A Short Introduction to Index Coding with Side Information

Dau Son Hoang shdau@ntu.edu.sg SPMS, Nanyang Technological University

 ${\it S}$ broadcasts (2 transmissions):

$$\begin{cases} x_1 + x_2 \\ x_2 + x_3 \end{cases}$$

Trivial solution: 3 transmissions

Digraph of Side Information D

S broadcasts (2 transmissions):

$$\begin{cases} x_1 + x_2 \\ x_2 + x_3 \end{cases}$$

Trivial solution: 3 transmissions

S broadcasts (2 transmissions):

$$\begin{cases} x_1 + x_2 \\ x_2 + x_3 \end{cases}$$

Trivial solution: 3 transmissions

Digraph of Side Information D

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

has rank two. An $n \times n$ matrix **M** fits a digraph \mathcal{D} of order n if

$$m_{i,j} = \begin{cases} 1, & j = i \\ 0, & (i,j) \notin \mathcal{E}(\mathcal{D}) \end{cases}$$

Has

Requests

Digraph of Side Information D

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

has rank two. An $n \times n$ matrix **M** fits a digraph \mathcal{D} of order n if

$$m_{i,j} = \begin{cases} 1, & j = i \\ 0, & (i,j) \notin \mathcal{E}(\mathcal{D}) \end{cases}$$

S broadcasts (2 transmissions):

$$\begin{cases} x_1 + x_2 \\ x_2 + x_3 \end{cases}$$

Trivial solution: 3 transmissions

 $minrk_q(\mathcal{D}) = min \{ rank_q(\mathbf{M}) : \mathbf{M} \text{ fits } \mathcal{D} \}$

Digraph of Side Information D

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

has rank two. An $n \times n$ matrix **M** fits a digraph \mathcal{D} of order n if

$$m_{i,j} = \begin{cases} 1, & j = i \\ 0, & (i,j) \notin \mathcal{E}(\mathcal{D}) \end{cases}$$

S broadcasts (2 transmissions):

$$\begin{cases} x_1 + x_2 \\ x_2 + x_3 \end{cases}$$

Trivial solution: 3 transmissions

$$\mathsf{minrk}_q(\mathcal{D}) = \mathsf{min}\left\{\mathsf{rank}_q(\mathbf{M}) : \mathbf{M} \text{ fits } \mathcal{D}\right\}$$

Bar-Yossef *et al.* (2006): $1/\min_{k_2}(\mathcal{D})$ is the best rate for scalar linear index codes (IC)

Definition (Capacity)

ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t, k)\text{-IC}\}$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t, k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}\$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Definition (Capacity)

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

Definition (Capacity)

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

```
Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs (C_s(\mathcal{D}) >> C_{sl}(\mathcal{D}))
```

• Gn

Definition (Capacity)

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}\$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

- Gn
 - $\operatorname{minrk}_2(\mathcal{G}_n) \geq n^{1-\varepsilon}$

Definition (Capacity)

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}\$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

- Gn
 - $\operatorname{minrk}_2(\mathcal{G}_n) \geq n^{1-\varepsilon}$
 - $\operatorname{minrk}_q(\mathcal{G}_n) \leq n^{\varepsilon}$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}\$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

- Gn
 - $\operatorname{minrk}_2(\mathcal{G}_n) \geq n^{1-\varepsilon}$
 - $\operatorname{minrk}_q(\mathcal{G}_n) \leq n^{\varepsilon}$
- $\mathcal{H}_n = \mathcal{G}_n \cup \overline{\mathcal{G}_n}$
 - $\operatorname{minrk}_q(\mathcal{H}_n) \geq 2\sqrt{n}, \forall q$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}\$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

- Gn
 - $\operatorname{minrk}_2(\mathcal{G}_n) \geq n^{1-\varepsilon}$
 - $\operatorname{minrk}_q(\mathcal{G}_n) \leq n^{\varepsilon}$
- $\mathcal{H}_n = \mathcal{G}_n \cup \overline{\mathcal{G}_n}$
 - $\operatorname{minrk}_q(\mathcal{H}_n) \geq 2\sqrt{n}, \forall q$
 - $\operatorname{minrk}_2(\mathcal{G}_n) + \operatorname{minrk}_3(\mathcal{G}_n) \leq n^{\varepsilon}$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t, k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $(C_s(\mathcal{D}) >> C_{sl}(\mathcal{D}))$

