Optimal Codes in the Enomoto-Katona Space

Yeow Meng Chee, Han Mao Kiah, Hui Zhang and Xiande Zhang
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Abstract

Coding in a new metric space, the Enomoto-Katona space, is considered recently in connection to the study of implication structures of functional dependencies and their generalizations in relational databases. The central problem here is the determination of $C(n, k, d)$, the size of an optimal code of length n, weight k, and distance d in the Enomoto-Katona space. The value of $C(n, k, d)$ is known only for some congruence classes of n when $(k, d) \in\{(2,3),(3,5)\}$. In this paper, we obtain new infinite families of optimal codes in the Enomoto-Katona space. In particular, $C(n, k, 2 k-1)$ is determined for all sufficiently large n satisfying either $n \equiv 1 \bmod k$ and $n(n-1) \equiv 0 \bmod 2 k^{2}$, or $n \equiv 0 \bmod k$.

1. Introduction

The problem we consider is motivated by implication structures of functional dependencies in relational databases.
Let A be a set of n attributes. Each attribute $x \in A$ is associated a set Ω_{x}, called its domain. A relation is a finite set R of n-tuples (called data items) so that $R \subseteq \times_{x \in A} \Omega_{x}$. A relation R of m data items may be visualized as an $m \times n$ array (called a table), with columns indexed by A, such that each row corresponds to a data item. Denote this table by $R(A)$. Formally, if $R=\left\{\left(\mathrm{d}_{i, x}\right)_{x \in A}: 1 \leq i \leq m\right\}$, then the cell in $R(A)$ with row index i and column index x has entry $\mathrm{d}_{i, x}$. A relational database is a set of tables, where tables may be defined over different attribute sets. Relational database, introduced by Codd [1], is the first database with a rigorous mathematical foundation, and remains the predominant choice for data storage and management today.

For a given table $R(A)$ and $X \subseteq A$, the X-value of a data item $\mathrm{d}=\left(\mathrm{d}_{x}\right)_{x \in A}$ in $R(A)$ is the $|X|$-tuple $\left.\mathrm{d}\right|_{X}=\left(\mathrm{d}_{x}\right)_{x \in X}$. Let $X \subseteq A$ and $y \in A$ for a given table $R(A)$. We say that y (functionally) depends ${ }^{1}$ on X, written $X \rightarrow y$, if no two rows of $R(A)$ agree in X but differ in y. In other words, if the X-value of a data item is known, then its $\{y\}$-value can be determined with certainty. Identifying functional dependencies is important in relational database design [2]-[5].

Demetrovics, Katona, and Sali [6] generalized functional dependencies as follows.

Definition 1.1. Let $X \subseteq A$ and $y \in A$ for a given table $R(A)$. Then for positive integers $p \leq q$, we say that $y(p, q)$-depends on X, written $X \xrightarrow{(p, q)} y$, if there do not exist $q+1$ data items (rows) $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{q+1}$ of $R(A)$ such that
(i) $\left|\left\{\left.\mathrm{d}_{i}\right|_{\{x\}}: 1 \leq i \leq q+1\right\}\right| \leq p$ for each $x \in X$, and
(ii) $\left|\left\{\left.\mathrm{d}_{i}\right|_{\{y\}}: 1 \leq i \leq q+1\right\}\right|=q+1$.

Our usual concept of functional dependency is equivalent to the special case of $(1,1)$-dependency. When functional

[^0]dependencies are not known, (p, q)-dependencies identified in a relational database can still be exploited for improving storage efficiency [6]-[9].

Let $p \leq q$ be positive integers. For a table $R(A)$, define the operation $J_{R(A)}^{(p, q)}: 2^{A} \rightarrow 2^{A}$ so that for $X \subseteq A$, we have

$$
J_{R(A)}^{(p, q)}(X)=\{y \in A: X \xrightarrow{(p, q)} y\}
$$

We call $J_{R(A)}^{(p, q)}$ the (p, q)-implication structure of $R(A)$, since it specifies the subsets of attributes that are implied by some (p, q)-dependency of $R(A)$. A function $J: 2^{A} \rightarrow 2^{A}$ is said to be (p, q)-representable if there exists a table $R(A)$ such that $J_{R(A)}^{(p, q)}=J$.

The function $J_{R(A)}^{(1,1)}$ is a closure operator on A. Armstrong [2] showed that the converse is also true: any closure operator $J: 2^{A} \rightarrow 2^{A}$ is $(1,1)$-representable. This is, however, not true for general p and q [6]. When a function J is (p, q) representable, there is interest in determining the table $R(A)$ with the least number of rows such that $J_{R(A)}^{(p, q)}=J$ [7]-[9]. Consideration of this problem, particularly when for fixed k, the function $J_{n}^{k}: 2^{A} \rightarrow 2^{A}$ takes the form

$$
J_{n}^{k}(X)= \begin{cases}X, & \text { if }|X|<k \\ A, & \text { otherwise }\end{cases}
$$

has led to coding-theoretic problems in a new metric space, called the Enomoto-Katona space [10].

