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Requests X1 X2 X3
S broadcasts (2 transmissions):

X1+ x2
X2 + X3

Trivial solution: 3 transmissions
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has rank two. An n X n matrix M
fits a digraph D of order n if
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Trivial solution: 3 transmissions
minrkg(D) = min {rankg(M) : M fits D}
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Has X1, X2
Requests X1 X2 X3

S broadcasts (2 transmissions):

X1+ x2
X2 + X3

Trivial solution: 3 transmissions

minrkg (D) = min {rankg(M) :

Digraph of Side Information D

1
M= |0
1

O =

0
1
1

has rank two. An n X n matrix M
fits a digraph D of order n if

m--{l’ j=i
Y0, (i) € E(D)

M fits D}

Bar-Yossef et al. (2006): 1/minrky(D) is the best rate for scalar linear index codes

(19)
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Alon et al. (2008): block nonlinear ICs
outperform scalar nonlinear ICs
(C(D) >> (D))

An IC instance < Confusion graph €

Best rate = 1/x(¢)

El Rouayheb et al. (2008): block nonlinear
ICs outperform block linear ICs; block
linear ICs outperform scalar linear I1Cs
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Index Coding is a special case of NC can be reduced to IC
Network Coding (NC)
NC instance < IC instance
3 a linear block NC <= 3 a linear block IC
3 a nonlinear block NC = 3 a nonlinear block IC
1
Digraph of Side Information D nonlinear vs. linear results in NC

4

nonlinear vs. linear results in IC

Corresponding Network Coding instance
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Index Coding is a special case of NC can be reduced to IC
Network Coding (NC)
NC instance < IC instance
3 a linear block NC <= 3 a linear block IC
3 a nonlinear block NC = 3 a nonlinear block IC
1

Digraph of Side Information D nonlinear vs. linear results in NC

4

nonlinear vs. linear results in IC

Matroid can be reduced to IC

matroid < IC instance
3 a t-representation <= 3 a linear t-block IC
1
matroid: 2-rep. but not 1-rep.

0

linear 2-block IC with better rate than linear scalar IC

Corresponding Network Coding instance
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Hardness

Q9 Cy: hard to compute
@ (Peeters 1996): Cy(G) = 1/3? (or minrkq(G) = 37?) is NP-complete
@ (Dau, Skachek, Chee, 2011): Cy(D) = 1/2? (or minrky(D) = 2?) is NP-complete
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¢ (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio O(

log n )
nlog log n

v
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D a(9) < c,l(g < x(G): x - chromatic number, a(G) - independent number

I
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Scalar Linear Capacity Cg

9 (Haemers 1978): perfect graphs (1/a(G))
9 (Bar-Yossef et al. 2006): odd cycles (Ln/2J) and complements (3), acyclic

digraphs (orders)
9 (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

9 (Dau, Skachek, Chee 2011): Koenig-Egervary graphs (1/a(G)), connectively
reducible digraphs, line digraphs of partially planar digraphs (#(D)), graphs

having tree structure of Type | (dynamic programming)

Scalar Capacity Cs and General Capacity C

9 (Bar-Yossef et al. 2006): Cs = Cy for perfect graphs, odd cycles and
complements, acyclic digraphs

Ln/2] )

n

9 (Blasiak et al. 2011): n-cycles (C = 2/n), complements of n-cycles (C =
3-regular Cayley graphs of Z, (C = 2/n)
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Error Correction for Index Coding

encoding noisy decoding
Classical ECC: x —> y =xL W yt+e _—
ann

decoding

yt+e —_—> X1
sideinfo.
encoding decoding

ECIC: X —— y=xL > ytea —m—m——> X

. = sideinfo. o
decoding
y+é€n — Xn
noisy sideinfo.
broadcast channel
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encoding noisy decoding
Classical ECC: x —> y=xlL —3  y+e
channel
decoding

yt+ e % X1
sideinfo.
encoding decoding

ECIC: X —— y=xL > yte ——mmm—> x

. o sideinfo. o
decoding
yt+eén — Xn
noisy sideinfo.
broadcast channel

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)
@ optimal IC + optimal ECC # optimal ECIC for small alphabets
9 optimal IC 4 optimal ECC = optimal ECIC for large alphabets
@ develop bounds and constructions for length of an optimal ECIC

@ syndrome decoding
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A scalar linear IC: x — xL, where L is an n X k matrix; Rate: 1/k
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Security for Index Coding

A scalar linear IC: x — xL, where L is an n X k matrix; Rate: 1/k

Adversary A
owns t x;'s
{ listensto . transmissions
introduces ¢ errors

R; can decode x;
GOAL:

adversary has no information about other x;'s
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Security for Index Coding

A scalar linear IC: x — xL, where L is an n X k matrix; Rate: 1/k J

Adversary A

owns t x;
listensto . transmissions
introduces ¢ errors

R; can decode x;
GOAL:

adversary has no information about other x;'s

(Dau, Skachek, Chee, 2011):

index codin coset coding?
x O SSTE L (O €

(LOlg)Mm
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Security for Index Coding

A scalar linear IC: x — xL, where L is an n X k matrix; Rate: 1/k J

(Dau, Skachek, Chee, 2011):

. . . a
X mdex_co}dmg XL(O) cosetc_cw’mg (XL(0)|g)M

\
° \\ |
@) \1 xL | U &— mintk+p 425 —>
/ .
.

G.M. of
Adversary A LS an MDS code

owns t x;’
listensto . transmissions
introduces § errors G.M. of an MDS code I3

R; can decode x; = -
GOAL:

adversary has no information about other x;'s

introduced by Ozarow and Wyner in “Wiretap Channel I1,” 1985
v 4
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