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Additive Asymmetric Quantum Codes
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Abstract—We present a general construction of asymmetric
quantum codes based on additive codes under the trace Hermitian
inner product. Various families of additive codes over are used
in the construction of many asymmetric quantum codes over .

Index Terms—4-circulant codes, additive codes, BCH codes,
circulant codes, extremal codes, MacDonald codes, nested codes,
quantum codes, quantum Singleton bound, self-orthogonal codes.

I. INTRODUCTION

P REVIOUSLY, most of the works on quantum error-cor-
recting codes were done with the assumption that the

channel is symmetric. That is, the various error types were taken
to be equiprobable. To be brief, the term quantum codes or
QECC is henceforth used to refer to quantum error-correcting
codes.

Recently, it has been established that, in many quantum me-
chanical systems, the phase-flip errors happen more frequently
than the bit-flip errors or the combined bit-phase flip errors. For
more details, [32] can be consulted.

There is a need to design quantum codes that take advantage
of this asymmetry in quantum channels. We call such codes
asymmetric quantum codes. We require the codes to correct
many phase-flip errors but not necessarily the same number of
bit-flip errors.

In this paper we extend the construction of asymmetric
quantum codes in [35] to include codes derived from classical
additive codes under the trace Hermitian inner product.

This work is organized as follows. In Section II, we state some
basic definitions and properties of linear and additive codes.
Section III provides an introduction to quantum error-correcting
codes in general, differentiating the symmetric and the asym-
metric cases. In Section IV, a construction of asymmetric QECC
based on additive codes is presented.

The rest of the paper focuses on additive codes over .
Section V recalls briefly important known facts regarding these
codes. A construction of asymmetric QECC from extremal or
optimal self-dual additive codes is given in Section VI. A con-
struction from Hermitian self-orthogonal -linear codes is the
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topic of Section VII. Sections VIII and IX use nested -linear
cyclic codes for lengths and nested BCH codes for
lengths , respectively, in the construction. New
or better asymmetric quantum codes constructed from nested
additive codes over are presented in Section X, exhibiting
the gain of extending the construction to include additive codes.
Section XI provides conclusions and some open problems.

II. PRELIMINARIES

Let be a prime and for some positive integer . An
-linear code of length , dimension , and minimum

distance is a subspace of dimension of the vector space
over the finite field with elements. For a general,
not necessarily linear, code , the notation is
commonly used.

The Hamming weight of a vector or a codeword in a
code , denoted by , is the number of its nonzero
entries. Given two elements , the number of po-
sitions where their respective entries disagree, written as

, is called the Hamming distance of and . For
any code , the minimum distance is given by

. If is
linear, then its closure property implies that is given by
the minimum Hamming weight of nonzero vectors in .

We follow [30] in defining the following three families of
codes according to their duality types.

Definition 2.1: Let be an even power of an
arbitrary prime with for . Let be a positive
integer and .

1) is the family of -linear codes of length with the
Hermitian inner product

(II.1)

2) (even) is the family of trace Hermitian codes over
of length which are -linear, where is even. The
duality is defined according to the trace Hermitian inner
product

(II.2)

3) (odd) is the family of trace Hermitian codes over
of length which are -linear, where is odd. The
duality is defined according to the following inner product,
which we will still call trace Hermitian inner product,

(II.3)

where with .
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Definition 2.2: A code of length is said to be a (classical)
additive code if belongs to either the family (even) or to
the family (odd).

Let be a code. Under a chosen inner product , the dual
code of is given by

Accordingly, for a code in the family

and, for a code in the family (even) or (odd)

A code is said to be self-orthogonal if it is contained in its
dual and is said to be self-dual if its dual is itself. We say that
a family of codes is closed if for each in that
family. It has been established [30, Ch. 3] that the three families
of codes in Definition 2.1 are closed.

The weight distribution of a code and that of its dual are im-
portant in the studies of their properties.

Definition 2.3: The weight enumerator of an
-code is the polynomial

(II.4)

where is the number of codewords of weight in the code .
The weight enumerator of the Hermitian dual code of

an -code is connected to the weight enumerator of
the code via the MacWilliams Equation

(II.5)

In the case of nonlinear codes, we can define a similar notion
called the distance distribution. The MacWilliams Equation can
be generalized to the nonlinear cases as well (see [29, Ch. 5]).
From [30, Sect. 2.3] we know that the families (even) and

(odd) have the same MacWilliams Equation as the family
. Thus, (II.5) applies to all three families.
Classical codes are connected to many other combinatorial

structures. One such structure is the orthogonal array.

