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Preliminaries on stream ciphers and Boolean
functions
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Synchronous stream ciphers :
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Every PRG consists in a linear part (for efficiency) and a nonlinear

part (for robustness).

Boolean functions f : Fn
2 → F2 are often used in the nonlinear

part.

There exist two theoretical models for their use in the pseudo-

random generators (PRG) of Synchronous stream ciphers.

Both use Linear Feedback Shift Registers in the linear part :
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Combiner model :
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Filter model
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In both models, f must be balanced to avoid distinguishing attacks.

Two representations of Boolean functions :

• The Algebraic Normal Form (ANF) :

f(x1, · · · , xn) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
, aI ∈ F2.

The ANF exists and is unique.

The algebraic degree is the degree of the ANF.

It must be large because of Berlekamp-Massey and Rønjom-Helleseth

attacks.
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Affine functions : sums of linear and constant, that is : deg ≤ 1.

Notation : a1 x1 + · · ·+ an xn = a · x ; a ∈ Fn
2 .

• The univariate representation (the trace representation) :

- The vector space Fn
2 is endowed with the structure of the field F2n.

Any function f : F2n 7→ F2n admits the unique representation :

f(x) =
2n−1∑
j=0

aj xj; aj, x ∈ F2n.

- f is Boolean if and only if :

a0, a2n−1 ∈ F2 and a2j = (aj)2,∀j ∈ Z/(2n − 1)Z.
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Hence :

f(x) = tr(P (x)), where tr(x) = x + x2 + x22
+ · · ·+ x2n−1

.

Then the algebraic degree equals : max{w2(j); j s.t. aj 6= 0},
where w2(j) is the Hamming weight of the binary expansion of j.

Affine functions tr(ax) + ε, a ∈ Fn
2 , ε ∈ F2.

The Walsh transform of a Boolean function :

f̂(a) =
∑
x∈Fn

2

(−1)f(x)+a·x or
∑

x∈F2n

(−1)f(x)+tr(ax).
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The Hamming distance between two functions :

dH(f, g) = wH(f + g) = |{x ∈ Fn
2 / f(x) 6= g(x)}.

The nonlinearity of a Boolean function f is the minimum Hamming

distance from f to affine functions and equals :

nl(f) = 2n−1 − 1
2

max
a∈Fn

2

|̂f(a)|.

The nonlinearity nl is upper bounded by 2n−1 − 2n/2−1 (covering

radius bound). This maximum is achieved by bent functions.
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The nonlinearity nl must be large to prevent the system from the

Meier-Staffelbach fast correlation attack and its variants.

Balancedness, high algebraic degree and large nonlinearity was

considered as roughly sufficient for the filter model of pseudo-random

generator before the introduction of algebraic attacks.

An additional criterion in the case of the combiner model : to resist

the Siegenthaler correlation attack, the function should be resilient

of a high order.
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Algebraic attacks on stream ciphers and algebraic
immunity

Algebraic attacks : Principle (Shannon) :

-Find equations with the key bits as unknowns

-Solve the system of these equations.

For stream ciphers (combiner model and filter model) :

- denote by (s0, . . . , sN−1) the initial state of the linear part of the

pseudo-random generator ;

- there exists a linear automorphism L and a linear mapping L′ s.t.

si = f(L′ ◦ Li(s0, . . . , sN−1)).
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Problem of the general algebraic attack :

Highly non-linear equations with many unknowns.

But with stream ciphers we can have many equations →

over-defined system.

One can then linearize the system (or use Gröbner bases).

However the number of unknowns is then much too large.
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Courtois-Meier : If one can find g 6= 0 and h of low degrees such

that fg = h, then the equation si = f(L′ ◦Li(s0, . . . , sN−1)) implies

the low degree equation :

si g(L′ ◦ Li(s0, . . . , sN−1)) = h(L′ ◦ Li(s0, . . . , sN−1))

and the degree of the nonlinear system and the number of unknowns

in the related linear system decrease.

