t))
previous: O(M n)

Lower Bounds

Private communication = Q(M n/(n-t)) (matches upper
bound!)

Amortization

After 2 public rounds, can talk forever l



References

J. Garay, C. Givens and R. Ostrovsky, “Secure Message
Transmission with Small Public Discussion.” In Eurocrypt 2010.
Full paper available from the Cryptology ePrint Archive:
eprint.iacr.org/2009/519.

J. Garay and R. Ostrovsky, “Almost-Everywhere Secure
Computation.” In Eurocrypt 2008.

N. Chandran, J. Garay and R. Ostrovsky, “Improved Fault Tolerance
and Secure Computation on Sparse Networks.” In ICALP 2010.

B =






Secure Message Transmission
with Small Public Discussion

Juan Garay (AT&T Labs — Research)

Clint Givens (UCLA)
Rafail Ostrovsky (UCLA)