Definition 2.4: Let be a set of symbols or levels. An
orthogonal array with runs, factors, levels and strength

with index , denoted by , is an array
with entries from such that every subarray of contains
each -tuple of exactly times as a row.

The parameter is usually not written explicitly in the no-
tation since its value depends on and . The rows of an
orthogonal array are distinct since the purpose of its construc-
tion is to minimize the number of runs in the experiment while
keeping some required conditions satisfied.

There is a natural correspondence between codes and orthog-
onal arrays. The codewords in a code can be seen as the rows

of an orthogonal array and vice versa. The following propo-
sition due to Delsarte (see [14, Th. 4.5]) will be useful in the se-
quel. Note that the code in the proposition is a general code.
No linearity is required. The duality here is defined over any
inner product. For more on how the dual distance is defined for
nonlinear codes, we refer to [22, Sec. 4.4].

Proposition 2.5: [22, Th. 4.9] If is an
code with dual distance , then the corresponding orthogonal
array is an . Conversely, the code corre-
sponding to an is an code with dual
distance . If the orthogonal array has strength but
not , then is precisely .

III. QUANTUM CODES

We assume that the reader is familiar with the standard error
model in quantum error-correction. The essentials can be found,
for instance, in [2] and in [15]. For convenience, some basic
definitions and results are reproduced here.

Let be the field of complex numbers and .
We fix an orthonormal basis of

with respect to the Hermitian inner product. For a positive in-
teger , let be the -fold tensor product of .
Then has the following orthonormal basis:

(III.1)

where abbreviates .
For two quantum states and in with

the Hermitian inner product of and is

where is the complex conjugate of . We say and
are orthogonal if .

A quantum error acting on is a unitary linear operator on
and has the following form

with .
The action of on the basis (III.1) of is

where

with being the trace mapping
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for . Therefore

where is the usual inner product in .

For and with , and

Hence, the set

forms a (nonabelian) group, called the error group on .

Definition 3.1: For a quantum error ,
we define the quantum weight , the -weight and
the -weight of by

Thus, is the number of qudits where the action of
is nontrivial by (identity) while and

are, respectively, the numbers of qudits where the -ac-
tion and the -action of are nontrivial. We are now ready
to define the distinction between symmetric and asymmetric
quantum codes.

Definition 3.2: A -ary quantum code of length is a sub-
space of with dimension . A quantum code of
dimension is said to detect qudits of errors for

if, for every orthogonal pair , in with
and every with , and are or-
thogonal. In this case, we call a symmetric quantum code with
parameters or , where . Such
a quantum code is called pure if for any and

in and any with . A quantum
code with is assumed to be pure.

Let and be positive integers. A quantum code in
with dimension is called an asymmetric quantum

code with parameters or ,
where , if detects qudits of -errors
and, at the same time, qudits of -errors. That is, if

for , then for any
such that and . Such an
asymmetric quantum code is called pure if for
any and such that
and . An asymmetric quantum code
with is assumed to be pure.

Remark 3.3: An asymmetric quantum code with parameters
is a symmetric quantum code with parameters

, but the converse is not true since, for with
and , the weight may be

bigger than .
Given any two codes and , let the notation de-

note . The analogue of the

well-known CSS construction (see [11]) for the asymmetric case
is known.

Proposition 3.4: [32, Lemma 3.1] Let be linear codes
over with parameters , and respectively. Let

. Then there exists an
asymmetric quantum code, where and

.
The resulting code is said to be pure if, in the above construc-

tion, and .

IV. ASYMMETRIC QECC FROM ADDITIVE CODES

The following result has been established recently:

Theorem 4.1: [35, Th. 3.1]
1) There exists an asymmetric quantum code with parameters

with if and only if there exist
nonzero mappings

(IV.1)

satisfying the following conditions: for each such that
and partition of ,

(IV.2)

and each , and , we
have the equality

for
for (IV.3)

where is an element of which is in-
dependent of . The notation represents
the rearrangement of the entries of the vector ac-
cording to the partition of given in (IV.2).