Algebraic immunity :

A necessary and sufficient condition for existence of low degree g 6= 0
and h such that fg = h (Meier-Pasalic-C.C.) :

there exists g 6= 0 of low degree such that fg = 0 or (f + 1)g = 0.
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Definition : a function g such that fg = 0 is called an annihilator.
The algebraic immunity AI(f) is the minimum degree of the nonzero

annihilators of f and of those of f + 1.

We have : AI(f) ≤ deg(f) and AI(f) ≤
⌈

n
2

⌉
.

In practical situation, AI(f) must be greater than or equal to 7.

Hence we need n ≥ 13 and in fact n ≈ 20.

A variant by Courtois of algebraic attacks, called ”fast algebraic

attack” needs the existence of g 6= 0 and h such that fg = h, where

only g has low degree and h has reasonable degree.

It needs more data.
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The known Boolean functions with optimal
algebraic immununity

Until recently, two classes existed :

- The majority function defined (for every n) by :

f(x) = 1 iff wH(x) ≥ n/2.

and its generalizations by Dalai et al., Bracken, C.C... ;

- An iterative construction (Dalai-Gupta-Maitra), n even.

In both cases, the functions have high degree but insufficient

nonlinearity and bad resistance to Fast Algebraic Attacks (Dalai,

Gupta, Maitra, Armknecht, C.C., Gaborit, Meier, Ruatta...).

16



A recently found infinite class of balanced functions with
optimal algebraic immunity :

Definition

Let n ≥ 2 and α a primitive element of the field F2n.

We denote by f the Boolean function on F2n whose support is

{0, 1, α, · · · , α2n−1−2}.

Theorem (Feng, Liao, Yang - C.C., Feng)

The function f defined above has optimal algebraic immunity

dn/2e.
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Proof (sketch) :

Let g(x) =
∑2n−1

j=0 aj xj be a non-zero annihilator of f + 1.

g is a codeword of a Reed-Solomon code of designed distance 2n−1+1.

Hence |{j / aj 6= 0}| ≥ 2n−1 + 1 and deg(g) ≥ dn
2e.
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Algebraic degree (C.C., Feng) : f has degree n− 1 (optimal).

Nonlinearity (C.C., Feng) :

nl(f)>2n−1 − 2
n
2+1

π
ln
(

4(2n − 1)
π

)
− 1 ∼ 2n−1 − ln 2

π
n 2

n
2+1.

Exact values of the nonlinearity for f :

n 6 7 8 9 10 11

Best nl known before 22 48 98 196 400 798
The exact values of nl 24 54 112 232 478 980

upper bound 2n−1 − 2n/2−1 28 58 120 244 496 1001
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Immunity of f against fast algebraic attacks

• deg(g) = 1 : for n ≤ 12, no functions g and h exist such that

f g = h and deg(h) < n− 1 if n odd and deg(h) < n− 2 if n even.

• deg(g) > 1 : for n ≤ 9, no function such that f g = h,

deg(g) ≤ n/2 and deg(g) + deg(h) < n− 1 exist.

- The instance with n = 9 turns out to be optimal : no function

such that f g = h, deg(g) ≤ n/2 and deg(g) + deg(h) < n exist.

This is the first time where a function with optimal immunity against

FAA’s can be observed.

- The problem of proving the good behavior of f against FAA for

every n is open.

20



The problem of computing the output to the function (with

help of G. Hanrot and J. Detrey) :

The complexity of computing f(x) is same as for the discrete log.

But n is “small”.

The complexity is lower when n is even.

We can then use the Pohlig-Hellman method, with tables for the

discrete log for the sizes 2n/2 − 1 and 2n/2 + 1.

The time for computation will be very reasonable (1 bit per cycle)

but this will need about 200,000 transistors for n = 20.
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It is possible to reduce the number of transistors by cutting in

three pieces instead of two :

218 − 1 = 27 ∗ 73 ∗ 133 ; 220 − 1 = 41 ∗ 93 ∗ 275.

This reduces the number of transistors to 40,000 for n = 20.
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Recent developments

Definition (Z. Tu and Y. Deng - IACR ePrint archive)

(x, y) ∈ F2n × F2n; f#(x, y) = f(xy2n−2) = f

(
x

y

)
, with

x

0
= 0.