A. The Enomoto-Katona Space

If X is a finite set, the set of all k-subsets of X is denoted $\binom{X}{k}$. Let n and k be positive integers such that $2 k \leq n$ and let X be an n-set. Consider the set

$$
\mathcal{E}(X, k)=\left\{\{A, B\} \subseteq\binom{X}{k}: A \cap B=\varnothing\right\}
$$

of all unordered pairs of disjoint k-subsets of X. Elements of $\mathcal{E}(X, k)$ are called set-pairs. The function $\mathrm{d}_{\mathcal{E}}: \mathcal{E}(X, k) \times$ $\mathcal{E}(X, k) \rightarrow\{0,1, \ldots, 2 k\}$ given by
$\mathrm{d}_{\mathcal{E}}(\{A, B\},\{S, T\})=\min \{|A \backslash S|+|B \backslash T|,|A \backslash T|+|B \backslash S|\}$ is a metric of $\mathcal{E}(X, k)$ and the finite metric space $\left(\mathcal{E}(X, k), \mathrm{d}_{\mathcal{E}}\right)$ is called the Enomoto-Katona space.
An Enomoto-Katona code (or EK code, in short), is a set $\mathcal{C} \subseteq \mathcal{E}(X, k)$. More specifically, \mathcal{C} is an EK code of length n, weight k, and distance d, or (n, k, d)-EK code, if $\mathrm{d}_{\mathcal{E}}(\mathrm{u}, \mathrm{v}) \geq d$ for all distinct $u, v \in \mathcal{C}$.

The following example gives a construction of a table from an EK-code (see [8], [11]).

Example 1.1. Consider the following (9, 2, 3)-EK code \mathcal{C}, where $X=\mathbb{Z} / 9 \mathbb{Z}$.

$$
\begin{array}{lll}
c_{1}=\{\{0,1\},\{2,4\}\}, & c_{2}=\{\{1,2\},\{3,5\}\}, & c_{3}=\{\{2,3\},\{4,6\}\}, \\
c_{4}=\{\{3,4\},\{5,7\}\}, & c_{5}=\{\{4,5\},\{6,8\}\}, & c_{6}=\{\{5,6\},\{7,0\}\}, \\
c_{7}=\{\{6,7\},\{8,1\}\}, & c_{8}=\{\{7,8\},\{0,2\}\}, & c_{9}=\{\{8,0\},\{1,3\}\} .
\end{array}
$$

Let A be a set of nine attributes, given by \mathcal{C}. We construct a table $R(A)$ with nine rows indexed by X whose implication structure $J_{R(A)}^{(1,1)}$ is precisely J_{9}^{2}. Each set-pair $\{A, B\}$ constructs a column in the following manner: place 1 at rows indexed by elements of A, place 2 at rows by elements of B and place distinct elements from $\mathbb{Z}_{\geq 3}$ for the remaining rows.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}
0	1	3	3	3	3	2	3	2	1
1	1	1	4	4	4	3	2	3	2
2	2	1	1	5	5	4	4	2	3
3	3	2	1	1	6	5	5	4	2
4	2	4	2	1	1	6	6	5	4
5	4	2	5	2	1	1	7	6	5
6	5	5	2	6	2	1	1	7	6
7	6	6	6	2	7	2	1	1	7
8	7	7	7	7	2	7	2	1	1

The maximum size of an (n, k, d)-EK code is denoted by $C(n, k, d)$. An (n, k, d)-EK code of size $C(n, k, d)$ is said to be optimal. The central problem is to determine $C(n, k, d)$.

B. Problem Status

Trivially, $C(n, k, 1)=\binom{n}{k}\binom{n-k}{k} / 2, C(n, k, 2 k)=\lfloor n / 2 k\rfloor$, so we assume $2 \leq d \leq 2 k-1$ for the rest of this paper.

General upper and lower bounds on the size of codes in the Enomoto-Katona space have been obtained by Brightwell and Katona [12]. In particular, they showed for $1 \leq d \leq 2 k \leq n$,

$$
\begin{equation*}
C(n, k, d) \leq \frac{\prod_{i=n-2 k+d}^{n} i}{2\left(\prod_{i=\lceil(d+1) / 2\rceil}^{k} i\right) \cdot\left(\prod_{i=\lfloor(d+1) / 2\rfloor}^{k} i\right)} \tag{1}
\end{equation*}
$$

