
Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

A General Definition of Malware

(Talk at Nanyang Technological University)

Simon Kramer
(j.w.w. Julian C. Bradfield, U Edinburgh)

University of Tsukuba, Japan

January 15, 2010

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Malware example and impact

Conficker worm detected in November 2008—still active—can
cause a computer under the Windows operating system to become
a component of a remote-controlled botnet against the user’s
will—on an infected computer, it causes a buffer overflow in which
harmful excess code is executed by the operating system—the
excess code downloads more code that hijacks the server services
of the operating system, in order to update and spread the worm
via the network—variant code inhibits also the security services of
the operating system and connections to anti-malware
websites. . . affected European military systems. . .

Worldwide malware-induced damage in 2006 $13.3 · 109
[Computer Economics Inc., 2007]

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Outline
Introduction

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Malware Logic
Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Conclusion
Assessment
Related work
Future work

Selected Bibliography

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Motivation, Goal, and Methodology

Motivation An open problem [FHZ06]: find a general definition
of malware (= malicious software), e.g., botnets,
rootkits, Trojan horses, viruses, worms, etc.

Goal Obtain a formal solution to the problem.

Methodology Formulation of the solution as a single sentence in
a computational modal fixpoint logic.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Malware as harmful software

What is malware?
� Informally,

malware = malicious software
� Malicious intention is not generally directly observable!
� How to distinguish unawareness (juvenile hacking, accidental

anti-hacking) from malice?
� Users don’t care: all that matters is (harmful) effect, not

(malicious) intention.
� Malice is immaterial!
� psychological “definition”

� Intuitively,

malware = harmful software
� Harmful effect is observable!
� scientific definition

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Harm as incorrectness

� doing harm = causing that

actual behaviour �= intended behaviour

� actuality − intention = incorrectness

� defining principle for malware:

causation of incorrectness

� harmful attack = falsification of a necessary condition for
correctness

� formal systems engineering
� correctness intention must be specified
� we don’t care how:

correct(s)

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Example: Sorting

� Given: a program s for sorting an array A of l integers

� Sought: a correctness definition for s

� Pre := A : Arrayl∈N(Z)
� Post := ∀(1 ≤ i ≤ l)∀(1 ≤ j ≤ l)(i ≤ j → A[i] ≤ A[j])

� correct(s) :iff �Hoare Pre {s}Post

� Variations: add necessary conditions (e.g., exact algorithmic
complexity), stipulate proof-carrying code, etc.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Prerequisites

Theorem (Knaster-Tarski fixpoint theorem)

Let �L,≤� designate a complete lattice1 and f : L → L a
monotonic map2 on L. Then,

g :=
�

{ a | a ∈ L and a ≤ f (a) }

is the greatest fixpoint of f , and, dually,

l :=
�

{ a | a ∈ L and f (a) ≤ a }

is the least fixpoint of f .

1� S (lub) and
�

S (glb) exist for arbitrary S ⊆ L
2for all a, b ∈ L, if a ≤ b then f (a) ≤ f (b)

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Preliminaries

Definition (Damaging software)

A software system s damages a correct software system s � by
definition if and only if s (directly or indirectly) causes
incorrectness to s �. Formally,

s damages s � :iff correct(s �) and not correct(s(s �)) directly
s damages0 s � :iff s damages s �

s damagesn+1 s � :iff there is s �� s.t. not s �� damages◦ s �

and s(s ��) damagesn s �
indirectly

s damages◦ s � :iff
�

n∈N s damagesn s �.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Preliminaries

Definition (Repairing software)

A software system s repairs an incorrect software system s � by
definition if and only if s (directly or indirectly) causes correctness
to s �. Formally,

s repairs s � :iff not correct(s �) and correct(s(s �)) directly
s repairs0 s � :iff s repairs s �

s repairsn+1 s � :iff there is s �� s.t. not s �� repairs◦ s �

and s(s ��) repairsn s �
indirectly

s repairs◦ s � :iff
�

n∈N s repairsn s �.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Logic

Definition (MalLog)

Let M designate a countable set of propositional variables M, and

Φ � φ ::= M
�� ¬φ

�� φ ∧ φ
�� ∀D(φ)

�� ∀R(φ)
�� νM(φ)

the language Φ of MalLog where all free occurrences of M in φ of
νM(φ) are assumed to occur within an even number of
occurrences of ¬ to guarantee the existence of (greatest) fixpoints
(expressed by νM(φ)) [BS07].