2) Let stand for . There exists a
pure asymmetric quantum code with parameters

if and only if there exist nonzero mappings
as shown in (IV.1) such that

• are linearly independent for , i.e., the rank
of the matrix is ; and

• for each with , a partition in
(IV.2) and and ,
we have the equality

for
for . (IV.4)

The following result is due to Keqin Feng and Long Wang.
It has, however, never appeared formally in a published form
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before. Since it will be needed in the sequel, we present it here
with a proof.

Proposition 4.2: (K. Feng and L. Wang) Let be positive
integers. There exists an asymmetric quantum code with pa-
rameters if and only if there exists an asymmetric
quantum code with parameters . is pure if
and only if is pure.

Proof: We begin by assuming the existence of an
asymmetric quantum code . Let with

be the mappings given in Theorem 4.1. Define
the following mappings

(IV.5)

Let , and . For each
such that and a partition of
given in (IV.2), we show that

for
for , (IV.6)

where is an element of which is indepen-
dent of .

Let . Applying (IV.5) yields

(IV.7)

By carefully rearranging the summations and grouping the
terms, we get

(IV.8)

where

By orthogonality of characters

if and
otherwise.

Therefore

(IV.9)

where

Now, we let , , and .
Splitting up the summation once again yields

(IV.10)

Invoking (IV.3) concludes the proof for the first part with
given by

(IV.11)
For the second part, let us assume the existence of a pure

asymmetric quantum code . Note that the
Fourier transformations for are linearly inde-
pendent. We use (IV.10) and (IV.4) to establish the equality

for
for . (IV.12)

Consider the term

in (IV.10). By the purity assumption, for ,
. For , . Hence

(IV.13)

By orthogonality of characters, if , then

making . If , then

This completes the proof of the second part.
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With this result, without loss of generality, is hence-
forth assumed.

Remark 4.3: If we examine closely the proof of Theorem 4.1
above as presented in Theorem 3.1 of [35], only the additive
property (instead of linearity) is used. We will show that the
conclusion of the theorem with an adjusted value for still
follows if we use classical additive codes instead of linear codes.

Theorem 4.4: Let and be positive integers.
Let be a classical additive code in . Assume that

is the minimum distance of the dual code
of under the trace Hermitian inner product. For a

set of distinct vectors in , let
. If

and , then there exists an asymmetric
quantum code with parameters .

Proof: Define the following functions:

if
if .

(IV.14)

For each such that and a partition of
given in (IV.2),

if and only if

which, in turn, is equivalent to

(IV.15)

Note that since ,
we know that means by
the definition of above. Thus, if

(IV.16)
Now, consider the case of . By (IV.15), if

, then it has no contribution to the
sum we are interested in. If , then

(IV.17)

Proposition 2.5 above tells us that, if is any classical -ary
code of length and size such that the minimum distance
of its dual is greater than or equal to , then any coset of is
an orthogonal array of level and of strength exactly . In
other words, there are exactly vectors

for any fixed . Thus, for , the sum
on the right hand side of (IV.17) is , which is independent
of . By Theorem 4.1 we have an asymmetric quantum code
with parameters .

Theorem 4.5: Let be an even power of a prime .
For , let be a classical additive code with parameters

. If , then there exists an asymmetric
quantum code with parameters where

.
Proof: We take in Theorem 4.4 above. Since

, we have , where is an -sub-
module of and is the direct sum so that . Let

, where . Then

Theorem 4.5 can now be used to construct quantum codes. In
this paper, all computations are done in MAGMA [5] version
V2.16-5.

The construction method of Theorem 4.5 falls into what
some have labelled the CSS-type construction. It is noted in [32,
Lemma 3.3] that any CSS-type -linear -code
satisfies the quantum version of the Singleton bound

This bound is conjectured to hold for all asymmetric quantum
codes. Some of our codes in later sections attain

. They are printed in boldface throughout the tables and
examples.

V. ADDITIVE CODES OVER

Let . For , , the
conjugate of . By definition, an additive code of length
over is a free -module. It has size for some .
As an -module, has a basis consisting of basis vectors. A
generator matrix of is an matrix with entries elements
of whose rows form a basis of .