Brightwell and Katona [12] also showed that $C(n, k, d)=$ $\Theta\left(n^{2 k-d+1}\right)$ for fixed k and d. Bollobás et al. [13] (see also [11]) subsequently established that the upper bound in (1) is asymptotically tight.
Theorem 1.1 (Bollobás et al. [13]).
$\lim _{n \rightarrow \infty} \frac{C(n, k, d)}{n^{2 k-d+1}}=\frac{1}{2 \cdot\left(\prod_{i=\lceil(d+1) / 2\rceil}^{k} i\right) \cdot\left(\prod_{i=\lfloor(d+1) / 2\rfloor}^{k} i\right)}$.
The best known upper bound is due to Quistorff [14].
Theorem 1.2 (Quistorff Bound [14]). Suppose $k-d+1 \leq$ $e \leq \min \{k, 2 k-d\}$. Then

$$
C(n, k, d) \leq\left\lfloor\frac{\binom{n}{e}}{2\binom{k}{e}}\left\lfloor\frac{\binom{n-e}{2 k-d-e+1}}{\binom{k}{2 k-d-e+1}}\right\rfloor\right\rfloor
$$

Only the following exact values of $C(n, k, d)$ are known.
Theorem 1.3 (Bollobás et al. [13]).

$$
\begin{array}{ll}
C(n, 2,3)=\frac{n(n-1)}{8}, & \text { if } n \equiv 1 \text { or } 9 \bmod 72 \\
C(n, 3,5)=\frac{n(n-1)}{18}, & \text { if } n \equiv 1 \text { or } 19 \bmod 342
\end{array}
$$

C. Contributions

Our contributions in this paper are as follows.
Main Theorem. For any fixed $k \geq 2$, we have

$$
C(n, k, 2 k-1)=\left\lfloor\frac{n}{2 k}\left\lfloor\frac{n-1}{k}\right\rfloor\right\rfloor
$$

for all sufficiently large n satisfying
(i) $n \equiv 1 \bmod k$ and $n(n-1) \equiv 0 \bmod 2 k^{2}$, or
(ii) $n \equiv 0 \bmod k$.

Previous asymptotic results are known only when $k \in\{2,3\}$. In addition,
(i) We determine the exact value of $C(n, 2, d)$ completely. Previously, the value of $C(n, 2,2)$ is unknown and $C(n, 2,3)$ is determined only when $n \equiv 1$ or $9 \bmod 72$.
(ii) The exact value of $C(n, 3,5)$ is determined for n belonging to a set of density $4 / 9$. Previously, the exact value of $C(n, 3,5)$ is known only for $n \equiv 1$ or $19 \bmod 342$, a set of density $1 / 171$.
These results are obtained by constructing EK codes (or their equivalent combinatorial objects) whose sizes meet the Quistorff bound. Owing to space constraints, we prove the Main Theorem and determine $C(n, 2,2)$ in this paper, leaving the proofs for the remaining results to the full paper.

2. EK Packings and Designs

Our approach is based on combinatorial design theory. In this section, we introduce necessary concepts and establish connections to EK codes.

Throughout the rest of this paper, X denotes a set of size n. For a positive integer $k,[k]$ denotes the set of integers $\{1,2, \ldots, k\}$, while $\mathbb{Z}_{\geq k}$ denotes the set of integers at least k. The set of all (ordered) k-tuples of a finite set X with distinct components is denoted $\overline{\binom{X}{k}}$.

We use angled brackets \langle and \rangle for multisets. We sometimes use the exponential notation to describe multisets so that a multiset where an element g_{i} appears s_{i} times, $i \in[t]$, is denoted $g_{1}^{s_{1}} g_{2}^{s_{2}} \cdots g_{t}^{s_{t}}$.

A set system is a pair $\mathfrak{S}=(X, \mathcal{A})$, where X is a finite set of points and $\mathcal{A} \subseteq 2^{X}$. Elements of \mathcal{A} are called blocks. The order of \mathfrak{S} is the number of points in X, and the size of \mathfrak{S} is the number of blocks in \mathcal{A}. Let $K \subseteq \mathbb{Z}_{\geq 0}$. The set system (X, \mathcal{A}) is said to be K-uniform if $|A| \in K$ for all $A \in \mathcal{A}$.

Let $2 \leq t<2 k$ and $0 \leq e \leq \min \{k,\lfloor t / 2\rfloor\}$. We say that the tuple $\left(x_{1}, x_{2}, \ldots, x_{t}\right) \in \overline{\binom{X}{t}}$ is (e, t)-contained in a set-pair $\{A, B\} \in \mathcal{E}(X, k)$ if either $\left\{x_{1}, x_{2}, \ldots, x_{e}\right\} \subseteq A$ and $\left\{x_{e+1}, x_{e+2}, \ldots, x_{t}\right\} \subseteq B$, or $\left\{x_{1}, x_{2}, \ldots, x_{e}\right\} \subseteq B$ and $\left\{x_{e+1}, x_{e+2}, \ldots, x_{t}\right\} \subseteq A$.

