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Distinct Difference Configuration

Definition

A set of dots in a grid is a distinct differences configuration (DDC)
if the lines connecting pairs of dots are different either in length or
in slope.

Motivation

These synchronization patterns have known applications in radar,
sonar, physical alignment, and time-position synchronization.
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I New definitions
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New Motivation – Wireless Sensor Networks
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Grid-Based Wireless Sensor Networks
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Key Predistribution
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key predistribution scheme
(KPS)

I nodes are assigned keys
before deployment

I nodes that share keys can
communicate securely

I two-hop path: nodes
communicate via
intermediate node

Observation: it is not necessary for two nodes to share more than
one key
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Costas Arrays

•
•

•
•
•

•
•

•

I one dot per row/column

I vector differences between
dots are distinct
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Translated Costas Arrays Overlap is at Most One
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Key Predistribution Using Costas Arrays

I uses an n× n Costas array

I each sensor stores n keys

I each key is assigned to n
sensors

I two sensors share at most
one key

I the distance between two
sensors that share a key is
at most

√
2(n − 1) •
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Classical Structures
A Costas array of order n is an n × n permutation array which is
also a DDC.

•
•

•
•

•

A sonar sequence in an n × k DDC with k dots, exactly one dot in
each column.

•
•

• • •
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Classical Structures

A Golomb rectangle in an n × k DDC with m dots.

• •
• •

•
• •
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New Definitions

Definition (Distinct-Difference Configuration DD(m, r))

A square distinct difference configuration DD(m, r) is a set of m
dots placed in a square grid such that the following two properties
are satisfied:

I Any two of the dots in the configuration are at Manhattan
distance at most r apart.

I All the
(m

2

)
differences between pairs of dots are distinct

either in length or in slope.
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New Definitions – DD(m, r)

Example (Distinct-Difference Configuration DD(7, 5))

•

• •
• •

• •

DD(7, 5)

I can be used for key predistribution in the same way as a
Costas array

I more general than a Costas array ⇒ more flexible choice of
parameters
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DD(m, r) - Optimal DDCs, r = 2, 3, . . . , 11
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New Definitions

Definition (Distinct-Difference Configuration DD∗(m, r))

A hexagonal distinct difference configuration DD∗(m, r) is a set of
m dots placed in an hexagonal grid such that the following two
properties are satisfied:

I Any two of the dots in the configuration are at hexagonal
distance at most r apart.

I All the
(m

2

)
differences between pairs of dots are distinct

either in length or in slope.
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DD
∗
(m, r) - Optimal DDCs, r = 2, 3, . . . , 10

1
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Translation from Square Grid to Hexagonal Grid

ξ(x , y) = (x + y√
3
, 2y√

3
)

0
1

2
34

5
6 1

2

34

5

6

0−−−−→
ξ

1
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Anticodes

Definitions

An anticode of diameter r is a set S such that for each pair of
elements x , y ∈ S we have d(x , y) ≤ r .

An anticode S of diameter r is said to be optimal if there is no
anticode S ′ of diameter r such that |S ′| > |S|.
An anticode S of diameter r is said to be maximal if {x} ∪ S has
diameter greater than r for any x /∈ S.

Lemma

Any anticode S of diameter r is contained in a maximal anticode
S ′ of diameter r .
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Size of Maximal Anticodes

Lemma

The size of a maximal anticode of diameter r in the square grid is
at most 1

2 r2 + O(r).

Lemma

The size of a maximal anticode of diameter r in the hexagonal grid
is at most 3

4 r2 + O(r).

Lee spheres with radius R and hexagonal spheres with radius R
corresponds to maximal anticodes with the largest size in the
square grid and the hexagonal grid, respectively.
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Maximal Anticodes with Maximum Size

I Lee sphere with radius 4.
I Hexagonal sphere with radius 2.

1
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Upper Bounds on the Number of Dots

Theorem

In any given DD(m, r) we have

m ≤ 1√
2

r + (3/24/3)r2/3 + O(r1/3).