Additive codes over equipped with the trace Hermitian
inner product have been studied primarily in connection to de-
signs (e.g., [26]) and to stabilizer quantum codes (e.g., [16]
and [24, Sec. 9.10]). It is well known that if is an additive

-code, then is an additive -code.
To compute the weight enumerator of we use (II.5) with

(V.1)

Remark 5.1: If the code is -linear with parameters
, then . This is because is of size

which is also the size of . Alternatively,
one can invoke [11, Th. 3].
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TABLE I
BEST-KNOWN ADDITIVE SELF-DUAL CODES OVER FOR AND THE RESULTING ASYMMETRIC QUANTUM CODES

From here on, we assume the trace Hermitian inner product
whenever additive codes are discussed and the Hermitian
inner product whenever -linear codes are used.

Two additive codes and over are said to be equiva-
lent if there is a map sending the codewords of one code onto the
codewords of the other where the map consists of a permutation
of coordinates, followed by a scaling of coordinates by elements
of , followed by a conjugation of the entries of some of the
coordinates.

VI. CONSTRUCTION FROM EXTREMAL OR OPTIMAL ADDITIVE

SELF-DUAL CODES OVER

As a direct consequence of Theorem 4.5, we have the fol-
lowing result.

Theorem 6.1: If is an additive self-dual code of parame-
ters , then there exists an asymmetric
quantum code with .

Additive self-dual codes over exist for any length
since the identity matrix clearly generates a self-dual

-code. Any linear self-dual -code is also
an additive self-dual -code.

Definition 6.2: A self-dual -code is Type II if all
of its codewords have even weight. If has a codeword of odd
weight, then is Type I.

It is known (see [31, Sec. 4.2]) that Type II codes of length
exist only if is even and that a Type I code is not -linear.
There is a bound in [31, Th. 33] on the minimum weight of an
additive self-dual code. If and are the minimum weights
of Type I and Type II codes of length , respectively, then

if
if

otherwise

(VI.1)

A code that meets the appropriate bound is called extremal.
If a code is not extremal yet no code of the given type can exist
with a larger minimum weight, then we call the code optimal.

The complete classification, up to equivalence, of additive
self-dual codes over up to can be found in [13]. The

classification of extremal codes of lengths and
is presented in [33]. Many examples of good additive codes for
larger values of are presented in [19], [33], and [34].

Table I summarizes the results thus far and lists down the
resulting asymmetric quantum codes for lengths up to .
The subscripts and indicates the types of the codes. The
superscripts indicate the fact that the minimum distance
is extremal, optimal, and best-known (not necessarily extremal
or optimal), respectively. The number of codes for each set of
given parameters is listed in the column under the heading num.

Remark 6.3:
1) The unique additive -code is also known as

dodecacode. It is well known that the best Hermitian self-
dual linear code is of parameters .

2) In [34], four so-called additive circulant graph codes of pa-
rameters are constructed without classifica-
tion. It is yet unknown if any of these four codes is inequiv-
alent to the one listed in [19].

VII. CONSTRUCTION FROM SELF-ORTHOGONAL

LINEAR CODES

It is well known (see [24, Th. 1.4.10]) that a linear code
having the parameters is Hermitian self-orthogonal if
and only if the weights of its codewords are all even.

Theorem 7.1: If is a Hermitian self-orthogonal code of
parameters , then there exists an asymmetric quantum
code with parameters , where

(VII.1)

Proof: Seen as an additive code, is of parameters
with being the code seen as an

additive code (see Remark 5.1). Applying
Theorem 4.5 by taking to satisfy
completes the proof.

Example 7.2: Let be an even positive integer. Consider the
repetition code with weight enumerator . Since
the weights are all even, this -linear code is Hermitian self-
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TABLE II
ASYMMETRIC QECC FROM CLASSIFIED HERMITIAN SELF-ORTHOGONAL

-LINEAR CODES IN [9]

orthogonal. We then have a quantum code with parameters
.

Table II presents the resulting asymmetric quantum codes
based on the classification of self-orthogonal -linear codes

TABLE III
ASYMMETRIC QECC FROM HERMITIAN SELF-DUAL -LINEAR CODES

BASED ON [18, TABLE7] FOR

of length up to 29 and of dimensions 3 up to 6 as presented
in [9]. Bouyukliev [6] shared with us the original data used in
the said classification plus some additional results for lengths
30 and 31.

Given fixed length and dimension , we only con-
sider -codes with maximal possible value for the
minimum distances of their duals. For example, among 12
self-orthogonal -codes, there are 4 distinct codes with

while the remaining 8 codes have . We take
only the first four codes.

