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LIP – CNRS/ENSL/INRIA/UCBL/U. Lyon

Singapore, June 2010
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Plan

1- Background on Euclidean lattices.

2- The SIS problem, or how to hash.

3- The LWE problem, or how to encrypt.

4- Cryptanalysis.

5- Advanced topics: IBE and FHE.
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The LWE problem

a- Non structured LWE.

b- Structured LWE.

c- Encrypting with LWE.
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LWEα,q [Regev’05]
Let s ∈ Z

n
q. Let Σs,α be the distribution corresponding to:

(a; 〈a, s〉 + e [q]) , with a ←֓ U(Zn
q), e ←֓ ναq (small Gaussian).

The Learning With Errors Problem — Comp-LWEα

Let s ∈ Z
n
q. Given arbitrarily many samples from Σs,α, find s.

s eA
+

n

arb.

uniform uniform small

Many interpretations:

Learning problem, like LPN (over Z2).

Approximate linear algebra.

Closest codeword problem.

Lattice problem . . .
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LWE as a one-way function

OWF: easy to evaluate and hard to invert.

LWE’s OWF: s ∈ Z
n
q 7→ As + e [q].

A one-way function with trapdoor.

Generate A together with TA.

TA · (As + e) = TA · e [q].

Both TA and e are small ⇒ we know TA · e over Z.
We recover e and then s by linear algebra.

Sufficient condition:

q

2
>

√
nαq · max ‖ti‖ ⇐ n1.5α = õ(1).
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LWE as a lattice problem

Comp-LWEα

Let s ∈ Z
n
q. Given (A; As + e [q]) with A ←֓ U(Zm×n

q ) and
e ←֓ νm

αq for arbitrary m, find s.

Let LA = {b ∈ Z
m : ∃x ∈ Z

n
q, b = Ax [q]}.

LA is an m-dimensional lattice and L̂A = 1
q
A⊥.

BDDα,q (bounded distance decoding):
Take A ←֓ U(Zm×n

q ), e ←֓ νm
αq and b ∈ LA arbitrary. Given A

and b + e, find b.

If we can solve LWE, then we can solve BDD.
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How hard is LWE?

Quantum worst-case to average-case reduction (γ ≈ n/α)

Any efficient LWE algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVP algorithm.

Efficient quantum computers make LWE more secure!

[Peikert’09] de-quantumized the reduction, for large q.

[SSTX’09]: simpler (but weaker) quantum reduction.
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How hard is BDDα,q? Rough intuition.

L −→ L̂

Fourier transform

The Fourier transform of the distribution is implemented with
the quantum Fourier transform.

The input quantum state is built with the LWE oracle.

The measurement gives a small SIS solution.
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Decisional LWE

Σs,α : (a; 〈a, s〉 + e [q]) with a ←֓ U(Zn
q), e ←֓ ναq.

Comp-LWEα

Let s ∈ Z
n
q. Given arbitrarily many samples from Σs,α, find s.

Dec-LWEα

Let s ←֓ U(Zn
q). Distinguish between (arbitrarily many) samples

from Σs,α or from U(Z2
q).

Dec-LWE and Comp-LWE efficiently reduce to each other.
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The LWE problem

a- Non structured LWE.

b- Structured LWE.

c- Encrypting with LWE.
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Ideal LWE
Let Rq = Zq[x ]/(xn + 1) with n = 2k and q prime.

Let Ψ≤αq be the set of ellipsoidal Gaussians (νri )i in R
n,

where each component has standard deviation ri ≤ αq.

For ψ ∈ Ψ≤αq and s ∈ Rq, we define:
ΣId

s,ψ : (a; as + e [q]) with a ←֓ U(Rq), e ←֓ ψ.

Comp-Id-LWEα

Let s ∈ Rq and ψ ∈ Ψ≤αq. Given arbitrarily many samples from
ΣId

s,ψ, find s.

One sample from ΣId encodes n samples from Σ.

But it costs about the same as 1 sample from Σ:
We use Rq to multiply vectors, with FFT!

Same matrix interpretation, but with negacylic blocks.
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Ideal LWE is hard

ΣId
s,ψ : (a; as + e [q]) with a ←֓ U(Rq), e ←֓ ψ.

Comp-Id-LWEα

Let s ∈ Rq and ψ ∈ Ψ≤αq. Given arbitrarily many samples from
ΣId

s,ψ, find s.