Let $\mathcal{C} \subseteq \mathcal{E}(X, k)$. Then (X, \mathcal{C}) is an EK packing of strength t, or more precisely a $t-(n, k) E K$ packing ${ }^{2}$, if for $0 \leq e \leq$ $\lfloor t / 2\rfloor$, every t-tuple in $\overline{\binom{X}{t}}$ is (e, t)-contained in at most one set-pair in \mathcal{C}. A $t-(n, k) E K$ design is a $t-(n, k)$ EK packing satisfying the condition that for $e=\lfloor t / 2\rfloor$, every t-tuple in

[^1]$\overline{\binom{X}{t}}$ is (e, t)-contained in exactly one set-pair in \mathcal{C}. It is easy to see that if (X, \mathcal{C}) is a $t-(n, k)$ EK design, then
$$
|\mathcal{C}|=\frac{\binom{n}{t}\binom{t}{\lfloor t / 2\rfloor}}{2\binom{k}{\lfloor t / 2\rfloor}\binom{ k}{\lceil t / 2\rceil}} .
$$

EK packings of strength t are equivalent to EK codes of distance $2 k-t+1$, while EK designs of strength t give rise to optimal EK codes of distance $2 k-t+1$.
Proposition 2.1. Let $\mathcal{C} \subseteq \mathcal{E}(X, k)$. Then (X, \mathcal{C}) is a $t-(n, k)$ EK packing if and only if \mathcal{C} is an $(n, k, 2 k-t+1)$-EK code. Furthermore, if (X, \mathcal{C}) is a $t-(n, k) \mathrm{EK}$ design, then \mathcal{C} is an optimal $(n, k, 2 k-t+1)$-EK code.

Proof: Suppose (X, \mathcal{C}) is a $t-(n, k)$ EK packing and $\{A, B\},\{S, T\} \in \mathcal{C}$. We claim that $\mathrm{d}_{\mathcal{E}}(\{A, B\},\{S, T\}) \geq$ $2 k-t+1$. Suppose otherwise. Then without loss of generality, $|A \backslash S|+|B \backslash T| \leq 2 k-t$ and there exists a nonnegative $e \leq$ $\lfloor t / 2\rfloor, I \in\binom{X}{e}, J \in\binom{X}{t-e}$ such that $I \subseteq A \cap S$ and $J \subseteq B \cap T$. If $I=\left\{x_{1}, x_{2}, \ldots, x_{e}\right\}$ and $J=\left\{x_{e+1}, x_{e+2}, \ldots, x_{t}\right\}$, we see that $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ is (e, t)-contained in $\{A, B\}$ and $\{S, T\}$, contradicting the fact that (X, \mathcal{C}) is a $t-(n, k)$ EK packing.

Conversely, suppose \mathcal{C} is an $(n, k, 2 k-t+1)$-EK code. If (X, \mathcal{C}) is not a $t-(n, k)$ EK packing, then there exists a nonnegative $e \leq\lfloor t / 2\rfloor,\left(x_{1}, x_{2}, \ldots, x_{t}\right) \in \overline{\binom{X}{t}}$, and $\{A, B\},\{S, T\} \in \mathcal{C}$ such that $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ is (e, t) contained in $\{A, B\}$ and $\{S, T\}$. Without loss of generality, $\left\{x_{1}, x_{2}, \ldots, x_{e}\right\} \subseteq A \cap S$ and $\left\{x_{e+1}, x_{e+2}, \ldots, x_{t}\right\} \subseteq B \cap T$. Hence, $|A \backslash S|+|B \backslash T| \leq 2 k-(e+t-e)=2 k-t$, and consequently $\mathrm{d}_{\mathcal{E}}(\{A, B\},\{S, T\}) \leq 2 k-t$, contradicting the fact that \mathcal{C} is an $(n, k, 2 k-t+1)$-EK code.

Finally, when (X, \mathcal{C}) is a $t-(n, k)$ EK design, \mathcal{C} is an optimal $(n, k, 2 k-t+1)$-EK code, since $|\mathcal{C}|$ meets the Quistorff bound with $e=\lfloor t / 2\rfloor$.

In view of Proposition 2.1, our strategy in constructing optimal EK codes (and hence determining $C(n, k, d)$) is to construct equivalent EK packings and designs of sizes meeting the Quistorff bound. We introduce next EK group divisible designs and their connections to EK codes and EK packings.

A. EK Group Divisible Designs

Let $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{s}\right\}$ be a partition of an n-set X and $\mathcal{C} \subseteq \mathcal{E}(X, k)$. Then $(X, \mathcal{G}, \mathcal{C})$ is an EK group divisible design (or EKGDD, in short) if for all $(x, y) \in \overline{\binom{X}{2}}$ such that $\{x, y\} \nsubseteq G_{i}$ for all $i \in[s]$, we have
(i) (x, y) is $(1,2)$-contained in exactly one set-pair $\{A, B\}$,
(ii) (x, y) is $(0,2)$-contained in at most one set-pair $\{A, B\}$.

In addition, $\left|G_{i} \cap(A \cup B)\right| \leq 1$ for all $i \in[s]$ and $\{A, B\} \in \mathcal{C}$. Such an EKGDD is more precisely called a (k, T)-EKGDD, where $T=\langle | G_{i}|: i \in[s]\rangle$.
A 2-($n, k)$ EK design can be regarded as a $\left(k, 1^{n}\right)$-EKGDD, where each group contains just a single point. Furthermore, a $\left(k, g_{1} g_{2} \cdots g_{s}\right)$-EKGDD can be regarded as a $2-\left(k, \sum_{i=1}^{s} g_{i}\right)$ EK packing, and hence as a $\left(\sum_{i=1}^{s} g_{i}, k, 2 k-1\right)$-EK code. In
addition, as the following shows, certain classes of EKGDD give optimal EK codes.