The number of distinct codes that can be used for the con-
struction of the asymmetric quantum codes for each set of given
parameters is listed in the fourth column of the table.

Comparing some entries in Table II, say, numbers 5 and 6,
we notice that the -code has better parameters than
the -code does. Both codes are included in the table
in the interest of preserving the information on precisely how
many of such codes there are from the classification result.

In [18, Table 7], examples of -linear self-dual codes for
even lengths are presented. Table III lists down the
resulting asymmetric quantum codes for .

For parameters other than those listed in Table II, we do not
have complete classification just yet. The Q-extension program
described in [7] can be used to extend the classification effort
given sufficient resources. Some classifications based on the op-
timality of the minimum distances of the codes can be found in
[8] and in [36], although when used in the construction of asym-
metric quantum codes using our framework, they do not yield
good relative to the length .

Many other -linear self-orthogonal codes are known. Ex-
amples can be found in [11, Table II], [28], as well as from the
list of best known linear codes (BKLC) over as explained
in [17].

Table IV presents more examples of asymmetric quantum
codes constructed based on known self-orthogonal linear codes
up to length . The list of codes in Table IV is by no
means exhaustive. It may be possible to find asymmetric codes
with better parameters.

For lengths larger than , [20] provides some known
-linear codes of dimension 6 that belong to the class of quasi-

twisted codes. Based on the weight distribution of these codes
[20, Table 3], we know which ones of them are self-orthogonal.
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TABLE IV
ASYMMETRIC QECC FROM HERMITIAN SELF-ORTHOGONAL

-LINEAR CODES FOR

Applying Theorem 4.5 to them yields the 12 quantum codes
listed in Table V.

TABLE V
ASYMMETRIC QECC FROM HERMITIAN SELF-ORTHOGONAL

QUASI-TWISTED CODES FOUND IN [20]

Another family of codes that we can use is the MacDonald
codes, commonly denoted by with . The Mac-
Donald codes are linear codes with parameters

. Some historical background and a con-
struction of their generator matrices can be found in [4]. It is
known that these codes are two-weight codes. That is, they have
nonzero codewords of only two possible weights. In [10, Fig-
ures 1a and 2a], the MacDonald codes are labeled SU1. There
are codewords of weight and
codewords of weight .

The MacDonald codes satisfy the equality of the Griesmer
bound which says that, for any -code,

(VII.2)

Example 7.3: For , the MacDonald
codes are self-orthogonal since both and
are even. For a -code , we
know (see [4, Lemma 4]) that . Using and
applying Theorem 7.1, we get an asymmetric quantum code
with parameters

For , we have the following more explicit examples.
The weight enumerator is written in an abbreviated form. For
instance, means that the corresponding
code has 1 codeword of weight 0, 60 codewords of weight 12
and 3 codewords of weight 16.

1) For , we have the -code with
weight enumerator . The resulting
asymmetric QECC is a -code. This code is
listed as number 31 in Table II.

2) For , we have the -code with
weight enumerator . The resulting
asymmetric QECC is a -code.

3) For , we have the -code with
weight enumerator . The re-
sulting asymmetric QECC is a -code.

4) For , we have the -code with
weight enumerator . The re-
sulting asymmetric QECC is a -code.

5) For , we have the -code with
weight enumerator . The re-
sulting asymmetric QECC is a -code.
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TABLE VI
ASYMMETRIC QECC FROM NESTED CYCLIC CODES

6) For , we have the -code
with weight enumerator .

The resulting asymmetric QECC is a -
code.
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TABLE VII
ASYMMETRIC QECC FROM NESTED CYCLIC CODES CONTINUED

VIII. CONSTRUCTION FROM NESTED LINEAR CYCLIC CODES

The asymmetric quantum codes that we have constructed so
far have . From this section onward, we construct asym-
metric quantum codes with . In most cases, .

It is well established that, under the natural correspondence
of vectors and polynomials, the study of cyclic codes in is
equivalent to the study of ideals in the residue class ring

The study of ideals in depends on factoring . Basic
results concerning and the properties of cyclic codes can be
found in [24, Ch. 4] or [29, Ch. 7]. A cyclic code is a subset
of a cyclic code of equal length over if and only if the
generator polynomial of divides the generator polynomial of

. Both polynomials divide . Once the factorization of
into irreducible polynomials is known, the nestedness

property becomes apparent.
We further require that be relatively prime to 4 to ex-

clude the so-called repeated-root cases since the resulting cyclic
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codes when is not relatively prime to 4 have inferior param-
eters. See [12, p. 976] for comments and references regarding
this matter.