Theorem (Z. Tu and Y. Deng) up to a conjecture

The function f# has optimal algebraic immunity n.
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Proof (sketch) :

Let h(x, y) =
∑2n−1

i=0

∑2n−1
j=0 ai,j xiyj be a non-zero annihilator of

f# + 1 with max{w2(i) + w2(j); ai,j 6= 0} ≤ n− 1.

We have h(γ y, y) = 0 for every y ∈ F∗2n and every γ ∈
{α2n−1−1, · · · , α2n−2}.

For every y ∈ F∗2n, h(γ y, y) equals :

2n−1∑
i=0

2n−1∑
j=0

ai,j γiyi+j =
2n−2∑
t=0

2n−2∑
i=0

ai,t−i γi

 yt,

where t− i is taken modulo 2n − 1.
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Hence
∑2n−2

i=0 ai,t−i γi = 0 for every t.

The BCH bound implies then, for every t, that :

- either ai,t−i = 0 for every i,

- or card {i / ai,t−i 6= 0} ≥ 2n−1 + 1.

Conjecture (checked by Z. Tu and Y. Deng til n = 29) :

∀n ≥ 1,∀t ∈ Z/(2n − 1)Z :

card {i ∈ Z/(2n − 1)Z |w2(i) + w2(t− i) ≤ n− 1} ≤ 2n−1.
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Nonlinearity :

nl(f#) = 22n−1 − 2n−1

(f# has best possible nonlinearity ; it is bent).

But this function has (low) degree n and it is not balanced.

A balanced version of f :

f#′
(x, y) =

{
f
(

x
y

)
if y 6= 0

f(x) if y = 0
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This function has optimal algebraic immunity as well and is

balanced. Its degree equals 2n − 1 and nl(f#′) ≥ 22n−1 − 2n−1 −
n 2n/2 ln 2− 1.

But (C.C. ePrint Archive) f#′
differs from f# only when x = 0.

Hence for every linear Boolean function ` over F2n, the function :

`(x)f#′
(x, y) = `(x)f#(x, y)

has algebraic degree at most n + 1.

This is almost the worst case for the resistance to FAA of a 2n-variable

function of algebraic immunity n.
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Trying to repair :

Let f#′′(x, y) = f(x/y) + 1E(x, y) where

E = {(0, u∅)} ∪
{
(αiui, ui); i ∈ {2n−1, · · · , 2n − 2}

}
; ui ∈ F∗2n

where < e + E >= F2
2n, for every vector e.

- f#′′(x, y) is balanced.

- It has also optimal AI :

let h(x, y) =
∑2n−2

i=0

∑2n−2
j=0 ai,j xiyj be a non-zero annihilator of

f#′′ + 1 with max{w2(i) + w2(j); ai,j 6= 0} ≤ n− 1.
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For every y ∈ F∗2n, we have h(0, y) = 0 except maybe for y = u∅
and h(γ y, y) = 0,∀γ = αi, i ∈ {2n−1, · · · , 2n − 2}, except maybe

for y = ui. The rest of the proof is similar as for f#′
.

The nonlinearity of f#′′
satisfies nl(f#′′) ≥ 22n−1 − 2n.

Computer investigations show that f#′′
can have an optimal

algebraic degree 2n − 1 and behave well against FAA. But this last

fact seems true only for small values of n, unfortunately.
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Conclusion

There exists only one infinite class of functions which potentially

satisfies all the necessary criteria for being used as a filter function.

But proving its good behavior is a twofold open problem.

Finding such proof or discovering new classes provably satisfying

all the necessary criteria is vital for the future of the filter model.
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Announcement : Next SETA conference

Sequences and Their Applications

will be held in Paris in September 13-17, 2010.

General chair : Patrick Solé

PC co-chairs : A. Pott ; C. Carlet
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First papers by :

Harald Niederreiter, Charles J. Colbourn, Joan Daemen, Vincent

Rijmen, Andrew Klapper, Thomas Johansson, Wilfried Meidl...

Numbers of submissions :

- 2008 : 12

- 2009 : 51 (including a special issue)

- 2010 : 27 (up to now).

Success rate : 30%
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