Proposition 2.2. Suppose there exists a $\left(k, k^{s}\right)$-EKGDD $(X, \mathcal{G}, \mathcal{C})$. Then \mathcal{C} is an optimal $(k s, k, 2 k-1)$-EK code.

Proof: Observe \mathcal{C} is a $(k s, k, 2 k-1)$-EK code since (X, \mathcal{C}) is an 2- $(k s, k)$ EK packing. There are $(k s) \cdot(k s-k)$ ordered pairs $(x, y) \in \overline{\binom{X}{2}}$ where $\{x, y\}$ does not belong to any group. In addition, we have $2 k^{2}$ ordered pairs in $\overline{\binom{X}{2}}$ that are $(1,2)$-contained in each set-pair. Hence, the code \mathcal{C} is of size $s(s-1) / 2$, which meets the Quistorff bound.

3. $C(n, k, 2 k-1)$ FOR SUfficiently Large n

We show that a 2-($n, k)$ EK design and a $\left(k, k^{n}\right)$-EKGDD exist when n belongs to certain congruence classes, provided n is sufficiently large. Our proof is an application of decompositions of edge-colored directed graphs (digraphs).
An edge-colored directed graph is a triple $G=(V, C, E)$, where V is a finite set of vertices, C is a finite set of colors and E is a subset of $\overline{\binom{V}{2}} \times C$. Members of E are called edges. The complete edge-colored digraph on n vertices with r colors, denoted by $K_{n}^{(r)}$, is the edge-colored digraph (V, C, E), where $|V|=n,|C|=r$, and $E=\overline{\binom{V}{2}} \times C$.

A family \mathcal{F} of edge-colored subgraphs of an edge-colored digraph K is a decomposition of K if every edge of K belongs to exactly one member of \mathcal{F}. Given an edge-colored digraph G, a decomposition \mathcal{F} of K is a G-decomposition of K if each edge-colored digraph in \mathcal{F} is isomorphic to G.

Lamken and Wilson [15] studied the existence of G decompositions of $K_{n}^{(r)}$ and showed that for fixed G and r, a G-decomposition exists for sufficiently large n under certain conditions. To state the theorem, we require more concepts.

Consider an edge-colored digraph $G=(V, C, E)$ with $|C|=r$. Let $((u, v), c) \in E$ denote a directed edge from u to v, colored by c. For any vertex u and color c, define the indegree and outdegree of u with respect to c as follows:

$$
\begin{aligned}
\operatorname{in}_{c}(u) & =|\{v:((v, u), c) \in E\}| \\
\operatorname{out}_{c}(u) & =|\{v:((u, v), c) \in E\}|
\end{aligned}
$$

Then for vertex u, we define the degree vector of u, denoted by $\boldsymbol{\delta}(u)$, to be the vector of length $2 r$. That is, $\boldsymbol{\delta}(u)=$ $\left(\operatorname{in}_{c}(u) \text {, out }{ }_{c}(u)\right)_{c \in C}$. Define $\alpha(G)$ to be the least positive integer t such that (t, t, \ldots, t) is an integral linear combination of the vectors in $\{\boldsymbol{\delta}(u): u \in V\}$. The following is due to Lamken and Wilson [15].

Theorem 3.1 (Lamken and Wilson [15, Theorem 1.1]). Let G be an edge-colored digraph with r colors and m edges of each of r different colors. There exists a constant n_{0} such that there is G-decomposition of $K_{n}^{(r)}$ for all $n \geq n_{0}$ satisfying both

$$
n(n-1) \equiv 0 \bmod m \text { and } n-1 \equiv 0 \bmod \alpha(G)
$$

Now for fixed $k \geq 2$ define the edge-colored digraph $G_{k}=$ $\left(V_{k}, C_{k}, E_{k}\right)$, where

$$
\begin{aligned}
V_{k} & =\left\{i_{j}: i \in[k], j \in[2]\right\}, \\
C_{k} & =\{\bullet, \bullet\}, \\
E_{k} & =\left\{\left(\left(i_{r}, j_{s}\right), \bullet\right): i, j \in[k],(r, s) \in\{(1,2),(2,1)\}\right\} \\
& \cup\left\{\left(\left(i_{r}, i_{s}\right), \bullet\right): i \in[k],(r, s) \in\{(1,2),(2,1)\}\right\} \\
& \left.\cup\left\{\left(\left(i_{r}, j_{r}\right), \bullet\right):(i, j) \in \overline{([k]} \begin{array}{c}
2
\end{array}\right), r \in[2]\right\} .
\end{aligned}
$$

Example 3.1. The edge-colored graph G_{2} is given by

where \longleftrightarrow denotes two directed edges of color • (one in each direction), and \longleftrightarrow denotes two directed edges of color - (one in each direction).