Any efficient Id-LWE algo. succeeding with non-negligible
probability leads to an efficient quantum Id-SIVP algo.
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A faster trapdoor one-way function

Evaluation cost: Õ(n2) ⇒ Õ(n) bit operations.

For the inversion, use the structured TA from Id-SIS.

TA · (As + e) = TAe over the integers.
Multiply by T−1

A to recover e, and then s.

Evaluation/inversion cost: Õ(n2) ⇒ Õ(n) bit operations.
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Decisional Ideal LWE

ΣId
s,ψ : (a; as + e [q]) with a ←֓ U(Rq), e ←֓ ψ.

Comp-Id-LWEα

Let s ∈ Rq and ψ ∈ Ψ≤αq. Given arbitrarily many samples from
ΣId

s,ψ, find s.

Dec-Id-LWEα

Let s ←֓ U(Rq) and ψ ∈ Ψ≤αq, choosing the st. devs. from an
exponential variate. Distinguish between (arbitrarily many)
samples from ΣId

s,ψ or from U(R2
q).

If xn + 1 has n factors modulo q, then Dec-Id-LWE and
Comp-Id-LWE efficiently reduce to each other.
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The LWE problem

a- Non structured LWE.

b- Structured LWE.

c- Encrypting with LWE.
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Encrypting with LWE

s e

e′ + ⌊q
2⌋ · M

A

A′

+

Public key: A ∈ Z
m×n
q , A′ ∈ Z

n×n
q ; secret key: TA.

Encryption: compute [As + e; A′s + e′ + ⌊q
2⌋ · M].

Decryption: recover s from the first part of the ciphertext,
using TA; compute A′s to obtain e′ + ⌊q

2⌋M; round to the
closest multiple of ⌊q

2⌋ to recover M.

Any semantic attack leads to an algorithm for Dec-LWE.
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Encrypting with Id-LWE

We could do the same . . . but there is much better.

ΣId
s,ψ : (a; as + e [q]) with a ←֓ U(Rq), e ←֓ ψ.

Let s ←֓ U(Rq) and ψ “small”. Distinguishing between samples
from ΣId

s,ψ or from U(R2
q) is computationally infeasible.

Simplification: We can also take s small.
The transformation (ai , bi ) →֒ (ai , bi − a−1

1 b1) maps:

U(R2
q) to U(R2

q) and ΣId
U(Rq),ψ

to ΣId
ψ,ψ.
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Encrypting with Id-LWE

ΣId
s,ψ : (a; as + e [q]) with a ←֓ U(Rq), e ←֓ ψ.

Let s and ψ “small”. Distinguishing between samples from ΣId
s,ψ or

from U(R2
q) is computationally infeasible.

Secret key: s (small); Public key: a1, a2 = a1s + e.

Encryption: (c1, c2) = (a1t + e1, a2t + e2 + ⌊q
2⌋M),

with t random and small.

Decryption: c2 − c1s is “small +⌊q
2⌋M”.

CPA-secure assuming the hardness of Dec-Id-LWE.

Key-sizes are quasi-optimal.

Complexity and ciphertext expansion are quasi-optimal.
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This is ElGamal!!!

Secret key: s (small); Public key: a1, a2 = a1s + e.

Encryption: (c1, c2) = (a1t + e1, a2t + e2 + ⌊q
2⌋M),

with t random and small.

Decryption: c2 − c1s is “small +⌊q
2⌋M”.

Secret key: s; Public key: g1, g2 = g s
1 .

Encryption: (c1, c2) = (g t
1 , g t

2M), with t random.

Decryption: c2/cs
1 is M.
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Plan

1- Background on Euclidean lattices.

2- The SIS problem, or how to hash.

3- The LWE problem, or how to encrypt.

4- Cryptanalysis.

5- Advanced topics: IBE and FHE.
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Attacking SIS/Id-SIS/LWE/Id-LWE

The only known attack consists in finding a small vector/basis
of the lattice A⊥ = {s ∈ Z

mn : sA = 0 [q]}.
Generalized birthday attack: may be feasible if m is large.
Its cost is easily determined [MR’09].

Lattice reduction: may be applied to a subset of the rows
(trade-off between approximation factor and existence of short
vectors).

But... although quite old (Lagrange, Gauss, Hermite, Minkowski,
etc)... lattice reduction is not so well understood.
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Lattice reduction

Principle: start from an arbitrary basis of the lattice,
and progressively improve it.

