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The Problem

@ Fp, pis an odd prime.

Q f(x) € Fp[x]

© The Problem: Find fi(x) € Fp[x], f(x) = fi(x) ... (x),
fi(x) irreducible and coprime.
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The Well-Known Methods

@ Berlekamp and Cantor-Zassenhaus (PARI etc.)
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@ Berlekamp: Find h(x) € Fp[x], h°(x) = h(x) (mod f(x))
Q ged(h(x) —t,1(x))
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The Well-Known Methods

@ Berlekamp and Cantor-Zassenhaus (PARI etc.)

@ Berlekamp: Find h(x) € Fp[x], h°(x) = h(x) (mod f(x))

© gcd(h(x) — t, f(x))

@ Cantor-Zassenhaus: ged(h(x)(P°=1/2 — 1, f(x)) each
irreducible factor of f(x) is of degree n.
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The Well-Known Methods

@ Berlekamp and Cantor-Zassenhaus (PARI etc.)

@ Berlekamp: Find h(x) € Fp[x], h°(x) = h(x) (mod f(x))

© gcd(h(x) — t, f(x))

@ Cantor-Zassenhaus: ged(h(x)(P°=1/2 — 1, f(x)) each
irreducible factor of f(x) is of degree n.

@ probabilistic, ~ 1/2 chance for h(x)
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What is a hyperelliptic curve
The Main Idea L ENEET

Factoring f(x)

@ k is a finite field of characteristic different from 2.
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Factoring f(x)

@ k is a finite field of characteristic different from 2.
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What is a hyperelliptic curve
The Main Idea L ENEET

Factoring f(x)

@ K is afinite field of characteristic different from 2.

Q H:y?=1f(x)

© f(x) is a monic polynomial with simple roots and
deg(f(x)) =2g + 1
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What is a hyperelliptic curve
The Main Idea The Jacobian

Factoring f(x)

Q@ Jac(H) =Pic°(H)
@ Pic(H) = the group of all isomorphism classes of invertible
k[x, y]/(y? — f(x)-modules.
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Factoring f(x)

@ Jac(H) =Pic°(H)

@ Pic(H) = the group of all isomorphism classes of invertible
k[x, y]/(y? — f(x)-modules.

@ D e Jac(H)

© the Mumford Representation: Unique pair of polynomials
(u(x), v(x)) satisfying the followings
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What is a hyperelliptic curve
The Main Idea The Jacobian

Factoring f(x)

@ Jac(H) =Pic°(H)
@ Pic(H) = the group of all isomorphism classes of invertible
Kk[x, y]/(y? — f(x)-modules.
© D c Jac(H)
© the Mumford Representation: Unique pair of polynomials
(u(x), v(x)) satisfying the followings
e u(x) is monic
e degv(x) <degu(x)<g
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What is a hyperelliptic curve
The Main Idea The Jacobian

Factoring f(x)

@ Jac(H) =Pic°(H)
@ Pic(H) = the group of all isomorphism classes of invertible
k[x, y]/(y? — f(x)-modules.
© D e Jac(H)
© the Mumford Representation: Unique pair of polynomials
(u(x), v(x)) satisfying the followings
e u(x) is monic
e degv(x) < degu(x)<g
e f(x) — v(x)? is a multiple of u(x)
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What is a hyperelliptic curve
The Main Idea The Jacobian

Factoring f(x)

@ Jac(H) =Pic°(H)
@ Pic(H) = the group of all isomorphism classes of invertible
Kk[x, y]/(y? — f(x)-modules.
© D c Jac(H)
© the Mumford Representation: Unique pair of polynomials
(u(x), v(x)) satisfying the followings
e u(x) is monic
e degv(x) < degu(x)<g
e f(x) — v(x)? is a multiple of u(x)
© Cantor’s Algorithm: Computing in Jac(H), only polynomial
arithmetics
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What is a hyperelliptic curve
The Main Idea L ENEET

Factoring f(x)

@ f(x) is square-free and reducible in k[x]

Enver, Ozdemir Factoring Polynomials over Finite Fields



What is a hyperelliptic curve
The Main Idea L ENEET

Factoring f(x)

@ f(x) is square-free and reducible in k[x]
@ degf(x) =2g + 1

Enver, Ozdemir Factoring Polynomials over Finite Fields



What is a hyperelliptic curve
The Main Idea L ENEET

Factoring f(x)

@ f(x) is square-free and reducible in k[x]
@ degf(x) =2g + 1
© H:y?=1{(x)overk

Enver, Ozdemir Factoring Polynomials over Finite Fields



What is a hyperelliptic curve
The Main Idea L ENEET

Factoring f(x)

@ f(x) is square-free and reducible in k[x]
@ degf(x) =2g + 1
© H:y?=1{(x)overk
© 2-torsion points of Jac(H):
° (u(x),0)

Enver, Ozdemir Factoring Polynomials over Finite Fields



What is a hyperelliptic curve
The Main Idea L ENEET

Factoring f(x)