Proposition 3.1. If a G_{k}-decomposition of $K_{n}^{(2)}$ exists, then a $2-(n, k)$ EK design exists.

Proof: Let \mathcal{F} be a G_{k}-decomposition of $K_{n}^{(2)}$. Then for a subgraph $G \in \mathcal{F}$, let $\phi_{G}: G_{k} \rightarrow G$ be a graph isomorphism and define

$$
A_{G}=\left\{\phi_{G}\left(i_{1}\right): i \in[k]\right\}, \quad B_{G}=\left\{\phi_{G}\left(i_{2}\right): i \in[k]\right\}
$$

Let X be the vertex set of $K_{n}^{(2)}$ and

$$
\mathcal{C}=\left\{\left\{A_{G}, B_{G}\right\}: G \in \mathcal{F}\right\} .
$$

We claim that (X, \mathcal{C}) is a $2-(n, k)$ EK design. Since $|\mathcal{C}|=$ $n(n-1) /(2 k(\underline{k-1}))$, it suffices to check that for $e \in\{0,1\}$, each $(x, y) \in \overline{\binom{X}{2}}$ is $(e, 2)$-contained in at most one set-pair in \mathcal{C}.

Suppose otherwise. Then there exist $(x, y) \in \overline{\binom{X}{2}}, G, H \in$ \mathcal{F} and $e \in\{0,1\}$ such that (x, y) is $(e, 2)$-contained in $\left\{A_{G}, B_{G}\right\}$ and $\left\{A_{H}, B_{H}\right\}$.

If $e=0$, then assume that $\{x, y\} \subset A_{G} \cap A_{H}$. Hence, the edge $((x, y), \bullet)$ belongs to both G and H, contradicting the fact that \mathcal{F} is a G_{k}-decomposition of $K_{n}^{(2)}$.

If $e=1$, then assume that $x \in A_{G} \cap A_{H}$ and $y \in B_{G} \cap B_{H}$. Hence, the edge $((x, y), \bullet)$ belongs to G and H, contradicting the fact that \mathcal{F} is a G_{k}-decomposition of $K_{n}^{(2)}$.

Observe there are $2 k^{2}$ edges of each color in G_{k} and $\boldsymbol{\delta}(v)=$ (k, k, k, k) for all $v \in V_{k}$. Hence, $\alpha\left(G_{k}\right)=k$. The following is immediate from Propositions 2.1, 3.1, and Theorem 3.1.

Theorem 3.2. Fix $k \geq 2$. Then

$$
C(n, k, 2 k-1)=\frac{n(n-1)}{2 k^{2}}
$$

for all sufficiently large n satisfying $n \equiv 1 \bmod k$ and $n(n-$ 1) $\equiv 0 \bmod 2 k^{2}$.

To determine $C(n, k, 2 k-1)$ when $n \equiv 0 \bmod k$, consider the following graph. Fix $k \geq 2$ and define the edge-colored digraph $H_{k}=\left(V_{k}, C_{k}, E_{k}\right)$, where

$$
\begin{aligned}
V_{k}= & \left\{i_{j}: i \in[k], j \in[2]\right\}, \\
C_{k}= & \left.([k] \times[k] \times\{\bullet\}) \cup\left(\overline{([k]} \begin{array}{c}
2
\end{array}\right) \times\{\bullet\}\right), \\
E_{k}= & \left\{\left(\left(i_{r}, j_{s}\right),(i, j, \bullet)\right): i, j \in[k],(r, s) \in\{(1,2),(2,1)\}\right\} \\
& \cup\left\{\left(\left(i_{r}, j_{r}\right),(i, j, \bullet)\right):(i, j) \in \overline{\binom{[k]}{2}}, r \in[2]\right\} .
\end{aligned}
$$

Example 3.2. The graph H_{2} is given by

Proposition 3.2. If an H_{k}-decomposition of $K_{n}^{\left(2 k^{2}-k\right)}$ exists, then a $\left(k, k^{n}\right)$-EKGDD exists.

Proof: Let \mathcal{H} be an H_{k}-decomposition of $K_{n}^{\left(2 k^{2}-k\right)}$. Then for a subgraph $H \in \mathcal{H}$, let $\phi_{H}: H_{k} \rightarrow H$ be a graph isomorphism and define

$$
A_{H}=\left\{\phi_{H}\left(i_{1}\right)_{i}: i \in[k]\right\}, \quad B_{H}=\left\{\phi_{H}\left(i_{2}\right)_{i}: i \in[k]\right\} .
$$

Let V be the vertex set of $K_{n}^{\left(2 k^{2}-k\right)}$ and

$$
\begin{aligned}
X & =\left\{v_{i}: v \in V, i \in[k]\right\}, \\
\mathcal{G} & =\left\{\left\{v_{i}: i \in[k]\right\}: v \in V\right\}, \\
\mathcal{C} & =\left\{\left\{A_{H}, B_{H}\right\}: H \in \mathcal{H}\right\} .
\end{aligned}
$$