Theorem 8.1: Let and be cyclic codes of parameters
and , respectively, with , then

there exists an asymmetric quantum code with parameters
, where

(VIII.1)

Proof: Apply Theorem 4.5 by taking and
. Since is an code, is an additive code

of parameters . Similarly, is an additive code of
parameters . The values for and can be ver-
ified by simple calculations.

Example 8.2: Let be the repetition -code gener-
ated by the polynomial . If we take
in Theorem 8.1, then we get a quantum code with parameters

.
Tables VI and VII list examples of asymmetric quantum

codes constructed from nested cyclic codes up to . We
exclude the case since the parameters of the resulting
quantum code are which are never better
than those of the code in Example 8.2. Among the resulting
codes of equal length and dimension, we choose one with
the largest values. For codes with equal length and
distances, we choose one with the largest dimension.

IX. CONSTRUCTION FROM NESTED LINEAR BCH CODES

It is well known (see [12, Sec. 3]) that finding the min-
imum distance or even finding a good lower bound on the
minimum distance of a cyclic code is not a trivial problem.
One important family of cyclic codes is the family of BCH
codes. Their importance lies on the fact that their designed
distance provides a reasonably good lower bound on the min-
imum distance. For more on BCH codes, [24, Ch. 5] can be
consulted.

The BCH Code constructor in MAGMA can be used to find
nested codes to produce more asymmetric quantum codes.
Table VIII lists down the BCH codes over for to

with coprime to 4. For a fixed length , the codes are
nested, i.e., a code with dimension is a subcode of a code

with dimension . The construction process can be
done for larger values of if so desired.

The range of the designed distances that can be supplied into
MAGMA to come up with the code and the actual minimum
distance of are denoted by and , respectively. The
minimum distance of , which is needed in the computa-
tion of , is denoted by . To save space, the BCH

repetition code generated by the all one vector is
not listed down in the table although this code is used in the
construction of many asymmetric quantum codes presented in
Table IX.

TABLE VIII
BCH CODES OVER WITH FOR

Table IX presents the resulting asymmetric quantum codes
from nested BCH Codes based on Theorem 4.5. The inner codes
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TABLE IX
ASYMMETRIC QECC FROM BCH CODES

are listed in the column denoted by Code while the cor-
responding larger codes are put in the column denoted by Code

. The values for are derived from the last column of
Table VIII while keeping Proposition 4.2 in mind.



5548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

X. ASYMMETRIC QUANTUM CODES FROM NESTED

ADDITIVE CODES OVER

To show the gain that we can get from Theorem 4.5 over the
construction which is based solely on -linear codes, we ex-
hibit asymmetric quantum codes which are derived from nested
additive codes.

An example of asymmetric quantum code with can
be derived from a self-orthogonal additive cyclic code listed as
Entry 3 in [11, Table I]. The code is of parameters
yielding a quantum code by Theorem 4.5. In a
similar manner, a quantum code can be derived
from Entry 5 of the same table.

Another very interesting example is the dode-
cacode mentioned in Remark 6.3. Its generator matrix is
given in (X.1).

Let be matrices formed, respectively, by deleting
the last 4 and 8 rows of . Construct two additive codes

with generator matrices and , respec-
tively. Applying Theorem 4.5 with and
yields an asymmetric quantum code with parameters

. Performing the same process to results
in a -code

(X.1)
The next three subsections present more systematic ap-

proaches to finding good asymmetric quantum codes based on
nested additive codes.

A. Construction From Circulant Codes

As is the case with linear codes, an additive code is said to
be cyclic if, given a codeword , the cyclic shift of is
also in . It is known (see [11, Th. 14]) that any additive cyclic

-code has at most two generators. A more detailed
study of additive cyclic codes over is given in [23].

Instead of using additive cyclic codes, a subfamily which is
called additive circulant -code in [19] is used for ease
of computation. An additive circulant code has as a generator
matrix the complete cyclic shifts of just one codeword

. We call the cyclic development of . More
explicitly, is given by

...
...