Quality of a basis: measured by the Gram-Schmidt Orth.

b1

b2

b∗
2

b3

b∗
3

b∗
i = argmin‖bi +

∑
j<i Rbj‖

Quality measure: (‖b∗
i ‖)i=1..n.

Why?

The slower the ‖b∗
i ‖’s decrease, the

more orthogonal.

Their product is constant.

If they decrease slowly,
then b1 must be small.
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LLL

Size-reduction: |〈bi ,b
∗
j 〉| ≤ ‖b∗

j ‖2/2, for all j < i .

Ensures that max ‖bi‖ ≤ √
n · max ‖b∗

i ‖.

Lenstra-Lenstra-Lovász reduction

A basis (bi )i is LLL-reduced if it is size-reduced
and ‖b∗

i+1‖ ≥ ‖b∗
i ‖/2 for all i (Lovász’ condition).

LLL algorithm: size-reduce; if any, take an i violating Lovász’
condition, swap vectors i and i + 1, and restart (else, stop).

The LLL algorithm runs in polynomial time, and the first output
vector satisfies ‖b1‖ ≤ 2n · λ(L).
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HKZ

Hermite-Korkine-Zolotarev reduction

A basis (bi )i is HKZ-reduced if it is size-reduced, if ‖b1‖ = λ(L)
and if after projection orthogonally to b1,
the basis (bi )i>1 is HKZ-reduced.

HKZ-reduction is polynomial-time equivalent to solving SVP.
Best algorithms:

Kannan: deterministic, polynomial space, time nO(n).

Ajtai et al: probabilistic, time and space 2O(n).

Micciancio-Voulgaris: deterministic, time and space 2O(n).
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BKZ: a trade-off between LLL and HKZ

LLL HKZ

log ‖b∗

i ‖log ‖b∗

i ‖

ii

LLL HKZ
too weak too costly

log ‖b∗

i ‖log ‖b∗

i ‖

ii

LLL HKZ
too weak too costly

log ‖b∗

i ‖log ‖b∗

i ‖
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Schnorr’s hierarchy

Lattice reduction rule of the thumb

For block-size k , reduction algorithms can achieve
‖b1‖ ≈ nO(n/k) · λ1 in time Poly(n) · 2O(k).

For SIS, this gives the hardness condition mO(m/k) ≫ β.

Seems satisfied by BKZ for small block-sizes.

But the cost unexpectedly blows up with block-size ≈ 30.

Warnings

The runtime of BKZ is not Poly(n) · 2O(k).

BKZ is the only available variant of Schnorr’s hierarchy.
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Solving SVP in practice

Practical boundaries for solving SVP are still being improved.

The Kannan-Fincke-Pohst enumeration is currently the most
practical algorithm.

Tree pruning, parallelisation, hardware implementation, ...

In 2005, dimension 50?

In 2007, dimension 70.

In 2009, dimension 80.

Now (Gama et al.’10), dimensions 110-120!
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1- Background on Euclidean lattices.
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3- The LWE problem, or how to encrypt.
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Advanced topics

a- Identity-based encryption.

b- Fully homomorphic encryption.
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(H)IBE

Identity-based encryption: encryption infrastructure in which
a user’s public key is uniquely determined by its identity;
the user’s private key is computed by a trusted authority,
using a master key.
⇒ No need for a public key distribution infrastructure.

Question first raised by Shamir in 1984.

First realization by Boneh and Franklin in 2001, using bilinear
pairings on elliptic curves.

Hierarchical IBE: same as IBE, but each entity in level k of a
hierarchy can generate the private keys of all entities of lower
levels in the hierarchy.
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HIBE using LWE

Encode an identity id as a string of bits of length ≤ k .

An identity id is higher in the hierarchy than id ′

if id is a prefix of id ′: id ′ = (id‖·).
The master has identity {}.

Sample A uniform in Z
m×n
q together with a trapdoor TA.

These are the master’s keys.

Sample (A0
1, A

1
1), . . . , (A

0
k , A1

k) iid uniformly in Z
m×n
q .

User id = i1 . . . iℓ has public key Aid , the vertical
concatenation of A, Ai1

1 , . . . ,Aiℓ
ℓ .

skid is a short basis of A⊥
id .

Encryption: same as with LWE.
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Private key extraction

Suppose id ′ = (id‖·). How does user id extract a private key
for id ′ from his/her own private key?

How to obtain a TAid
from a TAid′

?