- Gn
 - $\operatorname{minrk}_2(\mathcal{G}_n) \geq n^{1-\varepsilon}$
 - $\operatorname{minrk}_q(\mathcal{G}_n) \leq n^{\varepsilon}$
- $\mathcal{H}_n = \mathcal{G}_n \cup \overline{\mathcal{G}_n}$
 - minrk_q(\mathcal{H}_n) > $2\sqrt{n}$, $\forall q$
 - $\min_{\mathbf{r}} \operatorname{rk}_2(\mathcal{G}_n) + \min_{\mathbf{r}} \operatorname{rk}_3(\mathcal{G}_n) \leq n^{\varepsilon}$

Alon *et al.* (2008): block nonlinear ICs outperform scalar nonlinear ICs $(C(\mathcal{D}) >> C_s(\mathcal{D}))$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}\$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min rk_2(D)$) is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $(C_s(\mathcal{D}) >> C_{sl}(\mathcal{D}))$

- Gn
 - $\min_{n \in \mathcal{C}_n} |\mathcal{C}_n| > n^{1-\varepsilon}$
 - $\operatorname{minrk}_q(\mathcal{G}_n) \leq n^{\varepsilon}$
- $\mathcal{H}_n = \mathcal{G}_n \cup \overline{\mathcal{G}_n}$
 - minrk_q(\mathcal{H}_n) > $2\sqrt{n}$, $\forall q$
 - $\min_{n \in \mathcal{C}} \mathsf{minrk}_{2}(\mathcal{G}_{n}) + \min_{n \in \mathcal{C}} \mathsf{minrk}_{3}(\mathcal{G}_{n}) \leq n^{\varepsilon}$

Alon et al. (2008): block nonlinear ICs outperform scalar nonlinear ICs $(C(\mathcal{D}) >> C_s(\mathcal{D}))$

An IC instance \hookrightarrow Confusion graph \mathfrak{C}

Best rate $= 1/\chi(\mathfrak{C})$

- ullet a (t,k)-IC: broadcast k q-ary symbols; $x_i \in \mathbb{F}_q^t$
- a (t, k)-IC: t/k is the rate
- general capacity: $C(\mathcal{D}) = \sup\{t/k : \exists a (t,k)\text{-IC}\}$
- scalar capacity: $C_s(\mathcal{D}) = \sup\{1/k : \exists a (1, k)\text{-IC}\}\$
- scalar linear capacity: $C_{sl}(\mathcal{D}) = \sup\{1/k : \exists \text{ a linear } (1,k)\text{-IC}\}$

Bar-Yossef et al. (2006) conjectured: $C_{sl}(D)$ (= $1/\min k_2(D)$) is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $(C_s(\mathcal{D}) >> C_{sl}(\mathcal{D}))$

- Gn
 - $\operatorname{minrk}_2(\mathcal{G}_n) \geq n^{1-\varepsilon}$
 - $\operatorname{minrk}_q(\mathcal{G}_n) \stackrel{=}{\leq} n^{\varepsilon}$
- $\mathcal{H}_n = \mathcal{G}_n \cup \overline{\mathcal{G}_n}$
 - $\operatorname{minrk}_q(\mathcal{H}_n) \geq 2\sqrt{n}, \forall q$
 - $\operatorname{minrk}_2(\mathcal{G}_n) + \operatorname{minrk}_3(\mathcal{G}_n) \leq n^{\varepsilon}$

Alon *et al.* (2008): block nonlinear ICs outperform scalar nonlinear ICs $(C(\mathcal{D}) >> C_s(\mathcal{D}))$

An IC instance \hookrightarrow Confusion graph $\mathfrak C$ Best rate = $1/\chi(\mathfrak C)$

El Rouayheb *et al.* (2008): block nonlinear ICs outperform block linear ICs; block linear ICs outperform scalar linear ICs

Index Coding is a special case of Network Coding (NC)