@ f(x) is square-free and reducible in k[x]
@ degf(x) =2g + 1
© H:y?=1{(x)overk
© 2-torsion points of Jac(H):
° (u(x),0)
e deg u(x) <g
e f(x) is divisible by u(x)
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What is a hyperelliptic curve
The Main Idea L ENEET
Factoring f(x)

Finding a 2-torsion point in Jac(H)

@ Find arandom D in Jac(H)
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What is a hyperelliptic curve
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@ Find arandom D in Jac(H)
@ Find #Jac(H) =2°m, (m,2) = 1

Enver, Ozdemir Factoring Polynomials over Finite Fields



What is a hyperelliptic curve
The Main Idea L ENEET
Factoring f(x)

Finding a 2-torsion point in Jac(H)

@ Find arandom D in Jac(H)
@ Find #Jac(H) =2°m, (m,2) = 1
© 2'm(D) is a 2-torsion point for some i < e if # D is even
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What is a hyperelliptic curve
The Main Idea L ENEET
Factoring f(x)

Finding a 2-torsion point in Jac(H)

@ Find arandom D in Jac(H)
@ Find #Jac(H) =2°m, (m,2) = 1
© 2'm(D) is a 2-torsion point for some i < e if # D is even

© Two big problems:

e Finding a random divisor class D in Jac(H)
e Finding the order of Jac(H)
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The Mumford Representation for Singular Hyperelliptic Curves

Singular Hyperelliptic Curves

Q@ H:y? = f(x), f(x) has repeated roots and
degf(x) =29 + 1
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The Mumford Representation for Singular Hyperelliptic Curves

Singular Hyperelliptic Curves

Q@ H:y? = f(x), f(x) has repeated roots and
degf(x) =2g + 1

@ Singular points: (a,0) where ais a root of f(x) with
multiplicity> 1
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The Mumford Representation for Singular Hyperelliptic Curves

Singular Hyperelliptic Curves

Q@ H:y? = f(x), f(x) has repeated roots and
degf(x) =2g + 1

@ Singular points: (a,0) where ais a root of f(x) with
multiplicity> 1

© the Mumford Representation: any D € Jac(H) is uniquely
represented by a pair of polynomials (u(x), v(x)) satisfying
the followings:
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The Mumford Representation for Singular Hyperelliptic Curves

Singular Hyperelliptic Curves

@ H:y? = f(x), f(x) has repeated roots and
degf(x) =29 + 1
@ Singular points: (a,0) where ais a root of f(x) with
multiplicity> 1
© the Mumford Representation: any D € Jac(H) is uniquely
represented by a pair of polynomials (u(x), v(x)) satisfying
the followings:
e u(x) is monic
e degv(x) <deg u(x) <g
e f(x) — v(x)? is divisible by u(x)
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The Mumford Representation for Singular Hyperelliptic Curves

Singular Hyperelliptic Curves

@ H:y? = f(x), f(x) has repeated roots and
degf(x) =29 + 1

@ Singular points: (a,0) where ais a root of f(x) with
multiplicity> 1

© the Mumford Representation: any D € Jac(H) is uniquely
represented by a pair of polynomials (u(x), v(x)) satisfying
the followings:

u(x) is monic

degv(x) <deg u(x) < g

f(x) — v(x)? is divisible by u(x)

if both u(x) and v(x) are divisible by (x — a) for a singular

point (a,0) then (f — v(x)?)/u(x) is not divisible by (x — a)
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The Mumford Representation for Singular Hyperelliptic Curves

Singular Hyperelliptic Curves

@ H:y? = f(x), f(x) has repeated roots and
degf(x) =29 + 1
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ k=TFpp
Q f(x) = fi(x)---fo(x), degfi(x) = d}
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ k=TFpp
Q 1(x) = fi(x) - fa(x), degfi(x) = d;
Q H:y?=xf(x)?
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The Algorithm for factoring f(x)

Factoring f(x)

Q k=Fpp

Q f(x) = f1(x)---fa(x), degfi(x) = d;
Q H:y?=xf(x)?

Q Jac(H) =G - - PG,

Enver, Ozdemir Factoring Polynomials over Finite Fields



The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)?, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
f(x) divides f(x)
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)?, h(x) ( )] such that deg(h(x)) <deg(f(x)) and
f(x) divides f(x)

@ D; = [fi(x)?, hi(x)fi(x)] € G;, deg hi(x) <deg(d))
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)2, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
7(x) divides f(x)

Q D; = [fi(x)?, hi(x)fi(x)] € G, deg hi(x) <deg(d))

@ #D; divides either p% + 1 or p% — 1
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)2, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
7(x) divides f(x)
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@ #D; divides either p% + 1 or p% — 1
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)2, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
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@ #D; divides either p% + 1 or p% — 1
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@ if a power D annihilates some of D; we get a non-trivial
factor of f(x)
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)2, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
7(x) divides f(x)

