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Malware example and impact

Conficker worm detected in November 2008—still active—can
cause a computer under the Windows operating system to become
a component of a remote-controlled botnet against the user’s
will—on an infected computer, it causes a buffer overflow in which
harmful excess code is executed by the operating system—the
excess code downloads more code that hijacks the server services
of the operating system, in order to update and spread the worm
via the network—variant code inhibits also the security services of
the operating system and connections to anti-malware
websites. . . affected European military systems. . .

Worldwide malware-induced damage in 2006 $13.3 · 109
[Computer Economics Inc., 2007]

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Outline
Introduction

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Malware Logic
Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Conclusion
Assessment
Related work
Future work

Selected Bibliography

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Motivation, Goal, and Methodology

Motivation An open problem [FHZ06]: find a general definition
of malware (= malicious software), e.g., botnets,
rootkits, Trojan horses, viruses, worms, etc.

Goal Obtain a formal solution to the problem.

Methodology Formulation of the solution as a single sentence in
a computational modal fixpoint logic.
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Malware as harmful software

What is malware?
� Informally,

malware = malicious software
� Malicious intention is not generally directly observable!
� How to distinguish unawareness (juvenile hacking, accidental

anti-hacking) from malice?
� Users don’t care: all that matters is (harmful) effect, not

(malicious) intention.
� Malice is immaterial!
� psychological “definition”

� Intuitively,

malware = harmful software
� Harmful effect is observable!
� scientific definition
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Harm as incorrectness

� doing harm = causing that

actual behaviour �= intended behaviour

� actuality − intention = incorrectness

� defining principle for malware:

causation of incorrectness

� harmful attack = falsification of a necessary condition for
correctness

� formal systems engineering
� correctness intention must be specified
� we don’t care how:

correct(s)
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Example: Sorting

� Given: a program s for sorting an array A of l integers

� Sought: a correctness definition for s

� Pre := A : Arrayl∈N(Z)
� Post := ∀(1 ≤ i ≤ l)∀(1 ≤ j ≤ l)(i ≤ j → A[i ] ≤ A[j ])

� correct(s) :iff �Hoare Pre {s}Post

� Variations: add necessary conditions (e.g., exact algorithmic
complexity), stipulate proof-carrying code, etc.
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Prerequisites

Theorem (Knaster-Tarski fixpoint theorem)

Let �L,≤� designate a complete lattice1 and f : L → L a
monotonic map2 on L. Then,

g :=
�

{ a | a ∈ L and a ≤ f (a) }

is the greatest fixpoint of f , and, dually,

l :=
�

{ a | a ∈ L and f (a) ≤ a }

is the least fixpoint of f .

1� S (lub) and
�

S (glb) exist for arbitrary S ⊆ L
2for all a, b ∈ L, if a ≤ b then f (a) ≤ f (b)
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Preliminaries

Definition (Damaging software)

A software system s damages a correct software system s � by
definition if and only if s (directly or indirectly) causes
incorrectness to s �. Formally,

s damages s � :iff correct(s �) and not correct(s(s �)) directly
s damages0 s � :iff s damages s �

s damagesn+1 s � :iff there is s �� s.t. not s �� damages◦ s �

and s(s ��) damagesn s �
indirectly

s damages◦ s � :iff
�

n∈N s damagesn s �.
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Preliminaries

Definition (Repairing software)

A software system s repairs an incorrect software system s � by
definition if and only if s (directly or indirectly) causes correctness
to s �. Formally,

s repairs s � :iff not correct(s �) and correct(s(s �)) directly
s repairs0 s � :iff s repairs s �

s repairsn+1 s � :iff there is s �� s.t. not s �� repairs◦ s �

and s(s ��) repairsn s �
indirectly

s repairs◦ s � :iff
�

n∈N s repairsn s �.
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Malware Logic

Definition (MalLog)

Let M designate a countable set of propositional variables M, and

Φ � φ ::= M
�� ¬φ

�� φ ∧ φ
�� ∀D(φ)