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information \mathcal{D}

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information \mathcal{D}

Corresponding Network Coding instance

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance \exists a linear block NC $\iff \exists$ a linear block IC \exists a nonlinear block NC $\implies \exists$ a nonlinear block IC

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance \exists a linear block NC $\iff \exists$ a linear block IC \exists a nonlinear block NC $\implies \exists$ a nonlinear block IC

nonlinear vs. linear results in NC

nonlinear vs. linear results in IC

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance \exists a linear block NC $\iff \exists$ a linear block IC

 \exists a nonlinear block NC \Longrightarrow \exists a nonlinear block IC

 \downarrow

nonlinear vs. linear results in NC

₩

nonlinear vs. linear results in IC

Matroid can be reduced to IC

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance \exists a linear block NC $\iff \exists$ a linear block IC \exists a nonlinear block NC $\implies \exists$ a nonlinear block IC

nonlinear vs. linear results in NC

nonlinear vs. linear results in IC

Matroid can be reduced to IC

 $\mathsf{matroid} \ \hookrightarrow \ \mathsf{IC} \ \mathsf{instance}$

 \exists a t-representation \iff \exists a linear t-block IC

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance

 \exists a linear block NC \iff \exists a linear block IC

 \exists a nonlinear block NC $\Longrightarrow \exists$ a nonlinear block IC

nonlinear vs. linear results in NC

#

nonlinear vs. linear results in IC

Matroid can be reduced to IC

 $\mathsf{matroid} \ \hookrightarrow \ \mathsf{IC} \ \mathsf{instance}$

 \exists a *t*-representation \iff \exists a linear *t*-block IC

matroid: 2-rep. but not 1-rep.

linear 2-block IC with better rate than linear scalar IC

Hardness

 \bigcirc C_{sl} : hard to compute

Hardness

- \bigcirc C_{sl} : hard to compute
 - \bullet (Peeters 1996): $\mathit{C}_{\mathit{sl}}(\mathcal{G}) = 1/3?$ (or $\mathsf{minrk}_q(\mathcal{G}) = 3?$) is NP-complete

Hardness

- \bigcirc C_{sl} : hard to compute

 - (Peeters 1996): $C_{sl}(\mathcal{G})=1/3?$ (or $\mathsf{minrk}_q(\mathcal{G})=3?$) is NP-complete (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D})=1/2?$ (or $\mathsf{minrk}_q(\mathcal{D})=2?$) is NP-complete

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk $_q(\mathcal{G}) = 3$?) is NP-complete

 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or $\min k_q(\mathcal{D}) = 2$?) is NP-complete (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard

Hardness

- - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk_q(\mathcal{G}) = 3?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk $_q(\mathcal{D}) = 2$?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk_q(\mathcal{G}) = 3?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk_q(\mathcal{D}) = 2?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known
 - (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O(\frac{\log n}{n \log \log n})$

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk $_q(\mathcal{G}) = 3$?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk $_q(\mathcal{D}) = 2$?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known
 - (Blasiak *et al.* 2011): polynomial time algo. to approx. C with ratio $O(\frac{\log n}{n \log \log n})$

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk_q(\mathcal{G}) = 3?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk_q(\mathcal{D}) = 2?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known
 - (Blasiak *et al.* 2011): polynomial time algo. to approx. C with ratio $O(\frac{\log n}{n \log \log n})$

Bounds

 $oldsymbol{\Omega}$ $\alpha(\mathcal{G}) \leq \frac{1}{C_{sl}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}})$: χ - chromatic number, $\alpha(\mathcal{G})$ - independent number

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk_q(\mathcal{G}) = 3?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk_q(\mathcal{D}) = 2?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known
 - (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O(\frac{\log n}{n \log \log n})$

- $\alpha(\mathcal{G}) \leq \frac{1}{C_c(\mathcal{G})} \leq \chi(\overline{\mathcal{G}})$: χ chromatic number, $\alpha(\mathcal{G})$ independent number

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk_q(\mathcal{G}) = 3?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk_q(\mathcal{D}) = 2?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known
 - (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O(\frac{\log n}{n \log \log n})$