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Logic (continued)

Then, given the (or only some sub-) class S of software systems
(not just pieces of software) s and an interpretation �·� : M → 2S

of propositional variables, the interpretation � · ��·� : Φ → 2S of
MalLog-propositions is:

�M��·� := �M�
�¬φ��·� := S \ �φ��·�

�φ ∧ φ���·� := �φ��·� ∩ �φ���·�
�∀D(φ)��·� := { s | for all s �, if s damages◦ s � then s � ∈ �φ��·� }
�∀R(φ)��·� := { s | for all s �, if s repairs◦ s � then s � ∈ �φ��·� }

�νM(φ)��·� :=
�

{ S | S ⊆ �φ��·�[M �→S]
}

where �·�[M �→S] maps M to S and otherwise agrees with �·�.
Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Logic (continued)

Further, φ ∨ φ� := ¬(¬φ ∧ ¬φ�), � := φ ∨ ¬φ, ⊥ := ¬�,
φ → φ� := ¬φ ∨ φ�, φ ↔ φ� := (φ → φ�) ∧ (φ� → φ), and

∃D(φ) := ¬∀D(¬φ)
∃R(φ) := ¬∀R(¬φ)

µM(φ(M)) := ¬νM(¬φ(¬M)).

Finally,

� for all φ ∈ Φ and s ∈ S, s |= φ :iff s ∈ �φ��·�
� |= φ :iff for all s ∈ S, s |= φ
� for all φ,φ� ∈ Φ,

� φ ⇒ φ� :iff for all s ∈ S, if s |= φ then s |= φ�

� φ ⇔ φ� :iff φ ⇒ φ� and φ� ⇒ φ.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Basic properties of MalLog

Fact

1. |= φ → φ� iff φ ⇒ φ�

(By expansion of the definitions.)

2. |= φ ↔ φ� iff φ ⇔ φ�

3. MalLog is a member of the family of µ-calculi over the modal
system K2, which is characterised by the validities of
propositional logic and the modal laws
|= �(φ → φ�) → (�φ → �φ�) and “if |= φ then |= �φ”,
where � ∈ {∀D,∀R}.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Basic properties of MalLog (continued)

Corollary

1. If damages◦ and repairs◦ are decidable on a given software
systems domain then the satisfiability problem for MalLog,
i.e., “Given φ ∈ Φ, is there s ∈ S s.t. s |= φ?”, (and thus also
the model-checking problem, i.e., “Given φ ∈ Φ and s ∈ S, is
it the case that s |= φ?”) is decidable.

2. MalLog is axiomatisable by the following Hilbert-style
proof-system:
2.1 the axioms/rules of the modal system K for each ∀D and ∀R
2.2 the axiom φ(µM(φ(M))) → µM(φ(M))

2.3 the rule
φ(φ�) → φ�

µM(φ(M)) → φ� .

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Defining malware

Definition (Malware)

A software system s is malware by definition if and only if s
damages non-damaging software systems (the civil population so
to say) or software systems that damage malware (the anti-terror
force so to say). Formally,

mal(s) :iff s |= νM(∃D(∀D(M))).

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

An iterative paraphrase

� Everything is malware (better be safe than sorry)

� except for (throw out what is clearly safe) the following
systems:

0. non-damaging systems (CP)
1. systems that damage only systems that damage CP

(ATF1)
2. systems that damage only systems that damage ATF1

(ATF2)
3. systems that damage only systems that damage ATF2

(ATF3)
4. etc.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Deriving benware

Definition (Benware)

A software system s is benware by definition if and only if s is
non-damaging or damages only software systems that damage
benware. Formally,

ben(s) :iff s |= µM(∀D(∃D(M))).

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

An iterative paraphrase

� Nothing is benware (again, better be safe than sorry)

� except for (throw in what is clearly safe) the following
systems:

0. non-damaging systems (CP)
1. systems that damage only systems that damage CP

(ATF1)
2. systems that damage only systems that damage ATF1

(ATF2)
3. systems that damage only systems that damage ATF2

(ATF3)
4. etc.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

The Malware-versus-Benware arms race

Fact

ben(s) if and only if not mal(s)

Benware

Malware

ATF3

MW2

ATF2

MW1

ATF1

MW0

CP

MW3

Good&Bad distinction induced by the existence of a
population that is (perceived as) non-damaging

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Anti-malware

Definition (Anti-malware)

A software system s is anti-malware by definition if and only if s
damages no benware (safety)3 and s neutralises4 malware
(effectiveness). Formally,

antimal(s) :iff s |= ¬∃D(BEN) and
there is s � s.t. mal(s �) and not mal(s(s �))

where BEN := µM(∀D(∃D(M))).