@ D = [fi(x)?, hi(x)fi(x)] € G, deg hi(x) <deg(d))

@ #D; divides either p% + 1 or p% — 1

Q D = [f(x)? h(x)f(x)] = Dy + - -- + Dp such that D; € G;

@ if a power D annihilates some of D; we get a non-trivial
factor of f(x)

Q D:D1 +"'+Ds""|‘Dr:

[f127h1g1] +---+ [fsz + hsfs] +--- + [fr27hrfr]
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)2, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
7(x) divides f(x)

@ D = [fi(x)?, hi(x)fi(x)] € G, deg hi(x) <deg(d))

@ #D; divides either p% + 1 or p% — 1

Q D = [f(x)? h(x)f(x)] = Dy + - -- + Dp such that D; € G;

@ if a power D annihilates some of D; we get a non-trivial
factor of f(x)

Q D:D1 +"'+Ds""|‘Dr:

[f127h1g1] +---+ [fsz + hsfs] +--- + [fr27hrfr]

@ mDs =0, - ~

mD = [f2 hygi] + -+ 0+ -+ [f2 hf] = [fPf2--- 2]
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)2, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
7(x) divides f(x)

@ D = [fi(x)?, hi(x)fi(x)] € G, deg hi(x) <deg(d))

@ #D; divides either p% + 1 or p% — 1

Q D = [f(x)? h(x)f(x)] = Dy + - -- + Dp such that D; € G;

@ if a power D annihilates some of D; we get a non-trivial
factor of f(x)

QD=Dy+---+Ds---+D, =
[f2, h1g1] + -+ - + [f2 + hsfs] + - - - + [f2, hef;]

@ mDs =0, - ~
mD = [f2 hygi] + -+ 0+ -+ [f2 hf] = [fPf2--- 2]

Q (P +1)Dforj=1,... ,5’ =max{d;}, gives a non-trivial
factor or [1,0]
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The Algorithm for factoring f(x)

Factoring f(x)

Q@ Any f)~e Jac(H) is uniquely represented by a pair of the
form [f(x)2, h(x)f(x)] such that deg(h(x)) <deg(f(x)) and
7(x) divides f(x)

@ D = [fi(x)?, hi(x)fi(x)] € G, deg hi(x) <deg(d))

@ #D; divides either p% + 1 or p% — 1

Q D = [f(x)? h(x)f(x)] = Dy + - -- + Dp such that D; € G;

@ if a power D annihilates some of D; we get a non-trivial
factor of f(x)

QD=Dy+---+Ds---+D, =
[f2, h1g1] + -+ - + [f2 + hsfs] + - - - + [f2, hef;]

@ mDs =0, - ~
mD = [f2 hygi] + -+ 0+ -+ [f2 hf] = [fPf2--- 2]

Q (P +1)Dforj=1,... ,5’ =max{d;}, gives a non-trivial
factor or [1,0]

© the probability of getting a non-trivial factor is at least 1/2
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The Algorithm for factoring f(x)

Factoring f(x)

@ Suppose (p"+1)D=[1,0]and p" +1=2°m, (m,2) = 1
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The Algorithm for factoring f(x)

Factoring f(x)

@ Suppose (p" =1)D=[1,0land p”" +1 =2°m, (m,2) = 1
Q if #D is even then 2°m(D) must be a 2-torsion point for
s=0,...,e
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s=0,...,e
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The Algorithm for factoring f(x)

Factoring f(x)

@ Suppose (p"+1)D=[1,0]and p" +1=2°m, (m,2) = 1

Q if #D is even then 2°m(D) must be a 2-torsion point for
s=0,...,e

@ 2-torsion points [, 0], [xf(x),0], [f(x)2,0] such that f(x) is
a non-trivial factor of f(x)

© the probability of finding a non-trivial factor of f(x) in a
single trial is at least 3/4
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The Algorithm for factoring f(x)

Factoring f(x)

@ Suppose (p"+1)D=[1,0]and p" +1=2°m, (m,2) = 1

Q if #D is even then 2°m(D) must be a 2-torsion point for
s=0,...,e

@ 2-torsion points [, 0], [xf(x),0], [f(x)2,0] such that f(x) is
a non-trivial factor of f(x)

© the probability of finding a non-trivial factor of f(x) in a
single trial is at least 3/4

@ this probability is close to 1/2 for C-Z and Berlekamp’s
algorithms
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The Algorithm for factoring f(x)

Factoring f(x)

@ Suppose (p"+1)D=[1,0]and p" +1=2°m, (m,2) = 1

Q if #D is even then 2°m(D) must be a 2-torsion point for
s=0,...,e

@ 2-torsion points [, 0], [xf(x),0], [f(x)2,0] such that f(x) is
a non-trivial factor of f(x)

© the probability of finding a non-trivial factor of f(x) in a
single trial is at least 3/4

@ this probability is close to 1/2 for C-Z and Berlekamp’s
algorithms

Q@ 0O(d®lgp), d = max{d;}
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