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1 Berlekamp and Cantor-Zassenhaus (PARI etc.)
2 Berlekamp: Find h(x) ∈ Fp[x ], hp(x) ≡ h(x) (mod f (x))
3 gcd(h(x)− t , f (x))

4 Cantor-Zassenhaus: gcd(h(x)(p
d−1)/2 − 1, f (x)) each

irreducible factor of f (x) is of degree n.
5 probabilistic, ∼ 1/2 chance for h(x)
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The Jacobian
Factoring f (x)

1 k is a finite field of characteristic different from 2.
2 H : y2 = f (x)

3 f (x) is a monic polynomial with simple roots and
deg(f (x)) = 2g + 1
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Factoring f (x)

1 Jac(H) =Pico(H)

2 Pic(H) = the group of all isomorphism classes of invertible
k [x , y ]/(y2 − f (x)-modules.

3 D ∈ Jac(H)
4 the Mumford Representation: Unique pair of polynomials

(u(x), v(x)) satisfying the followings
u(x) is monic
degv(x) < degu(x) ≤ g
f (x)− v(x)2 is a multiple of u(x)

5 Cantor’s Algorithm: Computing in Jac(H), only polynomial
arithmetics
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1 f (x) is square-free and reducible in k [x ]

2 degf (x) = 2g + 1
3 H : y2 = f (x) over k
4 2-torsion points of Jac(H):

(u(x), 0)
deg u(x) ≤ g
f (x) is divisible by u(x)
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The Mumford Representation for Singular Hyperelliptic Curves

1 H : y2 = f (x), f (x) has repeated roots and
degf (x) = 2g + 1

2 Singular points: (a, 0) where a is a root of f (x) with
multiplicity> 1

3 the Mumford Representation: any D ∈ Jac(H) is uniquely
represented by a pair of polynomials (u(x), v(x)) satisfying
the followings:

u(x) is monic
degv(x) <deg u(x) ≤ g
f (x)− v(x)2 is divisible by u(x)
if both u(x) and v(x) are divisible by (x − a) for a singular
point (a, 0) then (f − v(x)2)/u(x) is not divisible by (x − a)
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The Algorithm for factoring f (x)

1 k = Fp, p
2 f (x) = f1(x) · · · fn(x), degfi(x) = di

3 H : y2 = xf (x)2

4 Jac(H) = G1
⊕
· · ·

⊕
Gn
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Factoring f (x)

The Algorithm for factoring f (x)

1 Any D̃ ∈ Jac(H) is uniquely represented by a pair of the
form [̃f (x)2, h̃(x )̃f (x)] such that deg(h̃(x)) <deg(̃f (x)) and
f̃ (x) divides f (x)

2 Di = [fi(x)2, hi(x)fi(x)] ∈ Gi , deg hi(x) <deg(di )
3 #Di divides either pdi + 1 or pdi − 1
4 D = [f (x)2, h(x)f (x)] = D1 + · · ·+ Dn such that Di ∈ Gi
5 if a power D annihilates some of Di we get a non-trivial

factor of f (x)
6 D = D1 + · · ·+ Ds · · ·+ Dr =

[f 2
1 , h1g1] + · · ·+ [f 2

s + hsfs] + · · ·+ [f 2
r , hr fr ]

7 mDs = 0,
mD = [f 2

1 , h̃1g1] + · · ·+ 0 + · · ·+ [f 2
r , h̃r fr ] = [f 2

1 f 2
2 · · · f 2

r , · · · ]
8 (pj ± 1)D for j = 1, . . . , d̃ =max{di }, gives a non-trivial

factor or [1, 0]
9 the probability of getting a non-trivial factor is at least 1/2
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The Algorithm for factoring f (x)

1 Suppose (pr ± 1)D = [1, 0] and pr ± 1 = 2em, (m, 2) = 1
2 if #D is even then 2sm(D) must be a 2-torsion point for

s = 0, . . . , e
3 2-torsion points [x , 0], [xf̃ (x)2, 0], [̃f (x)2, 0] such that f̃ (x) is

a non-trivial factor of f (x)

4 the probability of finding a non-trivial factor of f (x) in a
single trial is at least 3/4

5 this probability is close to 1/2 for C-Z and Berlekamp’s
algorithms

6 O(d̃3lgp), d̃ = max{di }
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