...
. . .

...
...

(X.2)

TABLE X
ASYMMETRIC QUANTUM CODES FROM ADDITIVE

CIRCULANT CODES FOR

To generate a subcode of a circulant extremal self-dual code
we delete the rows of its generator matrix starting from

the last row, the first row being the generating codeword . We
record the best possible combinations of the size of the resulting
code and . To save space, only new codes or codes
with better parameters than those previously constructed are
presented. Table X summarizes the finding for . Zeros on
the right of each generating codeword are omitted. The number
of last rows to be deleted to obtain the desired subcode is given
in the column denoted by del.

B. Construction From 4-Circulant and Bordered 4-Circulant
Codes

Following [19], a 4-circulant additive -code of even
length has the following generator matrix:

(X.3)

where is an identity matrix of size and are
circulant matrices of the form given in (X.2).

Starting from a generator matrix of an additive 4-circu-
lant code , a matrix is constructed by deleting the last
rows of to derive an additive subcode of . For
we found three asymmetric quantum codes which are either new
or better than the ones previously constructed. Table XI presents
the findings. Under the column denoted by we list down
the generating codewords for the matrices and , in that
order.
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TABLE XI
ASYMMETRIC QUANTUM CODES FROM

ADDITIVE 4-CIRCULANT CODES FOR

TABLE XII
ASYMMETRIC QUANTUM CODES FROM ADDITIVE

BORDERED 4-CIRCULANT CODES FOR

Let and be the transpose of . A bordered
4-circulant additive -code of odd length has the fol-
lowing generator matrix:

(X.4)

where is one of , or , and are circulant
matrices.

We perform the procedure of constructing a subcode of
by deleting the rows of , starting from the last row. For

, the five asymmetric quantum codes, either new or of
better parameters, found can be seen in Table XII. As before,
under the column denoted by we list down the generating
codewords for the matrices and , in that order.

Remark 10.1: A similar procedure has been done to the gen-
erator matrices of s-extremal additive codes found in [3] and
[34] as well as to the formally self-dual additive codes of [21].
So far we have found no new or better asymmetric codes from
these sources.

Deleting the rows of in a more careful way than just
doing so consecutively starting from the last row may yield new
or better asymmetric quantum codes. The process, however, is
more time consuming.

Consider the following instructive example taken from bor-
dered 4-circulant codes. Let

Let be a bordered 4-circulant code of length with
generator matrix in the form given in (X.4) with and
with the circulant matrices generated by, respectively,

Use the rows of indexed by the set as the rows of ,
the generator matrix of a subcode of . Using , a

asymmetric quantum code can be constructed.
If we use the same code but is now with rows

3,6,7,9, and 11 deleted, then, in a similar manner, we get a
code .

C. Construction From Two Proper Subcodes

In the previous two subsections, the larger code is an addi-
tive self-dual code while the subcode of is constructed by
deleting rows of . New or better asymmetric quantum codes
can be constructed from two nested proper subcodes of an ad-
ditive self-dual code. The following two examples illustrate this
fact.

Example 10.2: Let be a self-dual Type II additive code of
length 22 with generating vector

Let be the generator matrix of from the cyclic devel-
opment of . Derive the generator matrices of and

of by deleting, respectively, the last 10 and 11 rows of
. Applying Theorem 4.5 on yields an asymmetric

-code .
Example 10.3: Let be a self-dual Type I additive code of

length 25 labeled in [19] with generating vector

Let be the generator matrix of from the cyclic develop-
ment of . Derive the generator matrices of and of
by deleting, respectively, the last 5 and 6 rows of . An asym-
metric -code is hence constructed.

XI. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we establish a new method of deriving asym-
metric quantum codes from additive, not necessarily linear,
codes over the field with an even power of a prime .

Many asymmetric quantum codes over are constructed.
These codes are different from those listed in prior works (see
[1, Ch. 17] and [32]) on asymmetric quantum codes.

There are several open directions to pursue. On -additive
codes, exploring the notion of nestedness in tandem with the
dual distance of the inner code is a natural continuation if we are
to construct better asymmetric quantum codes. An immediate
project is to understand such relation in the class of cyclic (not
merely circulant) codes studied in [23].

Extension to codes over or is another option worth
considering. More generally, establishing propagation rules
may help us find better bounds on the parameters of asymmetric
quantum codes.
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