Theorem

For any given DD∗(m, r) we have

m ≤
√

3
2 r + (34/32−5/3)r2/3 + O(r1/3).
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Upper Bounds – Sketch of Proof

Lemma

Let r be a non-negative integer. Let A be an anticode of
Manhattan diameter r in the square grid. Let ` be a positive
integer such that ` ≤ r , and let w be the number of Lee spheres of
radius ` that intersect A non-trivially. Then
w ≤ 1

2(r + 2`)2 + O(r).
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Upper Bounds – Sketch of Proof

I Let ` = c · √r , c large.

I Number of small Lee spheres w = 1
2 r2 + O(r).

I Area of a small Lee sphere a = 2`2 + 2`+ 1.

I Average number of dots per small Lee sphere µ = am
w .

I Let mi be the number of dots in the ith small Lee sphere.

I Number of vectors in the small Lee spheres
∑w

i=1 mi (mi − 1).

I Number of possible vectors a(a− 1), each one can be counted
at most once.

I Lower bound on the number of counted vectors wµ(µ− 1).

wµ(µ− 1) ≤
w∑

i=1

mi (mi − 1) ≤ a(a− 1)

Consequence : m ≤ 1√
2

r + o(r).
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Upper Bounds on the Number of Dots

Theorem

The number of dots in a DDC whose shape is a regular polygon (a
circle, a rectangle, an hexagon with two parallel edges and four
equal angles to these edges) with area s is at most

√
s + o(

√
s).

In the sequel, we assume that the radius of the circle or the regular
polygons is R (the radius is the distance from the center of the
regular polygon to any one its vertices).
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Periodic Configurations

Definition

Let A be an infinite array of dots in the square grid, and let η and
κ be positive integers. We say that A is doubly periodic with
period (η, κ) if A(i , j) = A(i + η, j) and A(i , j) = A(i , j + κ) for
all integers i and j . We define the density of A to be d/(ηκ),
where d is the number of dots in any κ× η sub-array of A. Note
that the period (η, κ) will not be unique, but that the density of A
does not depend on the period we choose. We say that a doubly
periodic array A of dots is a doubly periodic n × k DDC if every
n × k sub-array of A is a DDC.
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Periodic Configurations

Construction (Periodic Welch)

Let α be a primitive root modulo a prime p and let A be the
square grid. For any integers i and j, there is a dot in A(i , j) if and
only if αi ≡ j (mod p).

Theorem

Let A be the array of dots from the Periodic Welch Construction.
Then A is a doubly periodic p × (p − 1) DDC with period
(p − 1, p) and density 1/p.
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Periodic Configurations

Construction (Periodic Golomb)

Let α and β be two primitive elements in GF(q), where q is a
prime power. For any integers i and j, there is a dot in A(i , j) if
and only if αi + βj = 1.

Theorem

Let A be the array of dots from the Periodic Golomb Construction.
Then A is a doubly periodic (q − 1)× (q − 1) DDC with period
(q − 1, q − 1) and density (q − 2)/(q − 1)2.
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Periodic Configuration – an Example

Each 7× 7 array is a DDC

• • • • •
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• • •
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Lower Bounds – General technique

Definition (S-DDC)

We write (i , j) + S for the shifted copy {(i + i ′, j + j ′) : (i ′, j ′) ∈ S}
of S. Let A be a doubly periodic array. We say that A is a doubly
periodic S-DDC if the dots contained in every shift (i , j) + S of S
form a DDC.

Lemma

Let A be a doubly periodic S-DDC, and let S ′ ⊆ S. Then A is a
doubly periodic S ′-DDC.

Theorem

Let S be a shape, and let A be a doubly periodic S-DDC of
density δ. Then there exists a set of at least dδ|S|e dots contained
in S that form a DDC.
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Lower Bounds – Circle

Theorem (Blackburn, Etzion, Martin, Paterson 2008)

There exists a circle with diameter r which is a DDC with at least
0.80795r − o(r) dots.

I r = 2R

I area of circle inside square
2R2((π/2)− 2θ + sin 2θ)

R
θ





n
2 π

2 − 2θ

1
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Lower Bounds – Circle

Theorem (Blackburn, Etzion, Martin, Paterson 2008)

There exists a circle with diameter r which is a DDC with at least
0.80795r − o(r) dots.

I r = 2R

I area of circle inside square
2R2((π/2)− 2θ + sin 2θ)

I density 1/n = 1/(2R cos θ)

I lower bound is the maximum of
R((π/2)− 2θ + sin 2θ)/ cos θ

I maximum is attained for
θ ≈ 0.41586.