Writing the new rows as combinations of the previous ones
suffices to obtain a basis of A⊥

id ′ with small GSO.

ATA 0

A′ = UA

=

⇒

ATA

0

00

A′−U Id

=
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Private key randomization

But now id ′ = (id‖·) now knows the private key of id!

id should randomize TAid′
before giving it to id ′.

Use the previous basis of A⊥
id ′ with small GSO to sample

from DA⊥

id′
,σ for a small σ.

With sufficiently many samples, we obtain a full rank set of
short vectors in A⊥

id ′ .

Convert it into a short basis.

The output distribution is independent of the initial basis.

Cash et al, Eurocrypt’10

Assuming LWE is hard, this scheme is secure against
selective-identity chosen plaintext attacks, in the standard model.
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More on IBE

Similar techniques lead to signatures that are secure in the
standard model (without the random oracle).

Very hot topic:

Cash-Hofheinz-Kiltz-Peikert at Eurocrypt’10.

Agrawal-Boneh-Boyen at Eurocrypt’10.

Boyen at PKC’10.

Agrawal-Boneh-Boyen at Crypto’10.

Main open problems:

Improving the efficiency (e.g., using Id-LWE?).

The SVP approximation factor increases quickly with the
number of levels in the hierarchy: γ = nO(k).
Can we avoid this?
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Recent developments

a- Identity-based encryption.

b- Fully homomorphic encryption.

Damien Stehlé Introduction to modern lattice-based cryptography (Part II) 25/06/2010 35/49



LWE Cryptanalysis Advanced topics Conclusion

Homomorphic encryption

Given C1 = E(M1) and C2 = E(M2), can we compute
E(f (M1, M2)) for some/any f , without decrypting?

E.g., for textbook RSA: Me
1 · Me

2 = (M1 · M2)
e [N].

An encryption scheme is fully homomorphic if any function
(given as a circuit) of any number of Mi ’s
can be evaluated in the ciphertext domain:

∀k ,∀f ,∃g : D[g(E(M1), . . . , E(Mk))] = f (M1, . . . ,Mk).

The bit-size of the output of g must be independent of the
circuit size of f .
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The ’holy grail’ of cryptography

The question was first asked by Rivest, Adleman and
Dertouzous in 1978.

Solved by Craig Gentry in 2009, using ideal lattices.

IBM announcement (25/06/09): An IBM Researcher has solved a thorny

mathematical problem that has confounded scientists since the

invention of public-key encryption several decades ago. The

breakthrough, called "privacy homomorphism," or "fully

homomorphic encryption," makes possible the deep and unlimited

analysis of encrypted information [...] without sacrificing

confidentiality.

Many applications:

Use untrusted parties to run programs (cloud computing).

Search over private data (PIR), etc.
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A somewhat homomorphic scheme

Sample a good basis Bsk
J of an ideal lattice J:

e.g., each basis vector has norm ≤ Poly(λ) · λ1(J).

Let B
pk
J be a bad basis of Bsk

J (e.g., its HNF).

To encrypt π ∈ {0, 1}, take a small random ρ ∈ Z[x ]/(xn + 1)
and output

ψ = π + 2ρ mod B
pk
J .

Plaintext space: {0, 1}, ciphertext space: R/J.

Use Babai’s rounding-off to decrypt:

ψ − Bsk
J ⌊(Bsk

J )−1ψ⌉ ⇒ π + 2 ρ.
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Correctness and security

Babai’s rounding-off is correct as long as the distance to J

is ≤ λ1(J)
Poly(n) =: rDec .

Correctness: it suffices that

rEnc := max
π,ρ

‖π + 2ρ‖ ≤ 1 + 2 max
ρ

‖ρ‖ ≤ rDec .

Security: Finding a closest vector for a target within rEnc of J

must be hard (BDD).

With lattice reduction, this can be done in time ≈ 2k

if rEnc ≤ 2n/k · rDec .
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More on security

If J and Bsk
J are well chosen, if π ∈ {0, 1} and if ρ is sampled from

some discrete Gaussian, then this scheme can be made CPA secure
under the assumption that Id-SVPγ is hard to solve for quantum
polynomial-time algorithms, for some small γ.

The proof includes a dimension-preserving worst-case to
average-case reduction. The distribution for J is the uniform
distribution over the set of ideals with norm in [a, 2a].
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Why is it (somewhat) homomorphic?

To encrypt π ∈ {0, 1}, take a small random ρ ∈ R and

output ψ = π + 2ρ mod B
pk
J .