- $\alpha(\mathcal{G}) \leq \frac{1}{C_{-\ell}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}})$: χ chromatic number, $\alpha(\mathcal{G})$ independent number
- $\alpha(\mathcal{G}) \leq \frac{1}{C_{el}(\mathcal{G})} \leq n \mu(\mathcal{G})$: $\mu(\mathcal{G})$ maximum size of a matching
- ⓐ $\alpha(\mathcal{D}) \leq \frac{1}{C_{sl}(\mathcal{D})} \leq \operatorname{cc}(\mathcal{D})$: $\alpha(\mathcal{D})$ size of maximum acyclic induced subgraph, $\operatorname{cc}(\mathcal{D})$ clique cover number

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk_q(\mathcal{G}) = 3?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk_q(\mathcal{D}) = 2?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known
 - (Blasiak *et al.* 2011): polynomial time algo. to approx. C with ratio $O(\frac{\log n}{n \log \log n})$

- $\alpha(\mathcal{G}) \leq \frac{1}{C_{-\ell}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}})$: χ chromatic number, $\alpha(\mathcal{G})$ independent number
- $\alpha(\mathcal{G}) \leq \frac{1}{C_{el}(\mathcal{G})} \leq n \mu(\mathcal{G})$: $\mu(\mathcal{G})$ maximum size of a matching
- **③** $\alpha(\mathcal{D}) \leq \frac{1}{C_s(\mathcal{D})} \leq \operatorname{cc}(\mathcal{D})$: $\alpha(\mathcal{D})$ size of maximum acyclic induced subgraph, $\operatorname{cc}(\mathcal{D})$ clique cover number
- $\alpha(\mathcal{D}) \leq \frac{1}{C_{sl}(\mathcal{D})} \leq n \nu(\mathcal{D})$: $\nu(\mathcal{D})$ maximum number of disjoint circuits

Hardness

- \bigcirc C_{sl} : hard to compute
 - (Peeters 1996): $C_{sl}(\mathcal{G}) = 1/3$? (or minrk_q(\mathcal{G}) = 3?) is NP-complete
 - (Dau, Skachek, Chee, 2011): $C_{sl}(\mathcal{D}) = 1/2$? (or minrk $_q(\mathcal{D}) = 2$?) is NP-complete
 - (Langberg, Sprintson, 2008): finding an IC with rate $> \alpha C_{sl}(\mathcal{D})$ ($\alpha \in (0,1]$) is NP-hard
- \bigcirc C_s and C: the hardness is not known
 - (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O(\frac{\log n}{n \log \log n})$

- $\alpha(\mathcal{G}) \leq \frac{1}{C_{-\ell}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}})$: χ chromatic number, $\alpha(\mathcal{G})$ independent number
- $\alpha(\mathcal{G}) \leq \frac{1}{C_{el}(\mathcal{G})} \leq n \mu(\mathcal{G})$: $\mu(\mathcal{G})$ maximum size of a matching
- **③** $\alpha(\mathcal{D}) \leq \frac{1}{C_s(\mathcal{D})} \leq \operatorname{cc}(\mathcal{D})$: $\alpha(\mathcal{D})$ size of maximum acyclic induced subgraph, $\operatorname{cc}(\mathcal{D})$ clique cover number
- $\alpha(\mathcal{D}) \leq \frac{1}{C_{el}(\mathcal{D})} \leq n \nu(\mathcal{D})$: $\nu(\mathcal{D})$ maximum number of disjoint circuits
- $\alpha(\mathcal{G}) \leq b_2 \leq \frac{1}{C(\mathcal{G})} \leq b_n = \chi_f(\overline{\mathcal{G}})$: b_2, b_n solutions of linear programs

Scalar Linear Capacity C_{sl}

ullet (Haemers 1978): perfect graphs $(1/lpha(\mathcal{G}))$

Scalar Linear Capacity C_{sl}

- (Haemers 1978): perfect graphs $(1/\alpha(\mathcal{G}))$
- (Bar-Yossef *et al.* 2006): odd cycles $(\frac{1}{\lfloor n/2 \rfloor})$ and complements (3), acyclic digraphs (orders)