R
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n
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Folding Along Rows

A Golomb ruler of length 17 and order 6 : {0, 1, 4, 10, 12, 17}.

• • • • • • • • • • • • • • • • • •

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

• •
• •

• • •
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Folding Along Diagonals

m-sequence : 000111101011001.

0 6 12 3 9 0

5 11 2 8 14 5

10 1 7 13 4 10

0 6 12 3 9 0

0 1 0 1 0 0

1 1 0 1 1 1

1 0 0 0 1 1

0 1 0 1 0 0
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Periodic Configurations – Folding Along Diagonals
B2-sequence in Z31 : {0, 1, 4, 10, 12, 17}.
• • • • • • • • • • • • • • • • • •
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Tiling and Lattices

Definition (Tiling)

A D-dimensional shape S tiles the D-dimensional space ZD if
disjoint copies of S cover ZD . This cover of ZD with disjoint
copies of S is called tiling of ZD with S.
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Tiling

Definition (Center)

For each shape S we distinguish one of the points of S to be the
center of S. Each copy of S in a tiling has the center in the same
related point. The set T of centers in a tiling defines the tiling,
and hence the tiling is denoted by the pair (T ,S). Given a tiling
(T ,S) and a grid point (i1, i2, . . . , iD) we denote by c(i1, i2, . . . , iD)
the center of the copy of S for which (i1, i2, . . . , iD) ∈ S. We will
also assume that the origin is a center of some copy of S.

Lemma

For a given tiling (T ,S) and a point (i1, i2, . . . , iD) the point
(i1, i2, . . . , iD)− c(i1, i2, . . . , iD) belongs to the shape S whose
center is in the origin.
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Lattices

Definition (Lattice)

A lattice Λ is a discrete, additive subgroup of the real D-space RD .

Λ = {α1v1 + α2v2 + · · ·+ αDvD : α1, . . . , αD ∈ Z} ,
where {v1, . . . , vD} is a set of linearly independent vectors in RD .

A lattice Λ is a sublattice of ZD if and only if {v1, . . . , vD} ⊂ ZD .
The vectors v1, . . . , vD are the basis for Λ. The D × D matrix

G =




v11 v12 . . . v1D

v21 v22 . . . v2D
...

...
. . .

...
vD1 vD2 . . . vDD




where vi = (vi1, . . . , viD) is the generator matrix for Λ.
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Lattices

Definition (Volume of a Lattice)

The volume of a lattice Λ, denoted V (Λ), is inversely proportional
to the number of lattice points per unit volume. More precisely,
V (Λ) may be defined as the volume of the fundamental
parallelogram Π(Λ) in RD , which is given by

Π(Λ)
def
= {ξ1v1 + ξ2v2 + · · ·+ ξDvD : 0 ≤ ξi < 1, , 1 ≤ i ≤ D} .

There is a simple expression for the volume of Λ, namely,
V (Λ) = | det G|.
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Tiling and Lattices

Definition (Lattice Tiling)

We say that Λ induces a lattice tiling of S if the lattice points can
be taken as the set T to form a tiling (T ,S). In this case we have
that |S| = V (Λ) = | det G|.
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Generalization of Folding

Definition (Ternary Vector)

A ternary vector of length D, (d1, d2, . . . , dD), is a word of length
D, where di ∈ {−1, 0,+1}.
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Generalization of Folding

Definition (Ternary Vector)

A ternary vector of length D, (d1, d2, . . . , dD), is a word of length
D, where di ∈ {−1, 0,+1}.

Definition (Folded-Row)

Let S be a D-dimensional shape and let δ = (d1, d2, . . . , dD) be a
nonzero ternary vector of length D (or any nonzero integer vector).
Let (T ,S) be a lattice tiling induced by a D-dimensional lattice Λ,
and let S̃ be the copy of S in (T ,S) which includes the origin.
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Generalization of Folding

Definition (Ternary Vector)

A ternary vector of length D, (d1, d2, . . . , dD), is a word of length
D, where di ∈ {−1, 0,+1}.