ψi = πi + 2ρi mod B
pk
J for i ∈ {1, 2} implies, mod J:

ψ1 + ψ2 = (π1 + π2) + 2(ρ1 + ρ2),

ψ1 × ψ2 = (π1 × π2) + 2(ρ1 × π2 + ρ2 × π1 + 2ρ1 × ρ2).

Add/Mult modulo B
pk
J on ciphertexts homomorphically

performs Add/Mult modulo 2 on plaintexts.

If we want to apply a mod-2 circuit to plaintexts, we replace it
by an integer circuit, that we apply to ciphertexts modulo BJ .

Damien Stehlé Introduction to modern lattice-based cryptography (Part II) 25/06/2010 41/49



LWE Cryptanalysis Advanced topics Conclusion

Why is it only “somewhat” homomorphic?

The more operations are applied the further away from J.

dist(C1 + C2, J) ≤ dist(C1, J) + dist(C2, J).

dist(C1 × C2, J) ≤ K · dist(C1, J) · dist(C2, J),
for some K .

Let C be a mod 2 circuit with a corresponding integer circuit that
evaluates h(x1, . . . , xt) of (total) degree d . Then C is permitted
if tK d rd

Enc ≤ rDec . Equivalently:

d ≤ log rDec

log(rEnc · K · t) .
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Making the scheme fully homormophic

If many operations have been applied and the ciphertext ψ
corresponding to plaintext π is deemed too noisy, we try to
“refresh” it.

But we cannot decrypt using the secret key sk1.

Trick: encode ψ further using a second public key pk2, and
decode homomorphically using Epk2(sk1).

Dsk2 (Dec(Epk2(ψ), Epk2(sk1))) = Dec(ψ1, sk1) = π.

Refreshing as many times as required, we can apply any
circuit privately.
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The decryption circuit

Problem: Is the decryption circuit simple enough so that it
can be itself be applied without refreshing?

Decryption: ψ − Bsk
J ⌊(Bsk

J )−1ψ⌉ provides π + 2ρ.

This seems too complicated.

We need to “squash” the decryption circuit.

Outline of Gentry’s solution:

There exists vsk
J with: ∀ψ : Bsk

J ⌊(Bsk
J )−1ψ⌉ = ⌊vsk

J ψ⌉.
Generate random public vi ’s with a secret sparse subset S

which sums to vsk
J :

∑
i∈S vi = vsk

J .

The vi · ψ’s can be computed publicly, and then the
decryption reduces to summing up the few relevant ones.
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More on FHE

Overall, Gentry gets FHE based on two security assumptions:
SVP/BDD over ideal lattices and Sparse Subset Sum Problem.

Very hot topic:

Gentry, STOC’09 and CRYPTO’10.

van Dijk-Gentry-Halevi, Eurocrypt’10.

Smart-Vercauteren, PKC’10.

S.-Steinfeld, IACR eprint: “ciphertext refreshing” costs Õ(k3)
bit operations, for security 2k .

Open problems:

Improving the efficiency further, in theory and practice.

Removing the SSSP hardness assumption.
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Plan

1- Background on Euclidean lattices.

2- The SIS problem, or how to hash.

3- The LWE problem, or how to encrypt.

4- Cryptanalysis.

5- Advanced topics: IBE and FHE.
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Conclusion

The schemes are becoming more and more efficient, in
particular thanks to structured matrices / ideal lattices.

More and more primitives can be built from lattice problems.

The best attacks are becoming better understood.

But still not many schemes are implemented.

Lattice reduction can probably still be improved.

Mainly one library used for crytanalysis (Shoup’s NTL), and it
is known to behave oddly [GN’08].
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Open problems

NTRU remains faster than the provable schemes.
Can we prove its security?

Can we improve the efficiency of the lattice-based primitives,
e.g., signature in the standard model, (H)IBE, FHE,
CCA-secure encryption, etc?

What is the practicality of all these schemes?

What are the actual limits of lattice reduction?
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More open problems

Can quantum computers improve lattice algorithms?

Are ideal lattices weaker than general lattices?

Are there better algorithms than lattice reduction for SVPγ

with γ = Poly(n)?

Can we use lattice algorithms to factor integers or compute
discrete logarithms?

Which other primitives can be built from lattice problems?
Can we do all those using discrete log and pairings?

Can we adapt (some of) the techniques to linear codes?
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