Scalar Linear Capacity C_{sl}

- (Haemers 1978): perfect graphs $(1/\alpha(\mathcal{G}))$
- (Bar-Yossef *et al.* 2006): odd cycles $(\frac{1}{\lfloor n/2 \rfloor})$ and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

Scalar Linear Capacity C_{sl}

- (Haemers 1978): perfect graphs $(1/\alpha(\mathcal{G}))$
- (Bar-Yossef *et al.* 2006): odd cycles $(\frac{1}{\lfloor n/2 \rfloor})$ and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1/\alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $(\frac{1}{n-\nu(\mathcal{D})})$, graphs having tree structure of Type I (dynamic programming)

Scalar Linear Capacity C_{sl}

- (Haemers 1978): perfect graphs $(1/\alpha(\mathcal{G}))$
- (Bar-Yossef *et al.* 2006): odd cycles $(\frac{1}{\lfloor n/2 \rfloor})$ and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1/\alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $(\frac{1}{n-\nu(\mathcal{D})})$, graphs having tree structure of Type I (dynamic programming)

Scalar Capacity C_s and General Capacity C

Scalar Linear Capacity C_{sl}

- (Haemers 1978): perfect graphs $(1/\alpha(\mathcal{G}))$
- (Bar-Yossef *et al.* 2006): odd cycles $(\frac{1}{\lfloor n/2 \rfloor})$ and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1/\alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $(\frac{1}{n-\nu(\mathcal{D})})$, graphs having tree structure of Type I (dynamic programming)

Scalar Capacity C_s and General Capacity C

• (Bar-Yossef *et al.* 2006): $C_s = C_{sl}$ for perfect graphs, odd cycles and complements, acyclic digraphs

Scalar Linear Capacity C_{sl}

- (Haemers 1978): perfect graphs $(1/\alpha(\mathcal{G}))$
- (Bar-Yossef *et al.* 2006): odd cycles $(\frac{1}{\lfloor n/2 \rfloor})$ and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1/\alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $(\frac{1}{n-\nu(\mathcal{D})})$, graphs having tree structure of Type I (dynamic programming)

Scalar Capacity C_s and General Capacity C

- (Bar-Yossef *et al.* 2006): $C_s = C_{sl}$ for perfect graphs, odd cycles and complements, acyclic digraphs
- (Blasiak *et al.* 2011): *n*-cycles (C = 2/n), complements of *n*-cycles ($C = \frac{\lfloor n/2 \rfloor}{n}$), 3-regular Cayley graphs of \mathbb{Z}_n (C = 2/n)

Classical ECC:
$$\times \xrightarrow{\text{encoding}} y = xL \xrightarrow{\text{noisy}} y + \epsilon \xrightarrow{\text{decoding}} x$$

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)
optimal IC + optimal ECC ≠ optimal ECIC for small alphabets

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

- ullet optimal IC + optimal ECC \neq optimal ECIC for small alphabets
- ullet optimal IC + optimal ECC = optimal ECIC for large alphabets

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

- ullet optimal IC + optimal ECC eq optimal ECIC for small alphabets
- ullet optimal IC + optimal ECC = optimal ECIC for large alphabets
- develop bounds and constructions for length of an optimal ECIC

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

- ullet optimal IC + optimal ECC eq optimal ECIC for small alphabets
- $\bullet \ \, \text{optimal IC} + \text{optimal ECC} = \text{optimal ECIC for large alphabets}$
- develop bounds and constructions for length of an optimal ECIC
- syndrome decoding

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{xL}$, where \mathbf{L} is an $n \times k$ matrix; Rate: 1/k

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{xL}$, where \mathbf{L} is an $n \times k$ matrix; Rate: 1/k

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{xL}$, where \mathbf{L} is an $n \times k$ matrix; Rate: 1/k

(Dau, Skachek, Chee, 2011):

$$\mathbf{x} \overset{\text{index coding}}{\longrightarrow} \mathbf{x} \mathbf{L}^{(0)} \overset{\text{coset coding}^a}{\longrightarrow} (\mathbf{x} \mathbf{L}^{(0)} | \mathbf{g}) \mathbf{M}$$

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{xL}$, where L is an $n \times k$ matrix; Rate: 1/k