�� ∀R(φ)
�� νM(φ)

the language Φ of MalLog where all free occurrences of M in φ of
νM(φ) are assumed to occur within an even number of
occurrences of ¬ to guarantee the existence of (greatest) fixpoints
(expressed by νM(φ)) [BS07].
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Malware Logic (continued)

Then, given the (or only some sub-) class S of software systems
(not just pieces of software) s and an interpretation �·� : M → 2S

of propositional variables, the interpretation � · ��·� : Φ → 2S of
MalLog-propositions is:

�M��·� := �M�
�¬φ��·� := S \ �φ��·�

�φ ∧ φ���·� := �φ��·� ∩ �φ���·�
�∀D(φ)��·� := { s | for all s �, if s damages◦ s � then s � ∈ �φ��·� }
�∀R(φ)��·� := { s | for all s �, if s repairs◦ s � then s � ∈ �φ��·� }

�νM(φ)��·� :=
�

{ S | S ⊆ �φ��·�[M �→S]
}

where �·�[M �→S] maps M to S and otherwise agrees with �·�.
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Malware Logic (continued)

Further, φ ∨ φ� := ¬(¬φ ∧ ¬φ�), � := φ ∨ ¬φ, ⊥ := ¬�,
φ → φ� := ¬φ ∨ φ�, φ ↔ φ� := (φ → φ�) ∧ (φ� → φ), and

∃D(φ) := ¬∀D(¬φ)
∃R(φ) := ¬∀R(¬φ)

µM(φ(M)) := ¬νM(¬φ(¬M)).

Finally,

� for all φ ∈ Φ and s ∈ S, s |= φ :iff s ∈ �φ��·�
� |= φ :iff for all s ∈ S, s |= φ
� for all φ,φ� ∈ Φ,

� φ ⇒ φ� :iff for all s ∈ S, if s |= φ then s |= φ�

� φ ⇔ φ� :iff φ ⇒ φ� and φ� ⇒ φ.
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Basic properties of MalLog

Fact

1. |= φ → φ� iff φ ⇒ φ�

(By expansion of the definitions.)

2. |= φ ↔ φ� iff φ ⇔ φ�

3. MalLog is a member of the family of µ-calculi over the modal
system K2, which is characterised by the validities of
propositional logic and the modal laws
|= �(φ → φ�) → (�φ → �φ�) and “if |= φ then |= �φ”,
where � ∈ {∀D,∀R}.
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Basic properties of MalLog (continued)

Corollary

1. If damages◦ and repairs◦ are decidable on a given software
systems domain then the satisfiability problem for MalLog,
i.e., “Given φ ∈ Φ, is there s ∈ S s.t. s |= φ?”, (and thus also
the model-checking problem, i.e., “Given φ ∈ Φ and s ∈ S, is
it the case that s |= φ?”) is decidable.

2. MalLog is axiomatisable by the following Hilbert-style
proof-system:
2.1 the axioms/rules of the modal system K for each ∀D and ∀R
2.2 the axiom φ(µM(φ(M))) → µM(φ(M))

2.3 the rule
φ(φ�) → φ�

µM(φ(M)) → φ� .
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Defining malware

Definition (Malware)

A software system s is malware by definition if and only if s
damages non-damaging software systems (the civil population so
to say) or software systems that damage malware (the anti-terror
force so to say). Formally,

mal(s) :iff s |= νM(∃D(∀D(M))).
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An iterative paraphrase

� Everything is malware (better be safe than sorry)

� except for (throw out what is clearly safe) the following
systems:

0. non-damaging systems (CP)
1. systems that damage only systems that damage CP

(ATF1)
2. systems that damage only systems that damage ATF1

(ATF2)
3. systems that damage only systems that damage ATF2

(ATF3)
4. etc.
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Deriving benware

Definition (Benware)

A software system s is benware by definition if and only if s is
non-damaging or damages only software systems that damage
benware. Formally,

ben(s) :iff s |= µM(∀D(∃D(M))).
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An iterative paraphrase

� Nothing is benware (again, better be safe than sorry)

� except for (throw in what is clearly safe) the following
systems:

0. non-damaging systems (CP)
1. systems that damage only systems that damage CP

(ATF1)
2. systems that damage only systems that damage ATF1

(ATF2)
3. systems that damage only systems that damage ATF2

(ATF3)
4. etc.
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The Malware-versus-Benware arms race

Fact

ben(s) if and only if not mal(s)

Benware

Malware

ATF3

MW2

ATF2

MW1

ATF1

MW0

CP

MW3

Good&Bad distinction induced by the existence of a
population that is (perceived as) non-damaging
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Anti-malware

Definition (Anti-malware)

A software system s is anti-malware by definition if and only if s
damages no benware (safety)3 and s neutralises4 malware
(effectiveness). Formally,

antimal(s) :iff s |= ¬∃D(BEN) and
there is s � s.t. mal(s �) and not mal(s(s �))

where BEN := µM(∀D(∃D(M))).

3no friendly fire
4Damage is insufficient!
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Medware

Definition (Medware)

A software system s is medware by definition if and only if s
damages no benware (safety) and s repairs benware (effectiveness).
Formally,

med(s) :iff s |= ¬∃D(BEN) ∧ ∃R(BEN).
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Tasks, Tools, and Techniques for fighting Malware

Task Tool Technique

detection satisfaction relation |= Model Checking

comparison
language & bisimulation

equivalence
Equivalence Checking

classification characteristic formulas MC, EC
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Malware Comparison (declarative)

Definition (Language equivalence)

For all s1, s2 ∈ S,
� s1 �Φ s2 :iff for all φ ∈ Φ, if s1 |= φ then s2 |= φ

� s1 ≡Φ s2 :iff s1 �Φ s2 and s2 �Φ s1.
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Malware Comparison (operational)

Definition (Bisimulation equivalence)

� For all s1, s2 ∈ S,
� s1 � s2 :iff for all s �1 ∈ S,

1. if s1 damages◦ s �1 then there is s �2 ∈ S s.t. s2 damages◦ s �2
2. if s1 repairs◦ s �1 then there is s �2 ∈ S s.t. s2 repairs◦ s �2.

� For all S ⊆ S × S,

O�(S) := { (s1, s2) | (s1, s2) ∈ S and s1 � s2 and s2 � s1 }.

� ≈ := the greatest fixpoint of (monotonic) O�

=
�
{ S | S ⊆ O�(S) }, by Knaster-Tarski
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Malware Classification

Definition (Characteristic formula)

Let S ⊆ S, s ∈ S , D(S , s) := { s � | s � ∈ S and s damages◦ s � },
R(S , s) := { s � | s � ∈ S and s repairs◦ s � }, and Ms ∈ M. Then,
the characteristic formula χ(s, S) of the software system s w.r.t.
S is the solution of the equation system

Ms
ν
= ∀D(

�
s�∈D(S ,s)Ms�) ∧ ∀R(

�
s�∈R(S ,s)Ms�) ∧

[
�

s�∈D(S ,s) ∃D(Ms�)] ∧ [
�

s�∈R(S ,s) ∃R(Ms�)],

(where
�

∅ := ⊥ and
�
∅ := �) obtained [BS07] by translating

each equation M i ν
= ψi (S) into a formula νM i (ψi (S)) and

recursively substituting these formulae for the corresponding free
variables in the first formula νMs(ψs(S)).
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Characterisation result

Theorem

For all s, s � ∈ S,

s ≡Φ s � iff s ≈ s � iff s |= χ(s �,S).
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Assessment

Our approach:

1. malware-versus-benware arms race confined to formal systems
engineering

2. malware detection � automated systems verification

3. system security � system correctness

4. generic (predicate correct is a plug-in)

5. hacker-safe:

no recipe for malware construction derivable
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Related work

About viruses only, not hacker-safe (constructive):

1. Adleman: Gödel-numberings [Adl88]

2. Cohen: Turing-machines [Coh87]

3. Bonfante et al.: Kleene Recursion Theorem [BKM06]
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Future work

Refinements:

� add time (temporal modalities): malware evolution

� add measure: degrees of damage, malware cost
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