We claim that $(X, \mathcal{G}, \mathcal{C})$ is a $\left(k, k^{n}\right)$-EKGDD. Suppose otherwise. Since $|\mathcal{C}|=n(n-1) / 2$, it suffices to consider the following two cases.
(i) There exist $v \in V$ and $H \in \mathcal{H}$ such that $\mid\left\{v_{i}: i \in\right.$ $[k]\} \cap\left(A_{H} \cup B_{H}\right) \mid \geq 2$. This contradicts the fact that H is isomorphic to H_{k}.
(ii) There exist $(x, y) \in \overline{\binom{X}{2}}, G, H \in \mathcal{H}$ and $e \in\{0,1\}$ such that $\left(x_{i}, y_{j}\right)$ is $(e, 2)$-contained in $\left\{A_{G}, B_{G}\right\}$ and $\left\{A_{H}, B_{H}\right\}$.
If $e=0$, then assume that $\left\{x_{i}, y_{j}\right\} \subset A_{G} \cap A_{H}$. Hence, the edge $((x, y),(i, j, \bullet))$ belongs to both G and H, contradicting the fact that \mathcal{H} is an H_{k}-decomposition. Similarly, if $e=1$, then assume that $x_{i} \in A_{G} \cap A_{H}$ and $y_{j} \in B_{G} \cap B_{H}$. Hence, the edge $((x, y),(i, j, \bullet))$ belongs to both G and H, contradicting the fact that \mathcal{H} is an H_{k}-decomposition of $K_{n}^{\left(2 k^{2}-k\right)}$.

Observe there are two edges of each color in H_{k} and $\sum_{i \in[k]} \boldsymbol{\delta}\left(i_{1}\right)=(1,1, \ldots, 1)$. Hence, $\alpha\left(H_{k}\right)=1$. From Propositions 2.2, 3.2, and Theorem 3.1, we have the following.

Theorem 3.3. Fix $k \geq 2$. Then

$$
C(n, k, 2 k-1)=\frac{n(n-k)}{2 k^{2}}
$$

for all sufficiently large n satisfying $n \equiv 0 \bmod k$.
Theorems 3.2 and 3.3 combine to give the Main Theorem.

4. The Value of $C(n, 2,2)$

In this section, we give a complete solution for $C(n, 2,2)$. Our proof makes use of t-wise balanced designs.
Definition 4.1. A t-wise balanced design, or a t - $\mathrm{BD}(v, K)$, is a K-uniform set system (X, \mathcal{A}) of order v such that every t-subset of X is contained in exactly one block of \mathcal{A}.

The following existence result for 3 -BDs is known.
Theorem 4.1 (Hanani [16]). A 3-BD $(v,\{4,6\})$ exists for all even $v \geq 4$.

The following proposition gives a recursive construction for EK designs of strength t.
Proposition 4.1 (Filling in Blocks). Let $K \subseteq \mathbb{Z}_{\geq 1}$ and suppose that a $t-\mathrm{BD}(v, K)$ exisits. If a $t-(h, k) \mathrm{EK}^{-}$design exists for all $h \in K$, then a $t-(v, k)$ EK design exists.

Proof: Let (X, \mathcal{A}) be a $t-\mathrm{BD}(v, K)$. For each $A \in \mathcal{A}$, let $\left(A, \mathcal{C}_{A}\right)$ be a $t-(|A|, k)$ EK design. Then $\left(X, \cup_{A \in \mathcal{A}} \mathcal{C}_{A}\right)$ is a $t-(v, k)$ EK design.

We first determine $C(n, 2,2)$ when n is even.
Proposition 4.2. A 3- $(n, 2)$ EK design exists for even $n \geq 4$.
Proof: When $n=4$, the pair (X, \mathcal{C}), where

$$
\begin{aligned}
X & =\mathbb{Z} / 4 \mathbb{Z} \\
\mathcal{C} & =\{\{\{0,1\},\{2,3\}\},\{\{0,2\},\{1,3\}\},\{\{0,3\},\{1,2\}\}\}
\end{aligned}
$$

is a $3-(4,2)$ EK design.
When $n=6$, let

$$
\begin{aligned}
& X=\mathbb{Z} / 6 \mathbb{Z}, \\
& \mathcal{C}_{0}=\{\{\{0,1\},\{2,4\}\},\{\{0,1\},\{3,5\}\},\{\{0,2\},\{3,1\}\}, \\
& \{\{0,3\},\{1,4\}\},\{\{0,5\},\{1,2\}\}\}, \\
& \mathcal{C}=\{\{\{a+i, b+i\},\{c+i, d+i\}\}: \\
& \left.\{\{a, b\},\{c, d\}\} \in \mathcal{C}_{0}, i \in\{0,2,4\}\right\} .
\end{aligned}
$$

Then (X, \mathcal{C}) is a 3-(6,2) EK design.
For $n \geq 8$, there exists a $3-\mathrm{BD}(n,\{4,6\})$ by Theorem 4.1. The result now follows from Proposition 4.1.
Proposition 4.3. There exists a $3-(n, 2)$ EK packing of size $n(n-1)(n-3) / 8$ for all odd $n \geq 5$.