Definition (Folded-Row)

Let S be a D-dimensional shape and let δ = (d1, d2, . . . , dD) be a
nonzero ternary vector of length D (or any nonzero integer vector).
Let (T ,S) be a lattice tiling induced by a D-dimensional lattice Λ,
and let S̃ be the copy of S in (T ,S) which includes the origin. We
define recursively a folded-row starting in the origin. If the point
(i1, i2, . . . , iD) is in S̃ then the next point on its folded-row is:
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Generalization of Folding

Definition (Ternary Vector)

A ternary vector of length D, (d1, d2, . . . , dD), is a word of length
D, where di ∈ {−1, 0,+1}.

Definition (Folded-Row)

Let S be a D-dimensional shape and let δ = (d1, d2, . . . , dD) be a
nonzero ternary vector of length D (or any nonzero integer vector).
Let (T ,S) be a lattice tiling induced by a D-dimensional lattice Λ,
and let S̃ be the copy of S in (T ,S) which includes the origin. We
define recursively a folded-row starting in the origin. If the point
(i1, i2, . . . , iD) is in S̃ then the next point on its folded-row is:

I If the point (i1 + d1, i2 + d2, . . . , iD + dD) is in S̃ then it is the
next point on the folded-row.
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Generalization of Folding

Definition (Ternary Vector)

A ternary vector of length D, (d1, d2, . . . , dD), is a word of length
D, where di ∈ {−1, 0,+1}.

Definition (Folded-Row)

Let S be a D-dimensional shape and let δ = (d1, d2, . . . , dD) be a
nonzero ternary vector of length D (or any nonzero integer vector).
Let (T ,S) be a lattice tiling induced by a D-dimensional lattice Λ,
and let S̃ be the copy of S in (T ,S) which includes the origin. We
define recursively a folded-row starting in the origin. If the point
(i1, i2, . . . , iD) is in S̃ then the next point on its folded-row is:

I If the point (i1 + d1, i2 + d2, . . . , iD + dD) is in S̃ then it is the
next point on the folded-row.

I If the point (i1 + d1, i2 + d2, . . . , iD + dD) is in S̃ ′ 6= S̃ whose
center is (c1, . . . , cD) then (i1 + d1 − c1, . . . , iD + dD − cD) is
the next point on the folded-row.
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Generalization of Folding

Definition (Folding)

The triple (Λ,S, δ) defines a folding if the definition yields a
folded-row which includes all the elements of S.
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Generalization of Folding
Theorem

Let d1, d2 be two positive integers, τ = g.c.d.(d1, d2). Let Λ be a
lattice tiling, for the shape S, whose generator matrix is given by

G =

[
v11 v12

v21 v22

]
.

Then the triple (Λ,S, δ) defines a folding

I with the ternary vector δ = (+d1,+d2) if and only if
g.c.d.(d1v22−d2v21

τ , d2v11−d1v12
τ ) = 1 and g.c.d.(τ, |S|) = 1;

I with the ternary vector δ = (+d1,−d2) if and only if
g.c.d.(d1v22+d2v21

τ , d2v11+d1v12
τ ) = 1 and g.c.d.(τ, |S|) = 1;

I with the ternary vector δ = (+d1, 0) if and only if
g.c.d.(v12, v22) = 1 and g.c.d.(d1, |S|) = 1;

I with the ternary vector δ = (0,+d2) if and only if
g.c.d.(v11, v21) = 1 and g.c.d.(d2, |S|) = 1.
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Application to Pseudo-Random Arrays

m-sequence : 000111101011001.

12
13 9110

6
3

9 7 5 3

11 9 70
1

2

13
143

46
8
5

10 0
0 010

1
1

0 0 1 1

1 0 00
0

0

0
11

11
1
1

1
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Rulers and B2-Sequences

Definition (ruler)

Let D = {a1, a2, . . . , am} be a sequence of m distinct integers,
a1 = 0, ai < ai+1. We say that D is a ruler if the differences
ai2 − ai1 with 1 ≤ i1 < i2 ≤ m are distinct.

Definition (B2-sequence)

Let A be an abelian group, and let D = {a1, a2, . . . , am} ⊆ A be a
sequence of m distinct elements of A. We say that D is a
B2-sequence over A if all the sums ai1 + ai2 with 1 ≤ i1 ≤ i2 ≤ m
are distinct.