3no friendly fire
4Damage is insufficient!

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Medware

Definition (Medware)

A software system s is medware by definition if and only if s
damages no benware (safety) and s repairs benware (effectiveness).
Formally,

med(s) :iff s |= ¬∃D(BEN) ∧ ∃R(BEN).

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Tasks, Tools, and Techniques for fighting Malware

Task Tool Technique

detection satisfaction relation |= Model Checking

comparison
language & bisimulation

equivalence
Equivalence Checking

classification characteristic formulas MC, EC

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Comparison (declarative)

Definition (Language equivalence)

For all s1, s2 ∈ S,
� s1 �Φ s2 :iff for all φ ∈ Φ, if s1 |= φ then s2 |= φ

� s1 ≡Φ s2 :iff s1 �Φ s2 and s2 �Φ s1.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Comparison (operational)

Definition (Bisimulation equivalence)

� For all s1, s2 ∈ S,
� s1 � s2 :iff for all s �1 ∈ S,

1. if s1 damages◦ s �1 then there is s �2 ∈ S s.t. s2 damages◦ s �2
2. if s1 repairs◦ s �1 then there is s �2 ∈ S s.t. s2 repairs◦ s �2.

� For all S ⊆ S × S,

O�(S) := { (s1, s2) | (s1, s2) ∈ S and s1 � s2 and s2 � s1 }.

� ≈ := the greatest fixpoint of (monotonic) O�

=
�
{ S | S ⊆ O�(S) }, by Knaster-Tarski

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Classification

Definition (Characteristic formula)

Let S ⊆ S, s ∈ S , D(S , s) := { s � | s � ∈ S and s damages◦ s � },
R(S , s) := { s � | s � ∈ S and s repairs◦ s � }, and Ms ∈ M. Then,
the characteristic formula χ(s, S) of the software system s w.r.t.
S is the solution of the equation system

Ms
ν
= ∀D(

�
s�∈D(S ,s)Ms�) ∧ ∀R(

�
s�∈R(S ,s)Ms�) ∧

[
�

s�∈D(S ,s) ∃D(Ms�)] ∧ [
�

s�∈R(S ,s) ∃R(Ms�)],

(where
�

∅ := ⊥ and
�
∅ := �) obtained [BS07] by translating

each equation M i ν
= ψi (S) into a formula νM i (ψi (S)) and

recursively substituting these formulae for the corresponding free
variables in the first formula νMs(ψs(S)).

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries
Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Characterisation result

Theorem

For all s, s � ∈ S,

s ≡Φ s � iff s ≈ s � iff s |= χ(s �,S).

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Assessment
Related work
Future work

Assessment

Our approach:

1. malware-versus-benware arms race confined to formal systems
engineering

2. malware detection � automated systems verification

3. system security � system correctness

4. generic (predicate correct is a plug-in)

5. hacker-safe:

no recipe for malware construction derivable

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Assessment
Related work
Future work

Related work

About viruses only, not hacker-safe (constructive):

1. Adleman: Gödel-numberings [Adl88]

2. Cohen: Turing-machines [Coh87]

3. Bonfante et al.: Kleene Recursion Theorem [BKM06]

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Assessment
Related work
Future work

Future work

Refinements:

� add time (temporal modalities): malware evolution

� add measure: degrees of damage, malware cost

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Bibliography

F. Cohen.
Computer viruses: Theory and experiments.
Journal of Computers & Security, 6, 1987.

L. Adleman.
An abstract theory of computer viruses.
In Proceedings of CRYPTO’88, volume 403 of LNCS, 1988.

G. Bonfante, M. Kaczmarek, and J.-Y. Marion.
On abstract computer virology from a recursion theoretic
perspective.
Journal in Computer Virology, 1(3–4), 2006.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Bibliography

E. Filiol, M. Helenius, and S. Zanero.
Open problems in computer virology.
Journal in Computer Virology, 1(3–4), 2006.

S. Kramer and J.C. Bradfield.
A general definition of malware.
Journal in Computer Virology, Online First, 2009.
http://dx.doi.org/10.1007/s11416-009-0137-1

J.C. Bradfield and C. Stirling.
Handbook of Modal Logic, volume 3 of Studies in Logic and
Practical Reasoning, chapter Modal Mu-Calculi.
Elsevier, 2007.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

��

���������

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline
Introduction

Malware Logic
Conclusion

Selected Bibliography

Contact

Email:
simon.kramer@a3.epfl.ch

Homepage:
http://www.cipher.risk.tsukuba.ac.jp/~kramer/

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