Proof: By Proposition 4.2, there exists a 3- $(n+1,2)$ EK design (X, \mathcal{C}). Fix any point $x \in X$ and define

$$
X^{\prime}=X \backslash\{x\}, \quad \mathcal{C}^{\prime}=\{\{A, B\} \in \mathcal{C}: x \notin A \cup B\}
$$

Since x is contained in exactly $n(n-1) / 2$ set-pairs in \mathcal{C}, we have $\left|\mathcal{C}^{\prime}\right|=n(n+1)(n-1) / 8-n(n-1) / 2=n(n-1)(n-$ 3)/8.

Propositions 2.1, 4.2, 4.3, and Theorem 1.2 combine to give the following.

Theorem 4.2. Let $n \geq 4$. Then

$$
C(n, 2,2)= \begin{cases}\frac{n(n-1)(n-2)}{8}, & \text { if } n \text { is even } \\ \frac{n(n-1)(n-3)}{8}, & \text { if } n \text { is odd }\end{cases}
$$

5. Conclusion

New infinite families of optimal codes in the EnomotoKatona space are obtained in this paper. In particular, we show that $C(n, k, 2 k-1)$ attains the Quistorff bound for infinitely many n. The value of $C(n, 2,2)$ is also completely determined.

Acknowledgement

Research of the authors is supported in part by the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03. The authors are grateful to the anonymous reviewers and the TPC member whose comments greatly improved the presentation of the paper.

REFERENCES

[1] E. F. Codd, "A relational model of data for large shared data banks," Comm. ACM, vol. 13, no. 6, pp. 377-387, 1970.
[2] W. W. Armstrong, "Dependency structures of data base relationships," in IFIP Conference Proceedings. North-Holland, 1974, pp. 580-583.
[3] P. A. Bernstein, "Synthesizing third normal form relations from functional dependencies," ACM Trans. Database Syst., vol. 1, no. 4, pp. 277-298, 1976.
[4] C. Beeri, R. Fagin, and J. H. Howard, "A complete axiomatization for functional and multivalued dependencies in database relations," in SIGMOD '77 - Proceedings of the 1977 ACM SIGMOD International Conference on Management of Data, 1977, pp. 47-61.
[5] J. Rissanen, "Independent components of relations," ACM Trans. Database Syst., vol. 2, no. 4, pp. 317-325, 1977.
[6] J. Demetrovics, G. O. H. Katona, and A. Sali, "The characterization of branching dependencies," Discrete Appl. Math., vol. 40, no. 2, pp. 139-153, 1992.
[7] -_, "Minimal representations of branching dependencies," Acta Sci. Math. (Szeged), vol. 60, no. 1-2, pp. 213-223, 1995.
[8] -_, "Design type problems motivated by database theory," J. Statist. Plann. Inference, vol. 72, no. 1-2, pp. 149-164, 1998.
[9] G. O. H. Katona and A. Sali, "New type of coding problem motivated by database theory," Discrete Appl. Math., vol. 144, no. 1-2, pp. 140-148, 2004.
[10] H. Enomoto and G. O. H. Katona, "Pairs of disjoint q-element subsets far from each other," Electron. J. Combin., vol. 8, no. 2, p. R7, 2001.
[11] A. Sali, "Coding theory motivated by relational databases," in SDKB '10 - Proceedings of the 4th International Conference on Semantics in Data and Knowledge Bases, ser. Lecture Notes in Comput. Sci., vol. 6834. Springer-Verlag, 2011, pp. 96-113.
[12] G. Brightwell and G. O. H. Katona, "A new type of coding problem," Studia Sci. Math. Hungar., vol. 38, pp. 139-147, 2001.
[13] B. Bollobás, G. O. H. Katona, and I. Leader, "A coding problem for pairs of subsets," in preparation.
[14] J. Quistorff, "Combinatorial problems in the Enomoto-Katona space," Studia Sci. Math. Hungar., vol. 46, no. 1, pp. 121-139, 2009.
[15] E. R. Lamken and R. M. Wilson, "Decompositions of edge-colored complete graphs," J. Combin. Theory Ser. A, vol. 89, no. 2, pp. 149-200, 2000.
[16] H. Hanani, "Truncated finite planes," in Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), T. S. Motzkin, Ed. Providence, R.I.: Amer. Math. Soc., 1971, pp. 115-120.

[^0]: ${ }^{1}$ By definition, if $y \in X$, then $X \rightarrow y$ trivially.

[^1]: ${ }^{2}$ Note that $\mathcal{C} \subseteq \mathcal{E}(X, k)$, while $\mathcal{A} \subseteq 2^{X}$.