Lemma

A subset D = {a1, a2, . . . , am} ⊆ A is a B2-sequence over A if and
only if all the differences ai1 − ai2 with 1 ≤ i1 6= i2 ≤ m are distinct
in A.
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B2-sequences and DDCs

Theorem (Bose 1942)

Let q be a prime power. Then there exists a B2-sequence
a1, a2, . . . , am over Zn where n = q2 − 1 and m = q.

Theorem

Let Λ be a lattice, S, n = |S|, a D-dimensional shape, and δ a
direction. Let E be a B2-sequence over Zn. If (Λ,S, δ) defines a
folding then the folded-row, with E in it, is a D-dimensional DDC.
Moreover, this DDC can be extended to doubly periodic S-DDC.
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Euclid and Dirichlet’s Thorems

Theorem (Euclid’s Theorem)

If α and β are two integers such that g.c.d.(α, β) = 1 then there
exist two integers cα and cβ such that cαα + cββ = 1.

Theorem (Dirichlet’s Theorem)

If a and b are two relatively primes positive integers then the
arithmetic progression of terms ai + b, for i = 1, 2, ..., contains an
infinite number of primes.
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Bounds for Specific Shapes

Theorem

For each positive number γ there exist two integers a and b such
that b

a ≈ γ and an infinite S-DDC with
√

a · bR + o(R) dots
whose shape is an n1 × n2 = (bR + o(R))× (aR + o(R))
rectangle, n1n2 = p2 − 1 for some prime p, and n1 is even.

Proof.

Let α, β be two integers such that β
α ≈
√
γ and g.c.d.(α, β) = 2.

By Euclid’s Theorem there exist two integers cα, cβ such that
either cαα + 2 = cββ > 0 or cββ + 2 = cαα > 0. W.l.o.g. assume
cαα + 2 = cββ > 0. Let p be a prime of the form αβR + cαα + 1
(implied by Dirichlet’s Theorem since (αβ, cαα + 1) = 1). Now,
p2 − 1 = (p + 1)(p − 1) = (αβR + cαα + 2)(αβR + cαα) =
(αβR + cββ)(αβR + cαα) = (α2R + αcβ)(β2R + βcα). Thus, a
(β2R + βcα)× (α2R + αcβ) rectangle fulfill our requirements.
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Bound for Regular Hexagon

There exists an infinite S-DCC, where S is an
α× β = (

√
3R + o(R))× (3

2R + o(R)) rectangle, such that
αβ = p2 − 1 for some prime p, and g.c.d.(α, β) = 2. Let Λ be the
a lattice tiling for S with the generator matrix

G =

[
β α

2 + θ
0 α

]
,

where θ = 1 if α ≡ 0 (mod 4) and θ = 2 if α ≡ 2 (mod 4). There
is a folded-row for Λ and S with δ = (+1, 0). We now can form an
infinite S ′-DCC, where S ′ is a regular hexagon with radius
2
3β = R + o(R) and

√
a · bR + o(R) dots. Hence, a lower bound

on the number of dots in S ′ is approximately

√
3
√

3√
2

R + o(R). The

area of S ′ is 3
√

3
2 R2 + o(R2).

Tuvi Etzion - Computer Science Department, Technion Sequence Folding, Lattice Tiling, and Multidimensional Coding



Bound for Hexagon
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Bounds for Specific Shapes

Theorem

Assume we are given an doubly periodic S-DDC with m dots on
the grid. Let Q be another shape on the grid. Then there exists a
copy of Q on the grid with at least m

|S| |S ∩ Q| dots.
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Bounds – Summarize

Table: Bounds on the number of dots in an n-gon DDC

n upper bound lower bound ratio between bounds

3 1.13975R 1.02462R 0.899
4 1.41421R 1.41421R 1
5 1.54196R 1.45992R 0.9468
6 1.61185R ≈ 1.61185R ≈ 1
7 1.65421R 1.58844R 0.960241
8 1.68179R 1.62625R 0.966977
9 1.70075R 1.63672R 0.96235
10 1.71433R 1.65141R 0.963297
60 1.77083R 1.70658R 0.963718
96 1.77182R 1.70752R 0.96371
circle 1.77245R 1.70813R 0.963708
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THANK YOU
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